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ABSTRACT 

Mobile applications can recognize their computational setting and adjust and respond to actions in the 

context. This is known as context-aware computing. Testing context-aware applications is difficult due to 

their dynamic nature, as the context is constantly changing. Most mobile testing tools and approaches 

focus only on GUI events, adding to the deficient coverage of applications throughout testing. Generating 

test cases for various context events in Android applications can be achieved using reinforcement learning 

algorithms. This study proposes an approach for generating Android application test cases based on 

Expected State-Action-Reward-State-Action (E-SARSA), considering GUI and context events for effective 
testing. The proposed method was experimentally evaluated on eight Android applications, showing 48-
96% line of code coverage across them, which was higher than Q-testing and SARSA. 

Keywords-Android applications; test case generation; GUI event; context event; reinforcement learning; 

expected SARSA 

I. INTRODUCTION  

Mobile devices have become a significant part of our daily 
lives, allowing easy access to communication, banking, social 
media, etc. The popularity of smartphones is ever-increasing 
due to their portability and increasing capabilities [1]. Mobile 
applications are now regularly used for numerous tasks in 
business, education, and healthcare, due to their growth in 
functionality and compatibility [2-4]. According to [5], an 
average person uses mobile phones for 3 hours a day and 
spends 90% of this time on mobile applications. In [6], it was 
stated that a mobile device has between 60 and 90 applications 
installed on average. Almost all global mobile application 
developers target Android as their first choice [7]. In line with 
the robust reputation of mobile applications, their quality is 
very important [8, 9]. Users often face denials or crashes in 
applications due to low quality and deficiencies in mobile 

testing [10]. Therefore, inspecting an application's reliability is 
an important task. 

Mobile applications can now recognize their computational 
context and adjust and respond to actions in that context. A 
context can be seen as any information that can be used to 
characterize the situation of an entity [11]. An entity can be 
anything that is considered relevant to the interaction between a 
user and an application, such as a place, person, or object, 
including the user and the applications themselves [12]. 
Context-aware applications are increasingly popular because 
they can simplify end-user responsibilities in many sectors, 
such as entertainment, healthcare, and smart homes [13, 14]. 
Continuous variation in context makes testing context-aware 
applications a challenging task. Therefore, software engineers 
must increase the quality of their products by considering 
context variations and thoroughly testing their applications to 
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detect faults [15]. A test engineer needs context data and a 
sequence of actions performed by the end user, which increases 
the difficulty of developing test cases [14, 16]. Some of the 
challenges of testing context-aware applications are: how to 
identify context events during testing, generating context-aware 
test data and test cases, and testing a wide variety of context 
data types and context variations [17-21]. Currently, only a few 
testing techniques and tools address testing context variations 
in mobile applications [14, 22, 23]. 

Many studies have recently proposed Machine Learning 
(ML) algorithms to automate software testing [24, 25]. ML 
developments have shown that automation can match or exceed 
human performance in different domains [26]. Recently, ML 
models have been proposed to directly generate input [27], 
automate functional tests [28], or test Android applications [29, 
30]. ML offers the possibility of adapting test case generation 
for mobile applications. In [31], it was stated that of more than 
600 Android application projects, only 14% had test cases, and 
approximately 9% had code coverage above 40%. Although 
previous studies have proposed testing models for Android 
application GUIs, more studies are needed to increase code 
coverage. Most mobile application testing techniques focus on 
testing only GUI events. This adds to the deficient coverage of 
the applications throughout testing. Generating test cases for 
variations in context events in Android applications can be 
achieved using Reinforcement Learning (RL) ML algorithms. 
This study proposes an approach to generate Android 
application test cases based on Expected State-Action-Reward-
State-Action (E-SARSA), considering GUI and context events 
for effective testing. 

II. BACKGROUND AND RELATED WORKS 

A. Reinforcement Learning (RL) 

RL is a branch of ML that primarily emphasizes successive 
policy-making that takes into account uncertainties. According 
to [32, 33], RL can be seen as a computational method for ML 
that follows behavioral psychology concepts and learning from 
connections. The application of RL in Android application 
testing has attracted the interest of many researchers [34]. RL 
has two mechanisms: the environment and the agent. An agent 
is an independent unit that can perform activities in an 
environment to reach a goal. The RL concept examines how 
software agents should take action in an environment in which 
the cumulative reward is maximized. The reward is given only 
when the agent achieves an objective [35]. The purpose of RL 
is to learn the optimal policies for agents that interact with an 
unidentified environment E. The goal of an agent is to choose a 
sequence of actions, by observing the environment, that 
maximizes the cumulative reward over all time steps through 
trial and error. RL has become increasingly popular due to its 
success in addressing challenging and successive policy-
making issues. Q-learning is an off-policy method that updates 
its Q values using the following update rule: 

�(��, ��)  ←  �(��, ��)  +  � [
(��, ��)  +  

     � max� �(���� , �)  −  �(�� , ��)]  (1) 

The max operator makes the estimation policy greedy, 
ensuring the Q values converge to Q(st+1, e). The behavior 

policy of Q-learning is exploratory and based on Q(st, et). The 
behavioral and estimated policies are equal in SARSA, which 
updates the Q value using the following rule: 

�(��, ��)  ←  �(��, ��)  +  � [
(��, ��)  +  

     � �(����, ����)  −  �(��, ��)]   (2) 

SARSA will not congregate to optimal Q values as long as 
exploration occurs, because it is on policy. However, SARSA's 
convergence requires each state to be visited recurrently, and 
the behavior and the approximation policy are classically 
stochastic to certify suitable exploration. E-SARSA is a 
variation of SARSA that decreases update changes. The agent 
acts, perceives the reward, and updates the Q-value. It does so 
by updating the action using the expected Q-value �(���� , �), 
instead of merely using et+1. Using this probability decreases 
update changes. According to [36], the Q-value function is 
defined as:  

�(�� , �� ) ←
�(�� , ��) + �(
(��, ��) + ����(�|����)�(����, �) −
 �(�� , ��))     (3) 

where Q(st, et) on the left is the new Q-value of e later in 
performing et and moving to state st+1. Q(st, et) on the right side 
is the current Q-value of event et in state st, and α is the 
learning rate that signifies the effect of an original remark on 
the predicted value of the Q-function. R(st, et) is the instant 
reward for taking event et in state st+1, and γ is the discount 
factor. When st+1 executes an update of Q(st, et), it will also 
update Q(st+1, e) through an improved estimate before choosing 
the action. Σe π(e|st+1,) is the weighted sum of all possible next 
events, and e is the Q-value of the next selected event et in the 
state st+1. 

B. Related Works  

Several studies have used RL algorithms to test GUI, such 
as enhancing branch coverage for C applications [27], 
Java/Swipe desktop applications [37], and desktop and web 
applications [38]. These tools are not appropriate for testing 
mobile applications due to their exceptional features, such as 
screen size, operating system versions, input procedures, and 
interaction devices [39]. Therefore, focus was given to previous 
studies related to testing Android applications using RL 
techniques. In [40], a method was presented that allowed the 
classification of each activity into a specific type and was used 
to test several expected behaviors on different screens. In [41], 
Q-Learning-Based Exploration (QBE) was proposed to explore 
GUI actions using Q-Learning. QBE performed better than 
Sapienz, Monkey, A3E, and Swifthand in terms of activity and 
instruction coverage, except Sapienz, which achieved higher 
instruction coverage. This method also achieved better results 
in terms of the number of crashes detected. In [42], a black-box 
testing tool was proposed that adopted the Advantage Actor-
Critic (A2C) algorithm to automatically generate test cases. 
The algorithm comprises an actor (policy) and a critic (value 
function). This method was tested on 17 Android applications 
and was compared with Monkey and ARES. The results 
showed that this method achieved higher code coverage and 
detected more errors. 
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In [43], DroidbotX was proposed, which is an approach that 
generates a GUI test case based on Q-learning. DroidbotX uses 
tabular Q-learning and an effective exploration strategy to 
minimize redundant action executions while using different 
states and action spaces. DroidbotX outperformed Android 
Monkey, Droidbot, Sapienz, Stoat, and Humanoid, as it 
achieved better test coverage and triggered more crashes. In 
[39], a test case generation method was proposed using 
SARSA. This method employed a similar policy to both choose 
an action and update the Q value. In [28], Q-funcT was 
proposed, which used Q-learning to learn the best policy and 
implement dissimilar functions in the environment rather than 
exploring the application to search for errors. In [44] AimDroid 
was presented to automatically test Android applications based 
on SARSA, aiming to investigate activities and minimize 
redundant changes between them. 

III. METHODOLOGY 

The proposed approach generates test cases from Android 
applications focusing on both context and GUI events. This 
approach uses E-SARSA to generate the test, where the 
Application Under Test (AUT) serves as the agent's 
environment. UIautomator [45] is used to extract the XML sign 
of the AUT GUI and learn the accessible widgets and actions 
recognized by a unique ID. Testing events for mobile 
applications have several challenges. Generating test cases for 
variations of context events in an Android application using E-
SARSA involves dealing with changing environmental 
conditions and accordingly adapting the testing strategy. The 
main part of E-SARSA is avoiding stochasticity in the policy 
by using more cumulative variance [36]. It does so by creating 
an update on the expected value Q(st+1, et+1). 

The agent implements the selected event, perceives the 
reward, and updates the Q-value function. Each state uses data 
that aid the agent in choosing the next event. In RL, the 
sequence is identified as an episode. In each episode, the agent 
changes the Q-value until it reaches the next state. Thus, the 
approach creates a reward function that considers the 
exploration of the sequence state and execution of the 
action/events (GUI and context). Events, states, and actions are 
defined according to the Markov Decision Process (MPD), as 
shown in (4), to generate a test case for an Android application. 

�: =  (�, �,  , �, !, 
)     (4) 

where: 

 S is a set of states that is defined by the activity name and 
the set of available events (GUI/context). A state s is 
represented by an n-tuple, as:  

� =  (��, �", �#, �$, … , �&)   (5) 

where ei is the current event and n is the total number of 
events.  

 E is the set of events known as the actions in MPD. An 
event resembles an action that can be executed on a GUI 
component (e.g. a swipe button), or context event (e.g. 
Bluetooth or a sensor). There is no variance between events 
and actions. The event e is represented by a 3-tuple, as:  

� =  (', ��, ()    (6) 

where w is a widget on a particular screen, et is the event 
type, which can be either click, long click, or swipe, and v 
grasps random text if the widget is a text field or null if the 
widget is non-text. Each event is linked to an exact state, 
which allows also practicing the state-action pairs to 
characterize an event executable in the application state. 

 R is the distribution of rewards that returns a numeric value 
that specifies a transition (current state, event, new state). 
The reward function calculates the result of taking the 
action so that the test generation algorithm can differentiate 
between the actions that were explored earlier. 

 T is the transition function. When et is executed in the 
current state, the transition to a new state will be 
determined in response to the AUT. This defines the state 
the application will reach after the execution of an action, 
and it is resolute by the application. 

 γ is the discount factor. The agent uses trial-and-error 
relations to gain information about the environment, 
directed by positive or negative rewards rather than obvious 
commands. 

ALGORITHM 1: E-SARSA TEST GENERATION 

1. Input: AUT: Application under test, C: 

Completion 

     Criteria, T: Transition, E: Events, S: States,  

     Q: Q-functions, IQ: Initial q-value  

2. Output: TC: Test Case 

3. Start AUT 

4.   while C ≠ true do 

5      state_now ← getcurrentstate(AUT) 

6.     events e ← env(possible events) 

7.     foreach e ϵ E do 

8.       event_id ← get_event_id(e) 

9.       Event_type ← get_event_type(et) 

10.      update S, statenow, Eids 

11.      return (S, Eids) 

12.     End foreach 

13.     Update Q-function  

14.     nxtstate_prob ← P(e/next_state) 

15.     qNxtstate ← qValues  

16.     for each e in Nxtstate  

17.       if qCurrent is none, then  

18.         qValue(s, e) ←R  

19.       else 

20.         qValues(s,e)←q_current+0.1*R+ 

              0.99*Σe (nxtstate) – qValue(e, s) 

21.         return(nxtstate) 

22.      End foreach 

23.      for all s in S do 

24.        visit all unexplored A in s 

25.        if E is not empty do 

26.          choose e from E according to T 

27.        else 

28.          extract s from unexplored e 

29.        repeat until all E in S are explored 

30.      End for 

31.    End update q function 

32.    And TC is CC 

33.  End while 

34. End AUT 
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E-SARSA updates its weights by learning from the 
transitions in the table. The approach gradually interrelates 
with the AUT to approximate a behavioral model of the 
application. The proposed approach aims to generate test cases 
that maximize code coverage. The execution of a sequence of 
actions in the AUT results in the formation of a test case. 
Algorithm 1 illustrates the algorithm the test case generation 
method based on E-SARSA. This algorithm receives as input: 
AUT, completion criteria, transition function, actions, states, 
Q-functions, and initial q-value. From these input parameters, 
this approach performs a sequence of actions and outputs a test 
case. The completion criterion is to visit all the unexplored 
states. The procedure starts at line 3 of the algorithm. 

IV. EXPERIMENTAL SETUP 

A. Environment 

All experiments were run on a PC with Ubuntu 20.04, 
equipped with 8GB of RAM and an Intel i5 processor. An 
emulator was used to test the mobile app, based on x86 Intel 
with Android version 10.0 'Q' (API level 29).  

B. Benchmark 

The proposed approach was evaluated on 8 open-source 
Android applications of different categories and sizes. The 
applications were obtained from F-droid [46], a frequently used 
database for downloading Android applications. Table I shows 
the characteristics of the selected applications, such as versions, 
categories, number of downloads, and Lines of Code (LOC). 
LOC varied from 273 to 29,126, with an average of 6,240. 

TABLE I.  CHARACTERISTICS OF SELECTED 
APPLICATIONS  

Applications Categories Version #Downloads LOC 

Alarmclock Productivity  2.11 10 million+ 1,201 

Alogcat Tools  2.6.1 100 thousand+ 974 

Ankidroid Education 2.16.5 10 million+ 29,126 

A2dp Map and Navigation 2.13 100 million+ 4,522 

Munchlife  Entertainment 1.4.4 10 thousand+ 273 

Simple Reminder Tools 2.8.1 1 thousand+ 1,126 

The Kana Quiz Education 0.15 500+ 4,453 

TrickyTripper Travel and Local 1.6.2 10 thousand+ 8,244 

Average 6,240 

 

V. RESULTS AND DISCUSSION 

Code coverage was used to check the efficiency of the 
proposed method on the selected applications. Code coverage 
is the sum of passes that have been executed at least once as a 
percentage of the total number of passes. LOC coverage 
measures the percentage of lines executed during testing 
compared to the total number of lines of code in the 
application. There are several tools for measuring code 
coverage for different programming languages, such as Jacoco 
[47], coverage.py [48], and Emma [49]. This study used 
Emma, an open-source code coverage tool, to measure the 
coverage achieved by the proposed approach. 

The proposed approach was compared with other 
approaches/techniques in the literature, such as Q-testing [50], 
and SARSA [39]. As each approach was evaluated using a 

different set of mobile applications, the comparison was 
performed by considering the applications used to evaluate 
each approach. Based on this, this approach was compared 
separately with the others. Figure 1, shows the LOC coverage 
obtained by the proposed approach, with approximately 50% 
on Alarmclock, 79% on Ankidroid, 90% on Alogcat, and 96% 
on MunchLife. Q-testing achieved approximately 36% on 
Alarmclock, 32% on Ankidroid, 78% on Alogcat, and 90% on 
MunchLife respectively. Figure 2, shows the LOC coverage 
obtained by the proposed approach compared to SARSA. 
SARSA achieved a range of 39.60% on Ankidroid, 67.18% on 
SimpleReminder, 63.30% on the Kana Quiz, and 36.61% on 
TrickyTripper, respectively.  

 

 
Fig. 1.  Comparison of the proposed approach with Q-testing. 

 
Fig. 2.  Comparison of the proposed approach with SARSA. 

Based on the average coverage of the tools compared using 
the selected applications, the proposed approach outperformed 
the others in terms of LOC, as shown in Figure 3. The 
proposed approach achieves these results due to the use of E-
SARSA, which reduces changes by taking into account the 
probability of each action under the current policy, triggered by 
randomly selecting actions. 

 
Fig. 3.  Comparison of LOC average. 
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VI. CONCLUSION 

Mobile context-aware application testing is complicated 
due to its dynamic nature as the context changes. Most mobile 
testing tools and approaches focus only on GUI events. This 
adds to the deficient coverage of applications throughout 
testing. This study presented an approach to generate Android 
application test cases using E-SARSA, which considers both 
context and GUI events for effective testing. An experimental 
analysis was executed using real-world open-source mobile 
applications to evaluate the approach. The results showed that 
the proposed approach had 48-96% coverage on the selected 
applications. The proposed method outperformed Q-testing on 
all four common applications and achieved better LOC 
coverage than SARSA on Ankidroid, The Kana Quiz, and 
TrickyTripper. However, SARSA had a better LOC on Simple 
Reminder by 19%. The proposed approach had an average 
LOC of 78.70% while Q-testing and SARSA had 59% and 
51.70%, respectively. Future work will investigate additional 
evaluation metrics, such as fault detection ability, and integrate 
the approach into a tool. 
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