
Engineering, Technology & Applied Science Research Vol. 14, No. 5, 2024, 17445-17455 17445  
 

www.etasr.com Hoang et al.: An Optimal Controller for an Active Damping System based on Hedge Algebra and PSO … 

 

An Optimal Controller for an Active Damping 
System based on Hedge Algebra and PSO 
Algorithm 

 

Viet Nguyen Hoang 

School of Automation Science and Engineering, South China University of Technology, Guangzhou, 
China 

vietcuong86vn@tnut.edu.vn 
 
Tien Duy Nguyen 

Thai Nguyen University of Technology, Thai Nguyen, Vietnam 

duy.infor@tnut.edu.vn (corresponding author) 
 
Feiqi Deng 

School of Automation Science and Engineering, South China University of Technology, Guangzhou, 
China 

aufqdeng@scut.edu.cn 

Received: 31 March 2024 | Revised: 3 May 2024 and 20 August 2024 | Accepted: 29 August 2024 

Licensed under a CC-BY 4.0 license | Copyright (c) by the authors | DOI: https://doi.org/10.48084/etasr.7392 

ABSTRACT 

The theory of Hedge Algebra (HA) has attracted the attention of numerous scientists, who have conducted 

extensive research into it. The capacity to calculate the semantic value of linguistic terms in HA enables the 

resolution of fuzzy inference issues and the development of fuzzy controllers based on HA (Hedge Algebra 

Controller – HAC). This paper presents a newly proposed methodology for the design of HAC to control 

an active damping system. The objective of the controller optimization is to adjust the fuzziness 

parameters of the hedge algebra structure. The optimization technique adopted in this study is the Particle 

Swarm Optimization algorithm (PSO), which is a popular and effective algorithm for optimizing multi-

parameter systems. The optimal HAC was used to control the active damping system. Simulation results 

demonstrate that the HAC functions effectively in the presence of varying road disturbances. 

Keywords-hedge algebra; fuzzy control; active damping system; PSO; optimization criteria 

I. INTRODUCTION  

The damping system in vehicles plays a significant role in 
ensuring the comfort and safety of the passengers. The function 
of the shock absorber system is to mitigate the effects of road 
surface interaction with the vehicle body. The growing 
expectations of passengers, along with the ongoing research 
into enhancing the quality of shock absorber systems, has 
attracted the attention of numerous authors [1-17]. In order to 
construct a comprehensive damping system, it is essential to 
consider both the rolling and pitching vertical movements, 
which can be incorporated into a full damping model. The half-
car model is designed to facilitate the study of tilt and roll 
movements [2, 5]. The quarter-vehicle model is deployed to 
examine the influence of the road surface on a single wheel [6-
10]. If it is assumed that the load is distributed uniformly and 
the wheel's movements are discrete, then it would be 
appropriate to study the quarter-vehicle model. The 
fundamental elements of a conventional (passive) damping 

system are a spring and a damping mechanism. The selection 
of the spring stiffness and damping coefficient is largely 
contingent upon the load borne by the vehicle. Given a narrow 
load range, it is a relatively straightforward process to select the 
appropriate spring and damping mechanism. In the event that 
the load exceeds the specified range, the passive damping 
system is unable to respond effectively. To address this issue, a 
semi-active damping system was developed, which possesses 
the capacity to alter the coefficient of the damping mechanism 
[3]. This modification facilitates a more optimal response of the 
damping system across a broader load range. Nevertheless, to 
attain an even higher level of damping quality, in addition to 
the spring and damping mechanism, a linear electric motor is 
connected in parallel. The motor generates an electromagnetic 
force that contributes to the system's oscillation process, 
thereby rapidly suppressing the system's oscillations in 
response to the road surface impacts. 
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The active damping system is of high quality, but the 
control of the linear motor necessitates the implementation of a 
sophisticated control algorithm. The active damping system is 
nonlinear and discrete, rendering conventional Proportional 
Integral Derivative (PID) controllers ineffective in terms of 
response time [3, 7, 11]. Consequently, numerous authors have 
adopted a predictive controller, a Fuzzy Logic Controller 
(FLC), a hybrid fuzzy controller comprising an FLC and a PID, 
or an adaptive controller with a complex structure, while 
authors in [3, 15] employed optimal controller design methods. 
Authors in [15], used Genetic Algorithm (GA) optimization, 
while authors in [1, 3], applied the PSO algorithm to identify 
the optimal controller. The findings indicate that controllers 
relying on optimal algorithms have yielded promising 
outcomes. HA represents a computational approach to 
linguistic terms [17, 18], offering an effective means of solving 
fuzzy inference problems. A fuzzy model, presented in the 
format of a control language rule system based on HA, can be 
used as the foundation for the construction of a corresponding 
inference model within the numerical domain. The previously 
described inference engine is applied as a controller in some 
researches [19-27]. In this study, the controller was designed in 
accordance with the HA approach. To optimize the controller, 
there are numerous methodologies that can be employed. One 
straightforward approach is to use a manual trial-and-error 
method. However, when there are numerous parameters that 
require adjustment and these parameters exert influence upon 
one another, this method is less effective due to the multiple 
challenges it faces. To address this challenge, a variety of 
optimization techniques are commonly employed, including 
GA and PSO, among others. In this study, the PSO algorithm is 
selected due to its prevalence and efficacy [28-30]. The 
objective function for the optimization algorithm is the 
optimization criterion, which is defined as the Integral of the 
Absolute value of the Error (IAE). 

II. DESIGN AND OPTIMAL CONTROLLER BASED 
ON HEDGE ALGEBRA FOR THE ACTIVE DAMPING 

SYSTEM 

A. Hedge Algebra and Controller Design 

HA was developed in 1990 by the scientists N.C. Ho and 

Wechler [17, 18]. The theory of HA is based on the fact that 

language is ordinal and can be compared. This signifies that 

the semantic value of language represents a hierarchy of levels 

and an ordering relationship. HA represents a novel 

computational approach to linguistic terms. These linguistic 

terms are defined as the linguistic value of a specific linguistic 

variable. In contrast to the fuzzy set theory, which represents 

an expansion of the classic set concept, HA is an algebraic 

structure based on a set of linguistic terms. This structure is 

constructed in accordance with the inherent semantic order of 

linguistic terms [21]. HA enables the construction of a 

numerical computational inference model from a language 

inference model, which is expressed through the "if /then" 

rule system. The HA of the linguistic variable � contains five 

components,�� = (�, �, �, 	, ≤) [23] in which:  

 �: is the basis set of  ��, including terms that are lingustic 
values in �. 

 � = ��, ��,  � ≤ � : are generators (primitive words, 
e.g. negative < ��������). 

 � = �0, !, 1�: is a set of constants, with 0 ≤ � ≤  ! ≤
� ≤ 1 , denoting the smallest semantic elements, the 
neutral and the greatest semantic elements. 

 	 : is a set of unary operators, called hedges (stressed 
words). 	 = 	� ∪ 	�, with 	� = %ℎ': �) ≤ * ≤ �1+ is the 
set of negative hedges, 	� = %ℎ' : 1 ≤ * ≤ �+ is the set of 
positive hedges. 

 ≤: It represents the order relationship on linguistic words 
(fuzzy concepts) on A, it is “generated” from the natural 
semantics of the language. 

In HA, there are some important properties about order 
[23]: 

 Assume that the hedges in H  are ordered operators, i.e 
(∀ℎ ∈ 	, ℎ: � → �), (∀0 ∈ �) �ℎ0 ≤ 0 �1 ℎ0 ≥ 0�. 

 Two hedges ℎ, 3 ∈ 	  are opposite if (∀0 ∈ �)�ℎ0 ≤ 0  if 
and only if 30 ≥ 0� and are compatible if (∀0 ∈ �)�ℎ0 ≤
0 if and only if  30 ≤ 0�. Symbol ℎ ≥ 3 if h, k compatible 
(∀0 ∈ �) �ℎ0 ≤ 30 ≤ 0 or ℎ0 ≥ 30 ≥ 0�. 

 Suppose that in the set 	�there is an element 6 (Very) and 
in the set 	�  there is an element 7  (Little), then the 
generator  ∈ �  is positive if  ≤ 6 (c�) and negative if 
 ≥ 6 (c�) (or  ∈ � is positive i  ≥ 7 f and negative if 
 ≤ 7). 

 If �  has exactly two generators, the negative �  and the 
positive �, we have � ≤ � (i.e. � correspond negative, 
and � correspond positive and 9�:;���� < ��������). 

In order to perform the above calculations on those 
linguistic terms, it is necessary to have an isomorphic mapping 
function between the linguistic domain and its semantic value. 
This is the Semantically Quantifying Mapping (SQM) function, 
which is recursively defined as [21]: 

Semantically quantifying mapping function �: � → <0, 1= 
�(!) = > = ?@(�)    (1) 

�(�) = > − B?@(�) = C?@(�)  (2) 

�(�) = > + B?@(�) = 1 − C?@(�)  (3) 

�Eℎ'FG = �(F) + �:9Eℎ'FG HI∑ ?@(ℎKF)'
KLMNO(') P −

  QEℎ'FG?@Eℎ'FGR            (4) 

where QEℎ'FG = S
T U1 + �:9EℎV, ℎ'G(C − B)W  and * ∈

<−)V= = <−), �=\�0� . Additionally, function �:9Eℎ'FG →
�−1, 0, 1� with 3, ℎ ∈ 	,  ∈ �, F ∈ � and �:9(�) = +1 and 
�:9(�) = −1 , �ℎ ∈ 	�|�:9(ℎ) = +1�  and �ℎ ∈
	�|�:9(ℎ) = −1� �:9(ℎF) = +1 ⇔ ℎF ≥ F  and 
 �:9(ℎF) = −1 ⇔ ℎF ≤ F , function ?@(ℎKF) → <0, 1=  is 
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called the fuzzy measure of the elements in � , ∀F ∈ � : 
?@��� + ?@��� = 1 and ∑ ?@�ℎF� = ?@�F�[∈\ ?@�0�= 

?@�!� = ?@�1� = 0  and ]�ℎ�  is the fuzzy measure of 

generators: ∀F, ^ ∈ �, ℎ ∈ 	, ]�ℎ� =  
_`�[a�

_`�a�
=

_`�[b�

_`�b�
 

∑ ]�ℎK�
�c
KL�S = B, ∑ ]�ℎK�

V
KLS = C, �, � d 0 and � + � = 1. 

In the context of a control rule system based on Linguistic 
Rules-Based System (LRBS), the function v enables the 
conversion of each linguistic term generated from the HA 
structure into its corresponding semantic value. This is 
achieved by using the fuzzy parameters set α, β, θ, and so forth. 
Furthermore, the function v guarantees the preservation of the 
inherent ordering of these linguistic terms. This constitutes a 
significant instrument for the construction of computational 
models and the resolution of approximate inference issues 
pertaining to models formulated in LRBS. The logical validity 
of a computational model based on semantic values is 
contingent upon the assurance of semantic order within the 
language. Suppose there is control rule system given in the 
form one LRBS [22]: 

If �S = eSS  and … and �` � e`S then h � iS 

If �S � eST  and … and �` � e`T then h � iT  (5) 
If �S � eSO  and … and �` � e`O then h � iV 

where �S, �T, . . . , �k  and h  are linguistic variables. �l, h 
respectively, belong to the background space, mK , 6 , eK' , in 
(� � 1 . . @, * � 1. . 9, 3 � 1. . �) are linguistic values belonging 
to the corresponding background space. The rule system 
comprises multiple m inputs and a single output. In accordance 
with the tenets of hedge algebra, the function of the SQMs can 
be used to ascertain the semantic quantitative value of 
linguistic terms that are present within the rule system. At this 
juncture, each rule, "If...then...," is represented by a point in the 
semantic space [0,1](m+1). The entirety of the rule system will 
be represented by a "hypersurface" in the semantic space, 
designated S(m+1), which is referred to as the Quantified Rule 
Base System (QRBS) and is analogous to the LRBS. Figure 1 
shows the structure of the approximate reasoner in accordance 
with the HA approach. In the case of real inputs (x01, x02, etc.) 
belonging to the corresponding background spaces, the 
normalization process will result in the values being 
transformed into the domain semantic (x01s, x02s, etc.). The 
approximate inference problem is to be solved using the IRMd 
interpolation method on S(m+1) [31]. The interpolated value 
received is a semantic value that has been denormalized to the 
domain of the read value of the output variable y. 

 

 
Fig. 1.  The approximate inference engine according to hedge algebra. 

The following steps are to be followed when designing the 
HA controller using the LRBS control system: 

 Step 1: identify the input-output variables, their ranges of 
variation, and the linguistic terms used in the HA system. 

 Step 2: the structure of ��l, (� � 1, . . , @) and �h for the 
variables �l and h  must be selected. Furthermore, the 
fuzziness parameters of the generators, hedges, and the sign 
relationship between the hedges must be determined. 

 Step 3: calculate the quantitative semantic values for the 
linguistic terms that comprise the rule system. The input-
output relationship, designated as S(m+1), is then constructed. 

 Step 4: select an appropriate interpolation method. There 
are multiple interpolation methods that can be selected for 
this phase. The selection of an appropriate interpolation 
method must satisfy two fundamental criteria. One is to 
ensure monotony of the rule system, even when 
interpolating or extrapolating and the second is that the 
method should be simple in terms of computational 
complexity, in order to be able to meet the requirements of 
real-time control. 

 Step 5: optimize controller parameters. For systems that are 
not complex and have a relatively short calculation and 
simulation time, optimizing fuzzy parameters with 
optimization algorithms is an effective solution. Therefore, 
this solution should be given priority. The superiority of 
optimization algorithms, such as GA or PSO, has been 
demonstrated by scientists in recent times [30]. 

B. Introducing the Active Damping System 

The active suspension system quarter-vehicle model is 
presented in Fig. 2 [1]. In this model, w1 is the mass equivalent 
to one-quarter of the vehicle (the upper body), while w2 is the 
mass of the tires, wheel, brake, and auxiliary parts in the wheel, 
k2 and c2 are the stiffness and softness coefficients of the tire, 
respectively. The suspension block is comprised of three 
distinct components: a spring with a stiffness coefficient of k1, 
a damping mechanism with a coefficient of c1, and a linear 
electric motor that generates an electromagnetic force, Fe. 

 

 
Fig. 2.  The active suspension system quarter-vehicle model. 

The system of differential equations can be described as: 
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⎩⎪⎨
⎪⎧ sSFtS � A3S����FS A FT� AS����FuS A FuT� D vw           sTFtT � 3S����FS A FT� DS����FuS A FuT� A  3T���EFT A FNG D T���EFuT A FuNG A vw

 (6) 

The spring stiffness, damping coefficient, and tire are 
selected to be compatible with a given load range. Let us 
suppose that the corresponding working points are k10, k20, c10, 
and c20. When the system is operational, the impact of the road 
surface on the tire, in conjunction with the suspension system's 
influence on the vehicle body, results in a minor shift in the 
working points, specifically in the ranges of ∆k10, ∆k20, ∆c10, 
and ∆c20: 

3S(�) = 3Sx + ∆3S;  S��� � Sx D ∆S, 3T��� � 3Tx D∆3T;  T��� � Tx D ∆T    (7) 

By substituting (7) into (6): 

⎩⎪⎪
⎨
⎪⎪⎧

sSFtS � A�3Sx D ∆3S��FS A FT� A�Sx D ∆S��FuS A FuT� D vw                                                      sTFtT � �3Sx D ∆3S��FS A FT� D�Sx D ∆S��FuS A FuT�                    A�3Tx D ∆3T�EFT A FNG D�Tx D ∆T�EFuT A FuNG A vw

   (8) 

The state vector can be considered as: F � <F{ F| F}  F~ =� �   U�FS A FT�  FuS EFT A FNG   FuT W�
   (9) 

The output state vector y is: ^ � < FtS        v        �FS A FT� =�    (10) 

where F being the dynamic load force created by the wheel: v � �3Tx D Δ3T�EFN A FTG D  

 �Tx D ΔT��FuN A FuT�    (11) 

In this context, we proceed to transform (8) into the form of 
state (11): 

�Fu � eF D ΔF D iv D �FuN^ � �F D �v D �FuN            (12) 

where the matrices are: 

e �
⎣⎢⎢
⎢⎡ 0 1 0 A1A n���� A }���� 0 }����0 0 0 1n����

}����
n����  }���}���� ⎦⎥⎥

⎥⎤ , i �
⎣⎢⎢
⎢⎢⎡ 

     0    S��  0 A S��⎦⎥⎥
⎥⎥⎤  

Δ �
⎣⎢⎢
⎢⎡ 0 0 0 0�n���

�}��� 0  �}���0 0 0 1�n���  �}��� A �}��� A �}���}��� ⎦⎥⎥
⎥⎤ , � � �     0   Sx D ΔS  0 �  

� � �A n���� A }���� 0  }����0 0 A3Tx ATx1 0 0 0 � , � � �
    S��     0  0 � , � �

⎣⎢⎢
⎢⎡

    0     0  A1}����  ⎦⎥⎥
⎥⎤
  

It is necessary for the controller to perform linear motor 
control in order to generate the requisite force, Fe(t), and 
thereby minimize the displacement x₁(t). Figure 3 shows the 
nonlinear form of the tire, considering stiffness and damping 
coefficient. 

 

(a) 

 

(b) 

 

Fig. 3.  Nonlinear form of (a) stiffness and (b) damping coefficient of the 
tire [2]. 

C. Design a Controller from a Language Rule System Based 
on HA 

a) Control Structure 

The objective of the control process is to reduce the 
influence of the road surface on the vehicle floor w1, or, in 
other words, to minimize x1(t) while the vehicle is in motion. 
Therefore, the variable to be controlled, x1(t), represents the 
current of the linear motor, which generates electromagnetic 
force and participates in the system's oscillation process. As 
stated by authors in [32], the Linear Brushless -permanent 
magnet- Motor (LBM) generates an electromagnetic force that 
contributes to the oscillation process of the system. The linear 
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motor is regulated by the control linear motor block, which 
receives the current control signal from the output signal of the 
HAC that controls the voltage uabc of the LBM. This signal is 
used to control the magnitude of the force Fe(t). The suspension 
system block is constructed in accordance to (8). The noise 
generated by the road surface and affecting the system is 
represented by xg(t). The controller HAC receives the error 
signal of the vehicle floor (body—w1) and its variable speed 
(dx1/dt) in order to modify the signal iq (t), thereby modifying 
the force Fe(t). The control structure is described in Figure 4. 

 

 
Fig. 4.  Structure diagram of active suspention system control using HAC. 

b) Design HA Controller 

The control rule system is given by an LRBS as show in 
Table I, and includes the following: 

TABLE I.  CONTROL RULE SYSTEM 

e 

ce 
VN LN ZE LP VP 

VN VN VN N LN ZE 
LN VN N LN ZE LP 
ZE N LN ZE LP P 
LP LN ZE LP P VP 
VP ZE LP P VP VP 

 
 Determination of the input and output variables. The HAC 

comprises two inputs and a single output variable. The first 
input is the deviation of the vehicle floor position from the 
original point, represented by � = −FS. The second input is 
the rate of change of the vehicle floor position error, 
represented by � �  A�u � AFSu . The output of the 
controller, ���� , is used to regulate the current �c , thereby 
exerting control over the electromagnetic force of LBM.The 
variables are defined as: � � <A1, 1=, �u � <A1, 1=, ���� �<A1, 1=.  The input language variables are written as 6� � 7� � �� � 7� � 6� , while the output language 
variables are written as 6� � � � 7� � �� � 7� � � �6� . In this context, the following definitions apply: � � ��:;���� , � � �������� , 6� � 6�1^ ��:;���� , 7� � 7����� ��:;���� , �� � ��1� , 7� � 7�����  ��������, 6� � 6�1^ ��������. 

 Determination of the structure of the HA for variables e and 
ce. This is expressed as ��w,}w . The structure of the HA for 
a variable with the following components is:  

the set of generators � � ���:;���� � ��������� � �� ��� . Similarly, the set of hedges 	� � �7�s� � �7�  and 	� � �6�1^� � �6� . In accordance with the previously 
outlined HA structure for variables, it is necessary to 
determine the degree of fuzziness associated with the 
negative generator's element, denoted as > � ?@��� �?@���  ( ?@��� � 1 A ?@��� � ?@��� � 1 A?@���). This value is equal to the fuzziness measure of the 
negative generator, which is represented by the function ?@��� . Additionally, the degree of fuzziness associated 
with the negative hedge is represented by the value B � ]�7�, while the analogous value for the positive hedge 
is C � ]�6� � 1 A B. The aforementioned parameters will 
be presented in the following section. 

 The fuzzy parameters are sought through the application of 
the PSO optimization algorithm. 

 The selected interpolation method is bi-interpolation [31]. 

 The optimization of the parameters of the HAC is presented 
in the next section. 

III. OPTIMIZE CONTROLLER PARAMETERS 

The Particle Swarm Optimization (PSO) algorithm was 
selected for this study due to its widespread use and 
demonstrated effectiveness. The PSO algorithm, is a random 
search algorithm based on the observed behavior and 
interaction of birds when searching for food sources. Each 
individual within the swarm is distinguished by two key 
components: The position vector and velocity vector are 
represented by the symbols FK , �K� . The fitness function is 
employed to evaluate each individual within the herd. The 
optimal diagram of the HAC is shown in Figure 5. 

 

 
Fig. 5.  Optimal diagram of HAC using PSO. 

Each HA structure is characterized by two fuzzy 
parameters, which serve to quantify the degree of fuzziness 
inherent to the generators and hedges. In accordance with the 
algebraic structure of the selected variables, the sole 
optimization undertaken is that of the fuzzy measure, 
specifically > � ?@��� and B � ]�7�. Once the controller has 
been incorporated into the system, it is necessary to make 
additional adjustments to the coefficients �w, �}w and �K. These 
coefficients are used to modify the range of the variables 
entering and exiting the controller. The parameters are 
summarized in Table II. Accordingly, there are nine parameters 
that require optimization. The objective function of the 
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optimization process is selected as the root mean squared error 
(RMSE). 

TABLE II.  OPTIMAL PARAMETERS OF THE CONTROLLER 

Variable Parameters � (input 1) >w, Bw,�w � (input 2) >}w, B}w , �}w ���� (output) >K, BK , �K  
 ?��9��� � ���� � �∑ w�K�� ¡¢�O → @�9  (13) 

The flowchart of the optimization algorithm using PSO in 
Matlab is presented in Figure 6. 

 
Fig. 6.  Optimization flow chart based on PSO. 

The Matlab Toolbox now includes support for the 
particleswarm() function, which enables optimization 
according to the PSO. In the present study, the function is 
employed for the purpose of optimizing the parameters 
associated with hedge algebra. The search domain for the 
variables is determined based on an assessment of the system's 
nature, experience, and the results of multiple optimizations 
runs. In regard to the six fuzzy parameters ?@��� and B � ]�7� , a search within the range [0.25-0.75] is 
recommended. The three parameters in question are 3w, which 
falls within the range [0.01-0.09], 3}w, which falls within the 
range [0.1-0.9], and 3K , which falls within the range [50-500]. 
As shown in Figure 6, the initial swarm size is 50, the 
maximum number of iterations is 350, and the maximum time 
is 36,000 seconds. The Matlab command lines are executed as 
follows: 

nvars = 9; % number of the variable 

% --------------------------------- 

lb_teta = [0.25 0.25 0.25]; 

ub_teta = [0.75 0.75 0.75]; 

% ------------------------- 

lb_alfa = [0.25 0.25 0.25]; 

ub_alfa = [0.75 0.75 0.75]; 

% ------------------------- 

lb_k = [0.01 0.1 50.]; 

ub_k = [0.09 0.9 500]; 

% ------------------------- 

lb = [lb_teta lb_alfa lb_k]; % Lower Bound 

ub = [ub_teta ub_alfa ub_k]; % Upper Bound 

% ------------------------- 

options = 

optimoptions('particleswarm','Display','it

er'); 

options = 

optimoptions(options,'SwarmSize',50); 

options = 

optimoptions(options,'MaxIter',350); 

options = 

optimoptions(options,'MaxTime',36000); 

 

Furthermore, certain particle swarm options are preset by 
default within the options record. To give an example, 
MinNeighborsFraction is the minimum adaptive 
neighborhood size, which is a scalar value between 0 and 1, 
while the default value is 0.25. The 
SelfAdjustmentWeight represents the weighting of each 
particle's optimal position when adjusting velocity, with the 
default value being 1.49. The SocialAdjustmentWeight 
is the weighting of the neighborhood's best position when 
adjusting velocity, with the default value being 1.49. To 
ascertain the properties established within the options record of 
the particleswarm() function, one may use the 
optimoptions('particleswarm') command. The 
results that were returned were: 

Default properties: 

CreationFcn: @pswcreationuniform 

Display: 'final' 

FunctionTolerance: 1.0000e-06 

HybridFcn: [] 

InertiaRange: [0.1000 1.1000] 

InitialSwarmMatrix: [] 

InitialSwarmSpan: 2000 

MaxStallIterations: 20 

MaxStallTime: Inf 

MinNeighborsFraction: 0.2500 

ObjectiveLimit: -Inf 

OutputFcn: [] 

PlotFcn: [] 

SelfAdjustmentWeight: 1.4900 

SocialAdjustmentWeight: 1.4900 

UseParallel: 0 

UseVectorized: 0 
 

The simulation diagram of the active damping system on 
Matlab Simulink is shown in Figure 7. 
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Fig. 7.  Simulation diagram of active damping system using HAC. 

IV. OPTIMIZATION RESULTS AND SYSTEM 
SIMULATION 

The physical parameters of the damper system and the 
engine are shown in TABLE III and IV. When the vehicle 
moves, the road surface impacts the damping system which can 
be described in the form of a harmonic wave [33]: :��� � £T ��9 T¤¥¦ �    (14) 

where, e and � are heigh and length of the exciting wave, � is 
the vehicle’s velocity. In this study, the road surface excitation 
is described by (14). Suppose A= 50mm, l =5m, the vehicle 
speed changes 40 km/h to 60 km/h. To compare the response of 
HAC, a Proportional Integral Derivative (PID) controller with 
parameters �§ , �¨ , and �©  optimized by PSO algorithm is 
designed. 

The system parameters shown in Tables III and IV were 
used to perform optimization, resulting in the optimal fuzzy 
parameters displayed in Table V. Additionally, the relationship 
between the input and output of the HAC is shown in Figure 8. 

TABLE III.  PHYSICAL PARAMETERS OF THE DAMPING 
SYSTEM 

Symbol Value sS 256 kg sT 31 kg 3Sx 20200 N/m ∆3S 1050 N/m Sx 1140 Ns/m ∆S 57 Ns/m 3Tx 128000 N/m ∆3T 1280 N/m Tx 50 Ns/m ∆T 5 Ns/m 

 

TABLE IV.  PHYSICAL PARAMETERS OF THE LBM MOTOR 

Symbol Value 

Rs 0.2 Ω 
Ls 8.5 mH 
Ms 2 mH 
τp 10 mm 
Ψm 10 mH 
Ft 10 N 

Rabc 0.2 Ω 
Labc 8.5 mH 
Ψabc 2 mH 

I 10 
Kd 50 N 
Ke 5 N 

TABLE V.  THE OPTIMAL PARAMETERS 

ª« ª¬« ª ®« ®¬« ® ¯« ¯¬« ¯° 
0.57 0.54 0.67 0.28 0.28 0.6 0.09 0.1 410.8 

 

 
Fig. 8.  The relationship between input and output of HAC. 
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A simulation of the system response with the controllers 
was conducted using the same type of road surface and speeds. 
A comparison was made between the damping system with no 
control (blue line), the optimal PID controller (yellow line), 
and the optimal HAC-opHAC (red line). The optimal HAC 
(red line) is shown to produce the best results when acting with 
the same surface excitation road with parameter A= 50mm, l 
=5m, and when the velocity change is established, as presented 
in Table VI. 

TABLE VI.  THE COMPARE DISPLACEMENT VALUE OF 
CONTROL METHODS 

 RMSE (± ²³�´) 

V [km/h] Non control PID opHAC 
40 11.0009 6.3416 4.0006 
50 6.1106 3.9548 2.4655 
60 4.3367 2.8902 1.8532 

 
Firstly, the data were collected at a speed of 40 km/h. 

Figure 9 shows the displacement response of the up-body block 
when the opHAC is employed. This response is approximately 
35% of the displacement observed in the system without 
control and is equal to 65% of the displacement when the 
optimal PID controller is used. At a speed of 50 km/h, Figure 
10 presents the peak-to-peak amplitude of the upper body block 
oscillation at a steady state for the three control scenarios: 
opHAC, PID controller, and no controller. The respective 
values are 0.51 mm, 0.9 mm, and 1.21 mm. At a speed of 60 
km/h, Figure 11 shows the amplitude of oscillation of the upper 
body block in the initial cycle without control, with the PID 
controller, and with the HAC, which were found to be 23mm, 
13mm, and 9mm, respectively. In subsequent cycles, the 
oscillation amplitude of the upper body when using the HAC is 
40% of that observed in the system using the PID controller or 
without control. 

 

 
Fig. 9.  Response of active damping system to � = 5, � � 403@/ℎ, ? �8 Hz. 

It can be observed that when the speed is altered from 40 
km/h to 60 km/h, the opHAC consistently produces a markedly 
smaller amplitude of vehicle body displacement in comparison 
to the PID controller. During the initial second, the opHAC 
effectively controlled the amplitude of vehicle body 
displacement to a minimal level and rapidly achieved 
stabilization. In contrast, the displacement corresponding to the 
PID controller case is considerable. A salient feature of these 

two controllers is that they employ an oscillation frequency 
analogous to that of the road surface excitation, which evinces 
the efficacious real-time responsiveness of HAC. It is evident 
that the computational complexity of the opHAC is minimal, 
primarily due to the computational overhead associated with 
interpolation, which is responsible for this control effect. 

 

 
Fig. 10.  Response of active damping system to � � 5, � � 50 km/h, ? �10 Hz. 

 
Fig. 11.  Response of active damping system to � � 5, � � 60 km/h, ? �12 Hz. 

The control voltage m~, is shown in Figures 12 to 14. It is 
converted into a three-phase voltage of the ABC configuration 
through a DQ-ABC converter. A visual inspection of the 
graphs reveals that the opHA controller consistently produces a 
greater voltage amplitude, U_d, than the PID controller. This 
indicates that the system absorbs a greater quantity of energy in 
order to generate substantial electromagnetic forces, thereby 
suppressing the system's oscillatory behavior. According to 
(14), when the excitation frequency of road surface is greater, :��� � £T ��9 ½¤¥¦ �. The system response is shown in Figures 15 

and 16. Additionally, when :��� � £T ��9 ¾¤¥¦ �, with speeds of 

50km/h, 60km/h corresponding to frequencies of 20 Hz, 24Hz, 
the system response is shown in Figures 17 and 18. It can be 
observed that the opHAC controller consistently exhibits a 
favorable response when simulating road surface stimulation 
cases at frequencies ranging from 8 Hz to 24 Hz. In 
comparison to cases that do not use the controller or employ 
the PID controller, the oscillation amplitude of the upper body 
block is consistently diminished. 
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Fig. 12.  The control voltage m~ (� � 5, � �  40 km/h). 

 
Fig. 13.  The control voltage m~  (� � 5, � �  50 km/h). 

 
Fig. 14.  The control voltage m~ (� � 5, � �  60 km/h). 

 
Fig. 15.  Response of active damping system to � � 5, � � 50 km/h, ? �15 Hz. 

 
Fig. 16.  Response of active damping system to � � 5, � � 60 km/h, ? �18 Hz. 

 
Fig. 17.  Response of active damping system to � � 5, � � 50 km/h, ? �20 Hz. 

 
Fig. 18.  Response of active damping system to � � 5, � � 60 km/h, ? �24 Hz. 

V. CONCLUSIONS 

The results of the simulations of the active damping system 
in cases of changing velocity demonstrate that the active 
damping system using opHAC exhibits a robust response. The 
displacement of the upper body mass (vehicle floor) is 
markedly reduced in comparison to the damping system when 
employing the optimal Proportional – Integral – Derivative 
(PID) controller. This markedly attenuates the influence of the 
road surface on the vehicle floor, thereby fostering a sense of 
comfort among passengers during their journey. The results of 
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the study also demonstrate the feasibility of applying the 
opHAC to discrete nonlinear systems. 
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