
Engineering, Technology & Applied Science Research Vol. 14, No. 4, 2024, 15127-15132 15127

www.etasr.com Usman et al.: Generating Test Cases for Android Applications based on Reinforcement Learning

Test Case Generation Approach for Android

Applications using Reinforcement Learning

Asmau Usman

Department of Computer Science, Abdu Gusau Polytechnic Talata Mafara, Nigeria | Department of

Computer Science, Faculty of Computing, Nile University of Nigeria, Nigeria

asmee08@gmail.com (corresponding author)

Moussa Mahamat Boukar

Department of Computer Science, Faculty of Computing, Nile University of Nigeria, Nigeria
musa.muhammed@nileuniversity.edu.ng

Muhammed Aliyu Suleiman

Department of Software Engineering, Faculty of Computing, Nile University of Nigeria, Nigeria

muhammad.suleiman@nileuniversity.edu.ng

Ibrahim Anka Salihu

Department of Software Engineering, Faculty of Computing, Nile University of Nigeria, Nigeria

ibrahim.salihu@nileuniversity.edu.ng

Received: 5 April 2024 2024 | Revised: 25 April 2024 | Accepted: 27 April 2024

Licensed under a CC-BY 4.0 license | Copyright (c) by the authors | DOI: https://doi.org/10.48084/etasr.7422

ABSTRACT

Mobile applications can recognize their computational setting and adjust and respond to actions in the

context. This is known as context-aware computing. Testing context-aware applications is difficult due to

their dynamic nature, as the context is constantly changing. Most mobile testing tools and approaches

focus only on GUI events, adding to the deficient coverage of applications throughout testing. Generating

test cases for various context events in Android applications can be achieved using reinforcement learning

algorithms. This study proposes an approach for generating Android application test cases based on

Expected State-Action-Reward-State-Action (E-SARSA), considering GUI and context events for effective
testing. The proposed method was experimentally evaluated on eight Android applications, showing 48-
96% line of code coverage across them, which was higher than Q-testing and SARSA.

Keywords-Android applications; test case generation; GUI event; context event; reinforcement learning;

expected SARSA

I. INTRODUCTION

Mobile devices have become a significant part of our daily
lives, allowing easy access to communication, banking, social
media, etc. The popularity of smartphones is ever-increasing
due to their portability and increasing capabilities [1]. Mobile
applications are now regularly used for numerous tasks in
business, education, and healthcare, due to their growth in
functionality and compatibility [2-4]. According to [5], an
average person uses mobile phones for 3 hours a day and
spends 90% of this time on mobile applications. In [6], it was
stated that a mobile device has between 60 and 90 applications
installed on average. Almost all global mobile application
developers target Android as their first choice [7]. In line with
the robust reputation of mobile applications, their quality is
very important [8, 9]. Users often face denials or crashes in
applications due to low quality and deficiencies in mobile

testing [10]. Therefore, inspecting an application's reliability is
an important task.

Mobile applications can now recognize their computational
context and adjust and respond to actions in that context. A
context can be seen as any information that can be used to
characterize the situation of an entity [11]. An entity can be
anything that is considered relevant to the interaction between a
user and an application, such as a place, person, or object,
including the user and the applications themselves [12].
Context-aware applications are increasingly popular because
they can simplify end-user responsibilities in many sectors,
such as entertainment, healthcare, and smart homes [13, 14].
Continuous variation in context makes testing context-aware
applications a challenging task. Therefore, software engineers
must increase the quality of their products by considering
context variations and thoroughly testing their applications to

Engineering, Technology & Applied Science Research Vol. 14, No. 4, 2024, 15127-15132 15128

www.etasr.com Usman et al.: Generating Test Cases for Android Applications based on Reinforcement Learning

detect faults [15]. A test engineer needs context data and a
sequence of actions performed by the end user, which increases
the difficulty of developing test cases [14, 16]. Some of the
challenges of testing context-aware applications are: how to
identify context events during testing, generating context-aware
test data and test cases, and testing a wide variety of context
data types and context variations [17-21]. Currently, only a few
testing techniques and tools address testing context variations
in mobile applications [14, 22, 23].

Many studies have recently proposed Machine Learning
(ML) algorithms to automate software testing [24, 25]. ML
developments have shown that automation can match or exceed
human performance in different domains [26]. Recently, ML
models have been proposed to directly generate input [27],
automate functional tests [28], or test Android applications [29,
30]. ML offers the possibility of adapting test case generation
for mobile applications. In [31], it was stated that of more than
600 Android application projects, only 14% had test cases, and
approximately 9% had code coverage above 40%. Although
previous studies have proposed testing models for Android
application GUIs, more studies are needed to increase code
coverage. Most mobile application testing techniques focus on
testing only GUI events. This adds to the deficient coverage of
the applications throughout testing. Generating test cases for
variations in context events in Android applications can be
achieved using Reinforcement Learning (RL) ML algorithms.
This study proposes an approach to generate Android
application test cases based on Expected State-Action-Reward-
State-Action (E-SARSA), considering GUI and context events
for effective testing.

II. BACKGROUND AND RELATED WORKS

A. Reinforcement Learning (RL)

RL is a branch of ML that primarily emphasizes successive
policy-making that takes into account uncertainties. According
to [32, 33], RL can be seen as a computational method for ML
that follows behavioral psychology concepts and learning from
connections. The application of RL in Android application
testing has attracted the interest of many researchers [34]. RL
has two mechanisms: the environment and the agent. An agent
is an independent unit that can perform activities in an
environment to reach a goal. The RL concept examines how
software agents should take action in an environment in which
the cumulative reward is maximized. The reward is given only
when the agent achieves an objective [35]. The purpose of RL
is to learn the optimal policies for agents that interact with an
unidentified environment E. The goal of an agent is to choose a
sequence of actions, by observing the environment, that
maximizes the cumulative reward over all time steps through
trial and error. RL has become increasingly popular due to its
success in addressing challenging and successive policy-
making issues. Q-learning is an off-policy method that updates
its Q values using the following update rule:

�(��, ��) ← �(��, ��) + � [
(��, ��) +

 � max� �(���� , �) − �(�� , ��)] (1)

The max operator makes the estimation policy greedy,
ensuring the Q values converge to Q(st+1, e). The behavior

policy of Q-learning is exploratory and based on Q(st, et). The
behavioral and estimated policies are equal in SARSA, which
updates the Q value using the following rule:

�(��, ��) ← �(��, ��) + � [
(��, ��) +

 � �(����, ����) − �(��, ��)] (2)

SARSA will not congregate to optimal Q values as long as
exploration occurs, because it is on policy. However, SARSA's
convergence requires each state to be visited recurrently, and
the behavior and the approximation policy are classically
stochastic to certify suitable exploration. E-SARSA is a
variation of SARSA that decreases update changes. The agent
acts, perceives the reward, and updates the Q-value. It does so
by updating the action using the expected Q-value �(���� , �),
instead of merely using et+1. Using this probability decreases
update changes. According to [36], the Q-value function is
defined as:

�(�� , ��) ←
�(�� , ��) + �(
(��, ��) + ����(�|����)�(����, �) −
 �(�� , ��)) (3)

where Q(st, et) on the left is the new Q-value of e later in
performing et and moving to state st+1. Q(st, et) on the right side
is the current Q-value of event et in state st, and α is the
learning rate that signifies the effect of an original remark on
the predicted value of the Q-function. R(st, et) is the instant
reward for taking event et in state st+1, and γ is the discount
factor. When st+1 executes an update of Q(st, et), it will also
update Q(st+1, e) through an improved estimate before choosing
the action. Σe π(e|st+1,) is the weighted sum of all possible next
events, and e is the Q-value of the next selected event et in the
state st+1.

B. Related Works

Several studies have used RL algorithms to test GUI, such
as enhancing branch coverage for C applications [27],
Java/Swipe desktop applications [37], and desktop and web
applications [38]. These tools are not appropriate for testing
mobile applications due to their exceptional features, such as
screen size, operating system versions, input procedures, and
interaction devices [39]. Therefore, focus was given to previous
studies related to testing Android applications using RL
techniques. In [40], a method was presented that allowed the
classification of each activity into a specific type and was used
to test several expected behaviors on different screens. In [41],
Q-Learning-Based Exploration (QBE) was proposed to explore
GUI actions using Q-Learning. QBE performed better than
Sapienz, Monkey, A3E, and Swifthand in terms of activity and
instruction coverage, except Sapienz, which achieved higher
instruction coverage. This method also achieved better results
in terms of the number of crashes detected. In [42], a black-box
testing tool was proposed that adopted the Advantage Actor-
Critic (A2C) algorithm to automatically generate test cases.
The algorithm comprises an actor (policy) and a critic (value
function). This method was tested on 17 Android applications
and was compared with Monkey and ARES. The results
showed that this method achieved higher code coverage and
detected more errors.

Engineering, Technology & Applied Science Research Vol. 14, No. 4, 2024, 15127-15132 15129

www.etasr.com Usman et al.: Generating Test Cases for Android Applications based on Reinforcement Learning

In [43], DroidbotX was proposed, which is an approach that
generates a GUI test case based on Q-learning. DroidbotX uses
tabular Q-learning and an effective exploration strategy to
minimize redundant action executions while using different
states and action spaces. DroidbotX outperformed Android
Monkey, Droidbot, Sapienz, Stoat, and Humanoid, as it
achieved better test coverage and triggered more crashes. In
[39], a test case generation method was proposed using
SARSA. This method employed a similar policy to both choose
an action and update the Q value. In [28], Q-funcT was
proposed, which used Q-learning to learn the best policy and
implement dissimilar functions in the environment rather than
exploring the application to search for errors. In [44] AimDroid
was presented to automatically test Android applications based
on SARSA, aiming to investigate activities and minimize
redundant changes between them.

III. METHODOLOGY

The proposed approach generates test cases from Android
applications focusing on both context and GUI events. This
approach uses E-SARSA to generate the test, where the
Application Under Test (AUT) serves as the agent's
environment. UIautomator [45] is used to extract the XML sign
of the AUT GUI and learn the accessible widgets and actions
recognized by a unique ID. Testing events for mobile
applications have several challenges. Generating test cases for
variations of context events in an Android application using E-
SARSA involves dealing with changing environmental
conditions and accordingly adapting the testing strategy. The
main part of E-SARSA is avoiding stochasticity in the policy
by using more cumulative variance [36]. It does so by creating
an update on the expected value Q(st+1, et+1).

The agent implements the selected event, perceives the
reward, and updates the Q-value function. Each state uses data
that aid the agent in choosing the next event. In RL, the
sequence is identified as an episode. In each episode, the agent
changes the Q-value until it reaches the next state. Thus, the
approach creates a reward function that considers the
exploration of the sequence state and execution of the
action/events (GUI and context). Events, states, and actions are
defined according to the Markov Decision Process (MPD), as
shown in (4), to generate a test case for an Android application.

�: = (�, �, , �, !,
) (4)

where:

 S is a set of states that is defined by the activity name and
the set of available events (GUI/context). A state s is
represented by an n-tuple, as:

� = (��, �", �#, �$, … , �&) (5)

where ei is the current event and n is the total number of
events.

 E is the set of events known as the actions in MPD. An
event resembles an action that can be executed on a GUI
component (e.g. a swipe button), or context event (e.g.
Bluetooth or a sensor). There is no variance between events
and actions. The event e is represented by a 3-tuple, as:

� = (', ��, () (6)

where w is a widget on a particular screen, et is the event
type, which can be either click, long click, or swipe, and v
grasps random text if the widget is a text field or null if the
widget is non-text. Each event is linked to an exact state,
which allows also practicing the state-action pairs to
characterize an event executable in the application state.

 R is the distribution of rewards that returns a numeric value
that specifies a transition (current state, event, new state).
The reward function calculates the result of taking the
action so that the test generation algorithm can differentiate
between the actions that were explored earlier.

 T is the transition function. When et is executed in the
current state, the transition to a new state will be
determined in response to the AUT. This defines the state
the application will reach after the execution of an action,
and it is resolute by the application.

 γ is the discount factor. The agent uses trial-and-error
relations to gain information about the environment,
directed by positive or negative rewards rather than obvious
commands.

ALGORITHM 1: E-SARSA TEST GENERATION

1. Input: AUT: Application under test, C:

Completion

 Criteria, T: Transition, E: Events, S: States,

 Q: Q-functions, IQ: Initial q-value

2. Output: TC: Test Case

3. Start AUT

4. while C ≠ true do

5 state_now ← getcurrentstate(AUT)

6. events e ← env(possible events)

7. foreach e ϵ E do

8. event_id ← get_event_id(e)

9. Event_type ← get_event_type(et)

10. update S, statenow, Eids

11. return (S, Eids)

12. End foreach

13. Update Q-function

14. nxtstate_prob ← P(e/next_state)

15. qNxtstate ← qValues

16. for each e in Nxtstate

17. if qCurrent is none, then

18. qValue(s, e) ←R

19. else

20. qValues(s,e)←q_current+0.1*R+

 0.99*Σe (nxtstate) – qValue(e, s)

21. return(nxtstate)

22. End foreach

23. for all s in S do

24. visit all unexplored A in s

25. if E is not empty do

26. choose e from E according to T

27. else

28. extract s from unexplored e

29. repeat until all E in S are explored

30. End for

31. End update q function

32. And TC is CC

33. End while

34. End AUT

Engineering, Technology & Applied Science Research Vol. 14, No. 4, 2024, 15127-15132 15130

www.etasr.com Usman et al.: Generating Test Cases for Android Applications based on Reinforcement Learning

E-SARSA updates its weights by learning from the
transitions in the table. The approach gradually interrelates
with the AUT to approximate a behavioral model of the
application. The proposed approach aims to generate test cases
that maximize code coverage. The execution of a sequence of
actions in the AUT results in the formation of a test case.
Algorithm 1 illustrates the algorithm the test case generation
method based on E-SARSA. This algorithm receives as input:
AUT, completion criteria, transition function, actions, states,
Q-functions, and initial q-value. From these input parameters,
this approach performs a sequence of actions and outputs a test
case. The completion criterion is to visit all the unexplored
states. The procedure starts at line 3 of the algorithm.

IV. EXPERIMENTAL SETUP

A. Environment

All experiments were run on a PC with Ubuntu 20.04,
equipped with 8GB of RAM and an Intel i5 processor. An
emulator was used to test the mobile app, based on x86 Intel
with Android version 10.0 'Q' (API level 29).

B. Benchmark

The proposed approach was evaluated on 8 open-source
Android applications of different categories and sizes. The
applications were obtained from F-droid [46], a frequently used
database for downloading Android applications. Table I shows
the characteristics of the selected applications, such as versions,
categories, number of downloads, and Lines of Code (LOC).
LOC varied from 273 to 29,126, with an average of 6,240.

TABLE I. CHARACTERISTICS OF SELECTED
APPLICATIONS

Applications Categories Version #Downloads LOC

Alarmclock Productivity 2.11 10 million+ 1,201

Alogcat Tools 2.6.1 100 thousand+ 974

Ankidroid Education 2.16.5 10 million+ 29,126

A2dp Map and Navigation 2.13 100 million+ 4,522

Munchlife Entertainment 1.4.4 10 thousand+ 273

Simple Reminder Tools 2.8.1 1 thousand+ 1,126

The Kana Quiz Education 0.15 500+ 4,453

TrickyTripper Travel and Local 1.6.2 10 thousand+ 8,244

Average 6,240

V. RESULTS AND DISCUSSION

Code coverage was used to check the efficiency of the
proposed method on the selected applications. Code coverage
is the sum of passes that have been executed at least once as a
percentage of the total number of passes. LOC coverage
measures the percentage of lines executed during testing
compared to the total number of lines of code in the
application. There are several tools for measuring code
coverage for different programming languages, such as Jacoco
[47], coverage.py [48], and Emma [49]. This study used
Emma, an open-source code coverage tool, to measure the
coverage achieved by the proposed approach.

The proposed approach was compared with other
approaches/techniques in the literature, such as Q-testing [50],
and SARSA [39]. As each approach was evaluated using a

different set of mobile applications, the comparison was
performed by considering the applications used to evaluate
each approach. Based on this, this approach was compared
separately with the others. Figure 1, shows the LOC coverage
obtained by the proposed approach, with approximately 50%
on Alarmclock, 79% on Ankidroid, 90% on Alogcat, and 96%
on MunchLife. Q-testing achieved approximately 36% on
Alarmclock, 32% on Ankidroid, 78% on Alogcat, and 90% on
MunchLife respectively. Figure 2, shows the LOC coverage
obtained by the proposed approach compared to SARSA.
SARSA achieved a range of 39.60% on Ankidroid, 67.18% on
SimpleReminder, 63.30% on the Kana Quiz, and 36.61% on
TrickyTripper, respectively.

Fig. 1. Comparison of the proposed approach with Q-testing.

Fig. 2. Comparison of the proposed approach with SARSA.

Based on the average coverage of the tools compared using
the selected applications, the proposed approach outperformed
the others in terms of LOC, as shown in Figure 3. The
proposed approach achieves these results due to the use of E-
SARSA, which reduces changes by taking into account the
probability of each action under the current policy, triggered by
randomly selecting actions.

Fig. 3. Comparison of LOC average.

Engineering, Technology & Applied Science Research Vol. 14, No. 4, 2024, 15127-15132 15131

www.etasr.com Usman et al.: Generating Test Cases for Android Applications based on Reinforcement Learning

VI. CONCLUSION

Mobile context-aware application testing is complicated
due to its dynamic nature as the context changes. Most mobile
testing tools and approaches focus only on GUI events. This
adds to the deficient coverage of applications throughout
testing. This study presented an approach to generate Android
application test cases using E-SARSA, which considers both
context and GUI events for effective testing. An experimental
analysis was executed using real-world open-source mobile
applications to evaluate the approach. The results showed that
the proposed approach had 48-96% coverage on the selected
applications. The proposed method outperformed Q-testing on
all four common applications and achieved better LOC
coverage than SARSA on Ankidroid, The Kana Quiz, and
TrickyTripper. However, SARSA had a better LOC on Simple
Reminder by 19%. The proposed approach had an average
LOC of 78.70% while Q-testing and SARSA had 59% and
51.70%, respectively. Future work will investigate additional
evaluation metrics, such as fault detection ability, and integrate
the approach into a tool.

REFERENCES

[1] I. A. Salihu, R. Ibrahim, B. S. Ahmed, K. Z. Zamli, and A. Usman,

"AMOGA: A static-dynamic model generation strategy for mobile apps
testing," IEEE Access, vol. 7, pp. 17158–17173, Jan. 2019,

https://doi.org/10.1109/ACCESS.2019.2895504.

[2] H. Muccini, A. Di Francesco, and P. Esposito, "Software testing of

mobile applications: Challenges and future research directions," in 2012

7th International Workshop on Automation of Software Test (AST),

Zurich, Switzerland, Jun. 2012, pp. 29–35, https://doi.org/10.1109/
IWAST.2012.6228987.

[3] A. S. Alkarim, A. Al-Malaise Al-Ghamdi, and M. Ragab, "Ensemble

Learning-based Algorithms for Traffic Flow Prediction in Smart Traffic
Systems," Engineering, Technology & Applied Science Research, vol.

14, no. 2, pp. 13090–13094, Apr. 2024, https://doi.org/10.48084/etasr.
6767.

[4] I. A. Salihu, R. Ibrahim, and A. Usman, "A Static-dynamic Approach for

UI Model Generation for Mobile Applications," in 2018 7th

International Conference on Reliability, Infocom Technologies and

Optimization (Trends and Future Directions) (ICRITO), Noida, India,
Aug. 2018, pp. 96–100, https://doi.org/10.1109/ICRITO.2018.8748410.

[5] D. Chaffey, "Statistics on consumer mobile usage and adoption to

inform your mobile marketing strategy mobile site design and app
development," Smart Insights, 2021.

[6] H. Packard, "Failing to meet mobile app user expectations: a mobile user

survey". Technology Representatives Inc, 2015.

[7] "Mobile Developer Population Reaches 12M Worldwide, Expected to
Top 14M by 2020". Evans Data Corporation, May 2016,

https://evansdata.com/press/viewRelease.php?pressID=244.

[8] N. C. Eli-Chukwu, J. M. Aloh, and C. O. Ezeagwu, "A Systematic

Review of Artificial Intelligence Applications in Cellular Networks,"
Engineering, Technology & Applied Science Research, vol. 9, no. 4, pp.

4504–4510, Aug. 2019, https://doi.org/10.48084/etasr.2788.

[9] I. A. Salihu and R. Ibrahim, "Systematic Exploration of Android Apps’
Events for Automated Testing," in Proceedings of the 14th International

Conference on Advances in Mobile Computing and Multi Media,
Singapore, Nov. 2016, pp. 50–54, https://doi.org/10.1145/3007120.

3011072.

[10] A. Usman, N. Ibrahim, and I. A. Salihu, "Comparative Study of Mobile
Applications Testing Techniques for Context Events," Advanced Science

Letters, vol. 24, no. 10, pp. 7305–7310, Oct. 2018,
https://doi.org/10.1166/asl.2018.12933.

[11] D. Amalfitano, A. R. Fasolino, P. Tramontana, and N. Amatucci,

"Considering Context Events in Event-Based Testing of Mobile
Applications," in 2013 IEEE Sixth International Conference on Software

Testing, Verification and Validation Workshops, Luxembourg, Mar.
2013, pp. 126–133, https://doi.org/10.1109/ICSTW.2013.22.

[12] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. E. Smith, and P.

Steggles, "Towards a Better Understanding of Context and Context-
Awareness," in Handheld and Ubiquitous Computing, Proceedings, H.

W. Gellersen, Ed., Berlin, Germany: Springer, 1999, pp. 304–307.

[13] Z. A. Almusaylim and N. Zaman, "A review on smart home present state
and challenges: linked to context-awareness internet of things (IoT),"

Wireless Networks, vol. 25, no. 6, pp. 3193–3204, Aug. 2019,
https://doi.org/10.1007/s11276-018-1712-5.

[14] A. M. Mirza et al., "ContextDrive: Towards a Functional Scenario-
Based Testing Framework for Context-Aware Applications," IEEE

Access, vol. 9, pp. 80478–80490, May 2021, https://doi.org/10.1109/
ACCESS.2021.3084887.

[15] A. Usman, N. Ibrahim, and I. A. Salihu, "Test Case Generation from

Android Mobile Applications Focusing on Context Events," in
Proceedings of the 2018 7th International Conference on Software and

Computer Applications, Kuantan, Malaysia, Feb. 2018, pp. 25–30,
https://doi.org/10.1145/3185089.3185099.

[16] S. S. Priya and B. Rajalakshmi, "Testing Context Aware Application and

its Research Challenges," in 2022 International Conference on Smart

Technologies and Systems for Next Generation Computing (ICSTSN),

Villupuram, India, Mar. 2022, pp. 1–7, https://doi.org/10.1109/
ICSTSN53084.2022.9761331.

[17] M. A. Mehmood, M. N. A. Khan, and W. Afzal, "Automating Test Data

Generation for Testing Context-Aware Applications," in 2018 IEEE 9th

International Conference on Software Engineering and Service Science

(ICSESS), Beijing, China, Nov. 2018, pp. 104–108,
https://doi.org/10.1109/ICSESS.2018.8663920.

[18] A. Usman, N. Ibrahim, and S. Anka, "TEGDroid: Test Case Generation

Approach for Android Apps Considering Context and GUI Events,"
International Journal on Advanced Science, Engineering and

Information Technology, vol. 10, no. 1, pp. 16–23, Feb. 2020,
https://doi.org/10.18517/ijaseit.10.1.10194.

[19] B. R. Siqueira, F. C. Ferrari, K. E. Souza, V. V. Camargo, and R. de

Lemos, "Testing of adaptive and context-aware systems: approaches and
challenges," Software Testing, Verification and Reliability, vol. 31, no.

7, pp. 1–46, May 2021, https://doi.org/10.1002/stvr.1772.

[20] S. Yue, S. Yue, and R. Smith, "A Survey of Testing Context-aware

Software: Challenges and Resolution," in Proceedings of the

International Conference on Software Engineering Research and

Practice (SERP), Las Vegas, Nevada, USA, Sep. 2016, pp. 102–108.

[21] D. R. Almeida, P. D. L. Machado, and W. L. Andrade, "Testing tools for
Android context-aware applications: a systematic mapping," Journal of

the Brazilian Computer Society, vol. 25, no. 1, pp. 1–22, Dec. 2019, Art.
no. 12, https://doi.org/10.1186/s13173-019-0093-7.

[22] A. M. Mirza and M. N. A. Khan, "An Automated Functional Testing

Framework for Context-Aware Applications," IEEE Access, vol. 6, pp.
46568–46583, Aug. 2018, https://doi.org/10.1109/ACCESS.2018.

2865213.

[23] T. B. Nguyen, T. T. B. Le, O. E. K. Aktouf, and I. Parissis, "Mobile
Applications Testing Based on Bigraphs and Dynamic Feature Petri

Nets," in The First International Conference on Intelligence of Things

(ICIT 2022), Hanoi, Vietnam, Aug. 2022, vol. 148, pp. 215–225,

https://doi.org/10.1007/978-3-031-15063-0_20.

[24] S. Chen, Z. Chen, Z. Zhao, B. Xu, and Y. Feng, "Using semi-supervised
clustering to improve regression test selection techniques," in

Verification and Validation 2011 Fourth IEEE International Conference

on Software Testing, Berlin, Germany, Mar. 2011, pp. 1–10,

https://doi.org/10.1109/ICST.2011.38.

[25] H. Spieker, A. Gotlieb, D. Marijan, and M. Mossige, "Reinforcement
learning for automatic test case prioritization and selection in continuous

integration," in Proceedings of the 26th ACM SIGSOFT International

Symposium on Software Testing and Analysis, Santa Barbara, CA, USA,

Jul. 2017, pp. 12–22, https://doi.org/10.1145/3092703.3092709.

[26] B. Ahmed, G. Ali, A. Hussain, A. Baseer, and J. Ahmed, "Analysis of

Text Feature Extractors using Deep Learning on Fake News,"
Engineering, Technology & Applied Science Research, vol. 11, no. 2,

pp. 7001–7005, Apr. 2021, https://doi.org/10.48084/etasr.4069.

Engineering, Technology & Applied Science Research Vol. 14, No. 4, 2024, 15127-15132 15132

www.etasr.com Usman et al.: Generating Test Cases for Android Applications based on Reinforcement Learning

[27] J. Kim, M. Kwon, and S. Yoo, "Generating test input with deep
reinforcement learning," in Proceedings of the 11th International

Workshop on Search-Based Software Testing, Gothenburg, Sweden,
May 2018, pp. 51–58, https://doi.org/10.1145/3194718.3194720.

[28] Y. P. López, J. G. Colonna, E. De Araujo Silva, R. H. Degaki, and J. M.

Silva, "Q-funcT: A Reinforcement Learning Approach for Automated
Black Box Functionality Testing," in 2022 IEEE 2nd International

Conference on Software Engineering and Artificial Intelligence (SEAI),
Xiamen, China, Jun. 2022, pp. 119–123, https://doi.org/10.1109/

SEAI55746.2022.9832177.

[29] A. Romdhana, A. Merlo, M. Ceccato, and P. Tonella, "Deep
Reinforcement Learning for Black-box Testing of Android Apps," ACM

Transactions on Software Engineering and Methodology, vol. 31, no. 4,
pp. 1–29, Apr. 2022, Art. no. 65, https://doi.org/10.1145/3502868.

[30] Y. Zhao, B. Harrison, and T. Yu, "DinoDroid: Testing Android Apps
Using Deep Q-Networks," ACM Transactions on Software Engineering

and Methodology, Nov. 2024, https://doi.org/10.1145/3652150.

[31] P. S. Kochhar, F. Thung, N. Nagappan, T. Zimmermann, and D. Lo,
"Understanding the Test Automation Culture of App Developers," in

2015 IEEE 8th International Conference on Software Testing,

Verification and Validation (ICST), Graz, Austria, Apr. 2015, pp. 1–10,

https://doi.org/10.1109/ICST.2015.7102609.

[32] S. Thrun and M. L. Littman, "Reinforcement Learning: An
Introduction," AI Magazine, vol. 21, no. 1, pp. 103–103, Mar. 2000.

[33] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.

2nd ed.Cambridge, MA, USA: MIT Press, 2018.

[34] A. Usman, M. M. Boukar, M. A. Suleiman, I. A. Salihu, and N. O. Eke,
"Reinforcement Learning for Testing Android Applications: A Review,"

in 2023 2nd International Conference on Multidisciplinary Engineering

and Applied Science (ICMEAS), Abuja, Nigeria, Nov. 2023, vol. 1, pp.

1–6, https://doi.org/10.1109/ICMEAS58693.2023.10429864.

[35] N. Mazyavkina, S. Sviridov, S. Ivanov, and E. Burnaev, "Reinforcement
learning for combinatorial optimization: A survey," Computers &

Operations Research, vol. 134, Oct. 2021, Art. no. 105400,
https://doi.org/10.1016/j.cor.2021.105400.

[36] H. van Seijen, H. van Hasselt, S. Whiteson, and M. Wiering, "A
theoretical and empirical analysis of Expected Sarsa," in 2009 IEEE

Symposium on Adaptive Dynamic Programming and Reinforcement

Learning, Nashville, TN, USA, 2009, pp. 177–184,

https://doi.org/10.1109/ADPRL.2009.4927542.

[37] L. Mariani, M. Pezzè, O. Riganelli, and M. Santoro, "AutoBlackTest: a
tool for automatic black-box testing," in Proceedings of the 33rd

International Conference on Software Engineering (ICSE11), Honolulu,
HI, USA, May 2011, pp. 1013–1015, https://doi.org/10.1145/

1985793.1985979.

[38] A. Esparcia-Alcazar, F. Almenar, M. Martınez, U. Rueda, and T. E. J.
Vos, "Q-learning strategies for action selection in the TESTAR

automated testing tool: 6th International Conference on Metaheuristic
and Nature inspired Computing," in Proceedings of the 6TH

International Conference on Metaheuristics and Nature Inspired

Computing META’2016, Marrakech, Morocco, 2016, pp. 174–180.

[39] M. K. Khan and R. Bryce, "Android GUI Test Generation with

SARSA," in 2022 IEEE 12th Annual Computing and Communication

Workshop and Conference (CCWC), Las Vegas, NV, USA, Jan. 2022,

pp. 0487–0493, https://doi.org/10.1109/CCWC54503.2022.9720807.

[40] A. Rosenfeld, O. Kardashov, and O. Zang, "ACAT: A Novel Machine-
Learning-Based Tool for Automating Android Application Testing," in

Hardware and Software: Verification and Testing, Haifa, Israel, 2017,
pp. 213–216, https://doi.org/10.1007/978-3-319-70389-3_14.

[41] Y. Koroglu et al., "QBE: QLearning-Based Exploration of Android

Applications," in 2018 IEEE 11th International Conference on Software

Testing, Verification and Validation (ICST), Vasteras, Sweden, Apr.

2018, pp. 105–115, https://doi.org/10.1109/ICST.2018.00020.

[42] Y. Gao, C. Tao, H. Guo, and J. Gao, "A Deep Reinforcement Learning-

Based Approach for Android GUI Testing," in Asia-Pacific Web

(APWeb) and Web-Age Information Management (WAIM-2022) Joint

International Conference on Web and Big Data, Nanjing, China, Aug.
2022, pp. 262–276, https://doi.org/10.1007/978-3-031-25201-3_20.

[43] H. Yasin, S. H. A. Hamid, and R. J. R. Yusof, "DroidbotX: Test Case
Generation Tool for Android Applications Using Q-Learning,"

Symmetry, vol. 13, Feb. 2021, Art. no. 310, https://doi.org/10.3390/
sym13020310.

[44] T. Gu et al., "AimDroid: Activity-Insulated Multi-level Automated

Testing for Android Applications," in 2017 IEEE International

Conference on Software Maintenance and Evolution (ICSME),

Shanghai, China, Sep. 2017, pp. 103–114, https://doi.org/10.1109/
ICSME.2017.72.

[45] "Write automated tests with UI Automator," Android Developers.

[Online]. Available: https://developer.android.com/training/testing/
other-components/ui-automator.

[46] "F-Droid - Free and Open Source Android App Repository." [Online].
Available: https://f-droid.org/.

[47] "JaCoCo Java Code Coverage Library." [Online]. Available:

https://www.eclemma.org/jacoco/.

[48] "coverage: Code coverage measurement for Python." [Online].
Available: https://github.com/nedbat/coveragepy.

[49] "EMMA: a free Java code coverage tool." https://emma.sourceforge.net/.

[50] M. Pan, A. Huang, G. Wang, T. Zhang, and X. Li, "Reinforcement

learning based curiosity-driven testing of Android applications," in
Proceedings of the 29th ACM SIGSOFT International Symposium on

Software Testing and Analysis, Apr. 2020, pp. 153–164,
https://doi.org/10.1145/3395363.3397354.

