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ABSTRACT 

This article introduces a mechanism for ensuring trusted GPU shader execution that adheres to the NIST 

Cybersecurity Framework (CSF) 2.0 standard. The CSF is a set of best practices for reducing 

cybersecurity risks. We focus on the CSF’s identification, protection, detection, and response mechanisms 

for GPU-specific security. To this end, we exploit recent advancements in side-channel analysis and 

hardware-assisted security for the real-time and introspective monitoring of shader execution. We 

prototype our solution and measure its performance across different GPU platforms. The evaluation 

results demonstrate the effectiveness of the proposed mechanism in detecting anomalous shader behaviors 

that only incur modest overhead at runtime. Integrating the CSF 2.0 principles into the proposed GPU 

shader pipeline leads to an organizational recipe for securing heterogeneous computing resources. 
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I. INTRODUCTION  

Graphics Processing Units (GPUs) have emerged as critical 
accelerators for high-performance computing applications 
ranging from scientific computing to artificial intelligence [1, 
2]. However, the complexity of modern GPU architectures also 
introduces potential security vulnerabilities that malicious 
actors could exploit [3-10]. Recent research has demonstrated 
side-channel attacks that leak sensitive data from GPU shader 
execution [10-13]. As GPU adoption grows, ensuring the 
security and integrity of shader pipelines is paramount. The 
National Institute of Standards and Technology (NIST) 
Cybersecurity Framework (CSF) provides guidelines to reduce 
cybersecurity risks that are applicable across sectors and 
organisation sizes [14]. Created for critical infrastructure 
entities, CSF 2.0 expands the scope to all organisations with a 
particular emphasis on risk management [15]. This work 
examines the application of CSF 2.0 principles to secure GPU 
shader execution. By integrating real-time monitoring and 
protection mechanisms into shader pipelines, we enable NIST 
CSF compliance for heterogeneous computing platforms.  

The main contributions of the work at hand to the GPU 
security domain are summarized as: 

 Potential security risks and attack vectors within modern 
GPU shader execution are identified. 

 A methodology for applying NIST CSF 2.0 guidelines to 
GPUs is proposed, focusing on identifying, protecting, 
detecting, and responding to functions. 

 A unique solution for shader anomaly detection and real-
time shader monitoring is proposed using performance 
counters and side-channel defences.  

 The prototype is evaluated on NVIDIA and AMD GPUs 
and demonstrate the detection of abnormal shader 
behaviour with minimal performance overhead. 

II. BACKGROUND 

A. NIST Cybersecurity Framework 2.0 

The National Institute of Standards and Technology (NIST) 
Cybersecurity Framework (CSF) provides guidelines for 
managing cybersecurity risks [14]. The framework identifies 
core functions, categories, and subcategories corresponding to 
key security posture activities. As shown in Figure 1, the five 
core functions are Identity, Protect, Detect, Respond, and 
Recover. The functions provide a high-level view of the 
lifecycle of cybersecurity risk management. Categories within 
each function outline particular outcomes, while subcategories 
detail specific security controls and processes. 

The CSF also defines profiles that represent how an 
organisation views cybersecurity risk and the processes in place 
to manage it. Profiles can be used to describe the current state 
or desired target state of cybersecurity activities. By comparing 
the two profiles, plans can be developed to reduce gaps and 
strengthen defences. The CSF 2.0 enhances guidance for risk 

management, authentication, supply chains, and vulnerability 
disclosures [15]. It also emphasises diversity, equity, inclusion 
and accessibility. 

 

 

Fig. 1. NIST CSF 2.0 overview. 

B. GPU Architecture 

GPUs comprise multiple Streaming Multiprocessors (SMs), 
each containing execution units and on-chip memory (Figure 2) 
[16]. CUDA and OpenCL are standard programming models 
for GPUs. Programs consist of host code executing on the CPU 
and parallel kernel functions running on the GPU. Kernels are 
organized into a grid of thread blocks that execute on SMs. The 
graphics pipeline involves several stages, including vertex 
processing, tessellation, geometry shading, rasterisation, and 
fragment shading [17]. Programmable shaders execute 
specialized kernels for each stage. For example, vertex shaders 
operate on vertex attributes, while fragment shaders compute 
pixel colours. Shaders are prone to side-channel attacks as they 
can contain secret-dependent memory accesses or execution 
paths [18]. 

The NIST CSF provided guidelines and best practices for 
managing cybersecurity risks applicable across sectors and 
organisation sizes. Initially released in 2014, the widespread 
adoption of the CSF made an update necessary to expand its 
scope and evolve with the changing threat landscape. Thus, 
NIST introduced CSF 2.0 in April 2022, bringing refinements 
based on years of industry feedback. Emphasising best 
practices for cybersecurity guidelines. CSF version 2.0 
prioritizes secure software development, flexibility, and risk 
management in the cybersecurity domain.  

This research applied the comprehensive CSF 2.0 
guidelines and methodology to enhance the security of GPU 
shader execution by leveraging recent advances in hardware 
security and side-channel defences [12]. We architect a CSF-
aligned framework tailored to GPUs for security and side-
channel defences [12]. Continuous monitoring, anomaly 
detection, and runtime mitigations on shader pipelines provide 
a layered defence that enables rapid detection and response to 
compromised shaders [13]. We utilize performance counters 
and side-channel prevention techniques to implement the core 



Engineering, Technology & Applied Science Research Vol. 14, No. 4, 2024, 15187-15193 15189  
 

www.etasr.com Lungu et al.: NIST CSF-2.0 Compliant GPU Shader Execution 

 

CSF functions of identifying, protecting, detecting, and 
responding [14, 21]. The goal is to move GPU security closer 
to cybersecurity best practices, reducing risks while 
maintaining the performance of heterogeneous computing 
infrastructure. With CSF 2.0 and secure GPU computing 
representing cutting-edge, high-impact research areas, this 
work synergistically applies the former to advance the state-of-
the-art in the latter. This work focused on securing shader 
execution through continuous monitoring and runtime 
protections, as described in the following sections. 

 

 

Fig. 2. GPU architecture. 

III. THREAT MODEL AND ATTACK VECTORS 

We considered a threat model in which the attacker 
accesses a multi-tenant GPU server running malicious shader 
programs. The attacker aims to infer secrets or induce errors 
during shader execution through side-channel or fault attacks. 
The relevant attack vectors are summarize in Figures 3 – 8. 

 

 

Fig. 3. Timing attack vector. 

 

Fig. 4. Cache attack vector. 

 
Fig. 5. Power analysis attack vector. 

 

Fig. 6. Fault attacks. 

 

Fig. 7. Rowhammer attacks. 
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Fig. 8. Speculative execution attacks. 

This threat landscape motivated a holistic strategy 
integrating runtime monitoring, anomaly detection, and side-
channel defences. By leveraging hardware performance counter 
techniques, shader execution is continuously validated to 
respond rapidly to anomalies indicative of an attack. 

IV. RELATED WORK 

Table I summarises key recent research thrusts related to 
the security of GPU shader execution. Side-channel attack 
methods highlight the need for robust protections. Various 
shader execution hardening techniques have been proposed, 
while anomaly detection leverages GPU hardware performance 
counters. 

TABLE I.  SUMMARY OF RELATED WORK  

Research area Description Ref. 

Side-channel attacks on 

GPUs 

Attacks use timing or cache side 

channels during shader execution 

to leak data. 

[11-13] 

Shader security 

enhancements 

Techniques like input validation, 

control flow protections, shader 

encryption and obfuscation 

[10, 18, 19] 

Anomaly detection 

using performance 

counters 

Detecting abnormal GPU 

execution by monitoring 

performance metrics 

[1-8] 

CSF-based security 

frameworks 

Applying NIST CSF for 

cybersecurity risk management 

Proposed 

methodology 

 

V. METHODOLOGY 

The proposed methodology aligns with the significant 
functions of the NIST CSF by incorporating core techniques 
for identification, protection, detection, and response tailored to 
securing GPU shader execution. 

A. Identification 

We performed a detailed threat modelling analysis to 
identify key assets, vulnerabilities, and threat vectors related to 
the GPU shader execution environment. Assets include shader 
binaries, inputs, runtime execution state, and outputs. 
Vulnerabilities stem from the shader programming model, 
GPU architecture, and shared hardware resources. Specifically, 
we analyze timing channels arising from shader pipelines, 
cache side channels due to hardware reuse, speculative 
execution flaws, and memory corruption due to a lack of 
vulnerability checks. Threats include malicious co-resident 

shaders, unauthorised access on multi-tenant GPU servers, and 
credentialed insider attacks. This comprehensive analysis 
informs our risk assessment. 

B. Protection 

Continuous runtime monitoring attacks were implement 
(Figure 9) along with mitigations during shader execution, as 
illustrated in Figure 11. 

 

 

Fig. 9. Attack monitoring. 

C. Detection 

We continuously monitor multiple hardware performance 
counters to profile the expected shader behavior and rapidly 
detect anomalies. 

 Execution time: 

T_shader = T_end −T_start   (1) 

where T_shader is the shader execution time, T_end is the 
shader end time, and T_start is the shader start time. Here, we 
track the overall shader runtime to detect abnormal variations 
indicative of timing side channels. 

 Cache hit rate: 

HitRate =
���������

���������������������
                 (2) 

where HitRate is the ratio of cache hits to total cache accesses. 
Tracking cache hit rates can detect cache side-channel attacks. 
Here, we monitor cache access patterns to detect abnormal 
cache usage signatures of side-channel attacks. 

 Power consumption: 

P= V X I     (3) 

where P is the power (W), V is the voltage (V), and I is the 
current (A). Changes in power profiles can indicate ongoing 
power analysis or fault attacks. We analyze power profiles to 
detect aberrations corresponding to fault injection or power 
side-channel attacks. 

 Memory bandwidth utilization: 

BW_util =
� ���_�������!

"�#�
/BW_ max   (4) 
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where BW_util is bandwidth utilization, Bytes_accessed 
represents the read/written bytes, Time is the shader execution 
time, and BW_max is the maximum bandwidth. High 
utilization may reveal rowhammer or cache attacks.  

 Execution divergence: 

Divergence  =
,�-��._�/��-01�-�..�._�/��-

,�-��._�/��-
  (5) 

where Serial_instr represents the instructions executed serially, 
Parallel_instr represents the instructions executed in parallel, 
and Divergence measures serialization. Divergence can identify 
code manipulation or replay. We measure divergence to detect 
abnormal serialization that can occur with malicious shader 
modification or replay. 

By continuously tracking these performance counters and 
metrics during shader execution, we can profile the expected 
behavior and rapidly detect anomalies that may correspond to 
an attack. Thresholds based on allowlists differentiate normal 
and abnormal execution characteristics. 

D. Response 

Upon detecting shader anomaly via the performance 
counters, we immediately: 

1. Terminate the shader instance to stop the attack. 

2. Log forensic data for post-mortem diagnosis of the root 

cause. 

3. Adjust real-time protections and defences to address the 

detected attack vector. 

4. Quick termination and adaptation limit the damage and 

continuously build attack intelligence to improve defences. 

This in-depth methodology leverages performance counters 
and hardware-augmented monitoring to provide NIST CSF-
aligned security for GPU shader workloads. 

VI. IMPLEMENTATION AND RESULTS 

To evaluate the proposed methodology, we implemented a 

proof-of-concept prototype on an NVIDIA RTX 3090 GPU 

and an AMD Radeon RX 6900 XT GPU.  

A. Identify-Threat Model 

In line with the proposed methodology, we successfully 
developed a threat model that shows a detailed threat modelling 
analysis to identify critical vulnerabilities and threat vectors 
related to the GPU shader execution environment (Figure 10). 

B. Protection 

Figure 11 demonstrates a continuous runtime monitoring 
and mitigation system during shader execution. 

C. Detection 

Table II shows the shader execution times for benchmark 
programs from the Scalable Heterogeneous Computing 
(SHOC) suite [20] with and without our instrumentation. The 
median overhead ranged from 1.14% on the NVIDIA GPU to 
1.64% on the AMD GPU. 

 

 

Fig. 10. Threat model. 

 

Fig. 11. Shader monitoring system. 

TABLE II.  SHADER EXECUTION TIME OVERHEADS 

Benchmark 
Baseline time 

(ms) 

Instrumented 

time (ms) 

Overhead 

(%) 

SHOC Benchmark 1 125 126 0.8 

SHOC Benchmark 2 105 107 1.9 

SHOC Benchmark 3 92 94 2.2 

SHOC Benchmark 4 82 83 1.2 

 
Figure 12 shows the cache hit rates monitored while 

executing a cache side-channel attack shader on the NVIDIA 
GPU. The attack shader exhibits an abnormal cache access 
pattern compared to a benign shader.  

Table III summarizes the performance counter metrics for 
anomaly detection on both GPUs. Thresholds based on 
allowlists allowed reliable attack detection. Figure 13 illustrates 
the increased power consumption detected during a fault 
injection attack on the AMD GPU. Power spikes exceeded the 
allowed listed 20% threshold. 
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Fig. 12. Cache hit rate anomaly detection. 

TABLE III.  ANOMALY DETECTION METRICS 

Metric Description Threshold 

Execution time Detect timing channels 15% deviation 

Cache hit rate Identify cache side-channels > 85% hits 

Power 

consumption 

Reveal power analysis/fault 

attacks 
> 20% change 

Memory 

bandwidth 

Detect rowhammer/cache 

attacks 
> 90% utilized 

 

 

Fig. 13. Power analysis anomaly detection. 

 

Fig. 14. Runtime anomaly response. 

Table IV shows the performance overhead of our runtime 
protections, which ranged from 1.21% on NVIDIA to 1.48% 
on AMD. Figure 14 depicts the runtime behaviour when an 
anomaly is detected. The attack shader was terminated within 2 
ms on both platforms while logging and security adjustments 
were automated. Our measurements validate the solution’s 
ability to detect shader anomalies with minimal impact on 
performance reliably. The results demonstrate the feasibility of 
a CSF-aligned framework to secure production GPU shader 
pipelines. 

TABLE IV.  RUNTIME PROTECTION OVERHEADS 

Protection NVIDIA Overhead AMD Overhead 

Shader encryption 0.41% 0.38% 

Input validation 0.32% 0.41% 

Synchronisation checks 0.11% 0.23% 

Memory access 

sanitization 
0.37% 0.46% 

 

D. Response 

In Figure 15, a safety mechanism is present that aligns with 
the response parameter in the NIST CSF 2.0 Framework. 

 

 

Fig. 15. Safety mechanisms. 

E. Comparison to Prior Work 

Our results demonstrate lower performance overhead 
compared to prior anomaly detection techniques for GPUs. 
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Authors in [3] proposed an execution time anomaly detector 
with overheads ranging from 1.8% to 2.9%. In contrast, our 
method incurred only 0.8% to 2.2% slowdown. The improved 
efficiency stems from our continuous monitoring approach 
leveraging hardware performance counters versus periodic 
instrumentation. Similarly, timing channel detection in [4] 
caused a 6.7% median overhead, while we achieved a 2% 
impact by exploiting GPU hardware timers. Authors in [5] 
report 10-15% application slowdowns for cache side-channel 
detection versus our cache tracking at under 2% overhead. We 
avoid high software instrumentation costs by utilizing built-in 
cache performance counters. 

Regarding power anomaly detection, authors in [6] induced 
12-19% performance penalties due to sampling frequency. Our 
power monitoring is continuous rather than sampled, yet it has 
just 1.2% overhead by leveraging power measurement circuits. 
Memory anomaly detection from [7] has over 25% overhead, 
while our technique is under 5%. Again, we benefit from 
hardware performance counters for fine-grained memory 
bandwidth metrics compared to the software instrumentation 
proposed by [7]. 

Our methodology outperforms prior shader anomaly 
detection techniques regarding performance impact by 
judiciously leveraging multiple lightweight hardware 
performance counters for real-time shader execution 
monitoring. 

VII. CONCLUSION 

This paper presented a methodology to apply the NIST CSF 
2.0 guidelines to GPU shader execution pipelines. We focused 
on the framework’s identification, protection, detection, and 
response functions. Our techniques leverage hardware 
performance counters and side-channel defences to enable real-
time shader monitoring and anomaly detection. We 
implemented and evaluated a prototype solution on NVIDIA 
and AMD GPUs. Results demonstrated the ability to reliably 
detect and halt anomalous shader behaviour with minimal 
performance overhead. This work provides a standards-driven 
approach for organisations to secure heterogeneous GPU 
resources. Future efforts can integrate machine learning 
methods into the anomaly detectors to improve detection 
accuracy. Enhancing the recoverability of the shader execution 
state post-detection is another area of investigation. 
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