
Engineering, Technology & Applied Science Research Vol. 14, No. 4, 2024, 15187-15193 15187

www.etasr.com Lungu et al.: NIST CSF-2.0 Compliant GPU Shader Execution

NIST CSF-2.0 Compliant GPU Shader Execution

Nelson Lungu

Electrical and Electronical Engineering, University of Zambia, Lusaka, Zambia

lungunc@gmail.com

Ahmad Abdulqadir Al Rababah

Faculty of Computing and Information Technology, King Abdulaziz University, Rabigh, Saudi Arabia

aaahmad13@kau.edu.sa

Bibhuti Bhusan Dash

School of Computer Applications, KIIT Deemed to be University, Bhubaneswar, India

bibhuti.dash@gmail.com

Asif Hassan Syed

Faculty of Computing and Information Technology, King Abdulaziz University, Rabigh, Saudi Arabia

shassan1@kau.edu.sa

Lalbihari Barik

Faculty of Computing and Information Technology, King Abdulaziz University, Rabigh, Saudi Arabia

lalbihari@gmail.com

Suchismita Rout

School of Computer Engineering, KIIT Deemed to be University, Bhubaneswar, India

suchismita.rout28@gmail.com

Simon Tembo

Electrical and Electronical Engineering,University of Zambia, Lusaka, Zambia

Simontembo6@gmail.com

Charles Lubobya

Electrical and Electronical Engineering, University of Zambia, Lusaka, Zambia

cslubobya@unza.zm

Sudhansu Shekhar Patra

School of Computer Applications, KIIT Deemed to be University, Bhubaneswar, India

sudhanshupatra@gmail.com (corresponding author)

Received: 26 March 2024 | Revised: 11 April 2024, 1 May 2024, and 14 May 2024 | Accepted: 15 May 2024

Licensed under a CC-BY 4.0 license | Copyright (c) by the authors | DOI: https://doi.org/10.48084/etasr.7351

ABSTRACT

This article introduces a mechanism for ensuring trusted GPU shader execution that adheres to the NIST

Cybersecurity Framework (CSF) 2.0 standard. The CSF is a set of best practices for reducing

cybersecurity risks. We focus on the CSF’s identification, protection, detection, and response mechanisms

for GPU-specific security. To this end, we exploit recent advancements in side-channel analysis and

hardware-assisted security for the real-time and introspective monitoring of shader execution. We

prototype our solution and measure its performance across different GPU platforms. The evaluation

results demonstrate the effectiveness of the proposed mechanism in detecting anomalous shader behaviors

that only incur modest overhead at runtime. Integrating the CSF 2.0 principles into the proposed GPU

shader pipeline leads to an organizational recipe for securing heterogeneous computing resources.

Engineering, Technology & Applied Science Research Vol. 14, No. 4, 2024, 15187-15193 15188

www.etasr.com Lungu et al.: NIST CSF-2.0 Compliant GPU Shader Execution

Keywords-GPU security; shader execution attacks/defenses; anomaly detection techniques; NIST CSF

mapping; real-time protection mechanisms

I. INTRODUCTION

Graphics Processing Units (GPUs) have emerged as critical
accelerators for high-performance computing applications
ranging from scientific computing to artificial intelligence [1,
2]. However, the complexity of modern GPU architectures also
introduces potential security vulnerabilities that malicious
actors could exploit [3-10]. Recent research has demonstrated
side-channel attacks that leak sensitive data from GPU shader
execution [10-13]. As GPU adoption grows, ensuring the
security and integrity of shader pipelines is paramount. The
National Institute of Standards and Technology (NIST)
Cybersecurity Framework (CSF) provides guidelines to reduce
cybersecurity risks that are applicable across sectors and
organisation sizes [14]. Created for critical infrastructure
entities, CSF 2.0 expands the scope to all organisations with a
particular emphasis on risk management [15]. This work
examines the application of CSF 2.0 principles to secure GPU
shader execution. By integrating real-time monitoring and
protection mechanisms into shader pipelines, we enable NIST
CSF compliance for heterogeneous computing platforms.

The main contributions of the work at hand to the GPU
security domain are summarized as:

 Potential security risks and attack vectors within modern
GPU shader execution are identified.

 A methodology for applying NIST CSF 2.0 guidelines to
GPUs is proposed, focusing on identifying, protecting,
detecting, and responding to functions.

 A unique solution for shader anomaly detection and real-
time shader monitoring is proposed using performance
counters and side-channel defences.

 The prototype is evaluated on NVIDIA and AMD GPUs
and demonstrate the detection of abnormal shader
behaviour with minimal performance overhead.

II. BACKGROUND

A. NIST Cybersecurity Framework 2.0

The National Institute of Standards and Technology (NIST)
Cybersecurity Framework (CSF) provides guidelines for
managing cybersecurity risks [14]. The framework identifies
core functions, categories, and subcategories corresponding to
key security posture activities. As shown in Figure 1, the five
core functions are Identity, Protect, Detect, Respond, and
Recover. The functions provide a high-level view of the
lifecycle of cybersecurity risk management. Categories within
each function outline particular outcomes, while subcategories
detail specific security controls and processes.

The CSF also defines profiles that represent how an
organisation views cybersecurity risk and the processes in place
to manage it. Profiles can be used to describe the current state
or desired target state of cybersecurity activities. By comparing
the two profiles, plans can be developed to reduce gaps and
strengthen defences. The CSF 2.0 enhances guidance for risk

management, authentication, supply chains, and vulnerability
disclosures [15]. It also emphasises diversity, equity, inclusion
and accessibility.

Fig. 1. NIST CSF 2.0 overview.

B. GPU Architecture

GPUs comprise multiple Streaming Multiprocessors (SMs),
each containing execution units and on-chip memory (Figure 2)
[16]. CUDA and OpenCL are standard programming models
for GPUs. Programs consist of host code executing on the CPU
and parallel kernel functions running on the GPU. Kernels are
organized into a grid of thread blocks that execute on SMs. The
graphics pipeline involves several stages, including vertex
processing, tessellation, geometry shading, rasterisation, and
fragment shading [17]. Programmable shaders execute
specialized kernels for each stage. For example, vertex shaders
operate on vertex attributes, while fragment shaders compute
pixel colours. Shaders are prone to side-channel attacks as they
can contain secret-dependent memory accesses or execution
paths [18].

The NIST CSF provided guidelines and best practices for
managing cybersecurity risks applicable across sectors and
organisation sizes. Initially released in 2014, the widespread
adoption of the CSF made an update necessary to expand its
scope and evolve with the changing threat landscape. Thus,
NIST introduced CSF 2.0 in April 2022, bringing refinements
based on years of industry feedback. Emphasising best
practices for cybersecurity guidelines. CSF version 2.0
prioritizes secure software development, flexibility, and risk
management in the cybersecurity domain.

This research applied the comprehensive CSF 2.0
guidelines and methodology to enhance the security of GPU
shader execution by leveraging recent advances in hardware
security and side-channel defences [12]. We architect a CSF-
aligned framework tailored to GPUs for security and side-
channel defences [12]. Continuous monitoring, anomaly
detection, and runtime mitigations on shader pipelines provide
a layered defence that enables rapid detection and response to
compromised shaders [13]. We utilize performance counters
and side-channel prevention techniques to implement the core

Engineering, Technology & Applied Science Research Vol. 14, No. 4, 2024, 15187-15193 15189

www.etasr.com Lungu et al.: NIST CSF-2.0 Compliant GPU Shader Execution

CSF functions of identifying, protecting, detecting, and
responding [14, 21]. The goal is to move GPU security closer
to cybersecurity best practices, reducing risks while
maintaining the performance of heterogeneous computing
infrastructure. With CSF 2.0 and secure GPU computing
representing cutting-edge, high-impact research areas, this
work synergistically applies the former to advance the state-of-
the-art in the latter. This work focused on securing shader
execution through continuous monitoring and runtime
protections, as described in the following sections.

Fig. 2. GPU architecture.

III. THREAT MODEL AND ATTACK VECTORS

We considered a threat model in which the attacker
accesses a multi-tenant GPU server running malicious shader
programs. The attacker aims to infer secrets or induce errors
during shader execution through side-channel or fault attacks.
The relevant attack vectors are summarize in Figures 3 – 8.

Fig. 3. Timing attack vector.

Fig. 4. Cache attack vector.

Fig. 5. Power analysis attack vector.

Fig. 6. Fault attacks.

Fig. 7. Rowhammer attacks.

Engineering, Technology & Applied Science Research Vol. 14, No. 4, 2024, 15187-15193 15190

www.etasr.com Lungu et al.: NIST CSF-2.0 Compliant GPU Shader Execution

Fig. 8. Speculative execution attacks.

This threat landscape motivated a holistic strategy
integrating runtime monitoring, anomaly detection, and side-
channel defences. By leveraging hardware performance counter
techniques, shader execution is continuously validated to
respond rapidly to anomalies indicative of an attack.

IV. RELATED WORK

Table I summarises key recent research thrusts related to
the security of GPU shader execution. Side-channel attack
methods highlight the need for robust protections. Various
shader execution hardening techniques have been proposed,
while anomaly detection leverages GPU hardware performance
counters.

TABLE I. SUMMARY OF RELATED WORK

Research area Description Ref.

Side-channel attacks on

GPUs

Attacks use timing or cache side

channels during shader execution

to leak data.

[11-13]

Shader security

enhancements

Techniques like input validation,

control flow protections, shader

encryption and obfuscation

[10, 18, 19]

Anomaly detection

using performance

counters

Detecting abnormal GPU

execution by monitoring

performance metrics

[1-8]

CSF-based security

frameworks

Applying NIST CSF for

cybersecurity risk management

Proposed

methodology

V. METHODOLOGY

The proposed methodology aligns with the significant
functions of the NIST CSF by incorporating core techniques
for identification, protection, detection, and response tailored to
securing GPU shader execution.

A. Identification

We performed a detailed threat modelling analysis to
identify key assets, vulnerabilities, and threat vectors related to
the GPU shader execution environment. Assets include shader
binaries, inputs, runtime execution state, and outputs.
Vulnerabilities stem from the shader programming model,
GPU architecture, and shared hardware resources. Specifically,
we analyze timing channels arising from shader pipelines,
cache side channels due to hardware reuse, speculative
execution flaws, and memory corruption due to a lack of
vulnerability checks. Threats include malicious co-resident

shaders, unauthorised access on multi-tenant GPU servers, and
credentialed insider attacks. This comprehensive analysis
informs our risk assessment.

B. Protection

Continuous runtime monitoring attacks were implement
(Figure 9) along with mitigations during shader execution, as
illustrated in Figure 11.

Fig. 9. Attack monitoring.

C. Detection

We continuously monitor multiple hardware performance
counters to profile the expected shader behavior and rapidly
detect anomalies.

 Execution time:

T_shader = T_end −T_start (1)

where T_shader is the shader execution time, T_end is the
shader end time, and T_start is the shader start time. Here, we
track the overall shader runtime to detect abnormal variations
indicative of timing side channels.

 Cache hit rate:

HitRate =
���������

���������������������
 (2)

where HitRate is the ratio of cache hits to total cache accesses.
Tracking cache hit rates can detect cache side-channel attacks.
Here, we monitor cache access patterns to detect abnormal
cache usage signatures of side-channel attacks.

 Power consumption:

P= V X I (3)

where P is the power (W), V is the voltage (V), and I is the
current (A). Changes in power profiles can indicate ongoing
power analysis or fault attacks. We analyze power profiles to
detect aberrations corresponding to fault injection or power
side-channel attacks.

 Memory bandwidth utilization:

BW_util =
� ���_�������!

"�#�
/BW_ max (4)

Engineering, Technology & Applied Science Research Vol. 14, No. 4, 2024, 15187-15193 15191

www.etasr.com Lungu et al.: NIST CSF-2.0 Compliant GPU Shader Execution

where BW_util is bandwidth utilization, Bytes_accessed
represents the read/written bytes, Time is the shader execution
time, and BW_max is the maximum bandwidth. High
utilization may reveal rowhammer or cache attacks.

 Execution divergence:

Divergence =
,�-��._�/��-01�-�..�._�/��-

,�-��._�/��-
 (5)

where Serial_instr represents the instructions executed serially,
Parallel_instr represents the instructions executed in parallel,
and Divergence measures serialization. Divergence can identify
code manipulation or replay. We measure divergence to detect
abnormal serialization that can occur with malicious shader
modification or replay.

By continuously tracking these performance counters and
metrics during shader execution, we can profile the expected
behavior and rapidly detect anomalies that may correspond to
an attack. Thresholds based on allowlists differentiate normal
and abnormal execution characteristics.

D. Response

Upon detecting shader anomaly via the performance
counters, we immediately:

1. Terminate the shader instance to stop the attack.

2. Log forensic data for post-mortem diagnosis of the root

cause.

3. Adjust real-time protections and defences to address the

detected attack vector.

4. Quick termination and adaptation limit the damage and

continuously build attack intelligence to improve defences.

This in-depth methodology leverages performance counters
and hardware-augmented monitoring to provide NIST CSF-
aligned security for GPU shader workloads.

VI. IMPLEMENTATION AND RESULTS

To evaluate the proposed methodology, we implemented a

proof-of-concept prototype on an NVIDIA RTX 3090 GPU

and an AMD Radeon RX 6900 XT GPU.

A. Identify-Threat Model

In line with the proposed methodology, we successfully
developed a threat model that shows a detailed threat modelling
analysis to identify critical vulnerabilities and threat vectors
related to the GPU shader execution environment (Figure 10).

B. Protection

Figure 11 demonstrates a continuous runtime monitoring
and mitigation system during shader execution.

C. Detection

Table II shows the shader execution times for benchmark
programs from the Scalable Heterogeneous Computing
(SHOC) suite [20] with and without our instrumentation. The
median overhead ranged from 1.14% on the NVIDIA GPU to
1.64% on the AMD GPU.

Fig. 10. Threat model.

Fig. 11. Shader monitoring system.

TABLE II. SHADER EXECUTION TIME OVERHEADS

Benchmark
Baseline time

(ms)

Instrumented

time (ms)

Overhead

(%)

SHOC Benchmark 1 125 126 0.8

SHOC Benchmark 2 105 107 1.9

SHOC Benchmark 3 92 94 2.2

SHOC Benchmark 4 82 83 1.2

Figure 12 shows the cache hit rates monitored while

executing a cache side-channel attack shader on the NVIDIA
GPU. The attack shader exhibits an abnormal cache access
pattern compared to a benign shader.

Table III summarizes the performance counter metrics for
anomaly detection on both GPUs. Thresholds based on
allowlists allowed reliable attack detection. Figure 13 illustrates
the increased power consumption detected during a fault
injection attack on the AMD GPU. Power spikes exceeded the
allowed listed 20% threshold.

Engineering, Technology & Applied Science Research Vol. 14, No. 4, 2024, 15187-15193 15192

www.etasr.com Lungu et al.: NIST CSF-2.0 Compliant GPU Shader Execution

Fig. 12. Cache hit rate anomaly detection.

TABLE III. ANOMALY DETECTION METRICS

Metric Description Threshold

Execution time Detect timing channels 15% deviation

Cache hit rate Identify cache side-channels > 85% hits

Power

consumption

Reveal power analysis/fault

attacks
> 20% change

Memory

bandwidth

Detect rowhammer/cache

attacks
> 90% utilized

Fig. 13. Power analysis anomaly detection.

Fig. 14. Runtime anomaly response.

Table IV shows the performance overhead of our runtime
protections, which ranged from 1.21% on NVIDIA to 1.48%
on AMD. Figure 14 depicts the runtime behaviour when an
anomaly is detected. The attack shader was terminated within 2
ms on both platforms while logging and security adjustments
were automated. Our measurements validate the solution’s
ability to detect shader anomalies with minimal impact on
performance reliably. The results demonstrate the feasibility of
a CSF-aligned framework to secure production GPU shader
pipelines.

TABLE IV. RUNTIME PROTECTION OVERHEADS

Protection NVIDIA Overhead AMD Overhead

Shader encryption 0.41% 0.38%

Input validation 0.32% 0.41%

Synchronisation checks 0.11% 0.23%

Memory access

sanitization
0.37% 0.46%

D. Response

In Figure 15, a safety mechanism is present that aligns with
the response parameter in the NIST CSF 2.0 Framework.

Fig. 15. Safety mechanisms.

E. Comparison to Prior Work

Our results demonstrate lower performance overhead
compared to prior anomaly detection techniques for GPUs.

Engineering, Technology & Applied Science Research Vol. 14, No. 4, 2024, 15187-15193 15193

www.etasr.com Lungu et al.: NIST CSF-2.0 Compliant GPU Shader Execution

Authors in [3] proposed an execution time anomaly detector
with overheads ranging from 1.8% to 2.9%. In contrast, our
method incurred only 0.8% to 2.2% slowdown. The improved
efficiency stems from our continuous monitoring approach
leveraging hardware performance counters versus periodic
instrumentation. Similarly, timing channel detection in [4]
caused a 6.7% median overhead, while we achieved a 2%
impact by exploiting GPU hardware timers. Authors in [5]
report 10-15% application slowdowns for cache side-channel
detection versus our cache tracking at under 2% overhead. We
avoid high software instrumentation costs by utilizing built-in
cache performance counters.

Regarding power anomaly detection, authors in [6] induced
12-19% performance penalties due to sampling frequency. Our
power monitoring is continuous rather than sampled, yet it has
just 1.2% overhead by leveraging power measurement circuits.
Memory anomaly detection from [7] has over 25% overhead,
while our technique is under 5%. Again, we benefit from
hardware performance counters for fine-grained memory
bandwidth metrics compared to the software instrumentation
proposed by [7].

Our methodology outperforms prior shader anomaly
detection techniques regarding performance impact by
judiciously leveraging multiple lightweight hardware
performance counters for real-time shader execution
monitoring.

VII. CONCLUSION

This paper presented a methodology to apply the NIST CSF
2.0 guidelines to GPU shader execution pipelines. We focused
on the framework’s identification, protection, detection, and
response functions. Our techniques leverage hardware
performance counters and side-channel defences to enable real-
time shader monitoring and anomaly detection. We
implemented and evaluated a prototype solution on NVIDIA
and AMD GPUs. Results demonstrated the ability to reliably
detect and halt anomalous shader behaviour with minimal
performance overhead. This work provides a standards-driven
approach for organisations to secure heterogeneous GPU
resources. Future efforts can integrate machine learning
methods into the anomaly detectors to improve detection
accuracy. Enhancing the recoverability of the shader execution
state post-detection is another area of investigation.

REFERENCES

[1] W. J. Dally, S. W. Keckler, and D. B. Kirk, "Evolution of the Graphics
Processing Unit (GPU)," IEEE Micro, vol. 41, no. 6, pp. 42–51, Aug.
2021, https://doi.org/10.1109/MM.2021.3113475.

[2] D. G. Mahmoud, V. Lenders, and M. Stojilovic, "Electrical-Level
Attacks on CPUs, FPGAs, and GPUs: Survey and Implications in the
Heterogeneous Era," ACM Computing Surveys, vol. 55, no. 3, Oct. 2022,
Art. no. 58, https://doi.org/10.1145/3498337.

[3] W. Zhang, F. Bastani, I.-L. Yen, K. Hulin, F. Bastani, and L. Khan,
"Real-Time Anomaly Detection in Streams of Execution Traces," in 14th
International Symposium on High-Assurance Systems Engineering,
Omaha, NE, USA, Oct. 2012, pp. 32–39, https://doi.org/10.1109/
HASE.2012.13.

[4] A. Chen et al., "Detecting covert timing channels with time-
deterministic replay," in 11th USENIX conference on Operating Systems
Design and Implementation, Berkeley, CA, USA, Oct. 2014, pp. 541–
554.

[5] M. Chiappetta, E. Savas, and C. Yilmaz, "Real time detection of cache-
based side-channel attacks using hardware performance counters,"
Applied Soft Computing, vol. 49, pp. 1162–1174, Dec. 2016,
https://doi.org/10.1016/j.asoc.2016.09.014.

[6] J. Chen, B. Li, Y. Zhang, L. Peng, and J. Peir, "Statistical GPU power
analysis using tree-based methods," in International Green Computing
Conference and Workshops, Orlando, FL, USA, Jul. 2011, pp. 1–6,
https://doi.org/10.1109/IGCC.2011.6008582.

[7] J. C. Lee, T. Kim, E. Park, S. S. Woo, and J. H. Ko, "Continuous
Memory Representation for Anomaly Detection." arXiv, Mar. 10, 2024,
https://doi.org/10.48550/arXiv.2402.18293.

[8] "Cybersecurity Framework," NIST, Nov. 2013, [Online]. Available:
https://www.nist.gov/cyberframework.

[9] A. Calder, NIST Cybersecurity Framework: A pocket guide. North
Sebastopol, CA, USA: IT Governance Publishing, 2018.

[10] S. B. Dutta, H. Naghibijouybari, A. Gupta, N. Abu-Ghazaleh, A.
Marquez, and K. Barker, "Spy in the GPU-box: Covert and Side Channel
Attacks on Multi-GPU Systems," in 50th Annual International
Symposium on Computer Architecture, Orlando, FL, USA, Jun. 2023, pp.
1–13, https://doi.org/10.1145/3579371.3589080.

[11] Z. Wang and R. B. Lee, "A novel cache architecture with enhanced
performance and security," in 41st IEEE/ACM International Symposium
on Microarchitecture, Como, Italy, Nov. 2008, pp. 83–93,
https://doi.org/10.1109/MICRO.2008.4771781.

[12] H. Naghibijouybari, A. Neupane, Z. Qian, and N. Abu-Ghazaleh,
"Beyond the CPU: Side–Channel Attacks on GPUs," IEEE Design &
Test, vol. 38, no. 3, pp. 15–21, Jun. 2021, https://doi.org/
10.1109/MDAT.2021.3063359.

[13] E. Karimi, Z. H. Jiang, Y. Fei, and D. Kaeli, "A Timing Side-Channel
Attack on a Mobile GPU," in 36th International Conference on
Computer Design, Orlando, FL, USA, Oct. 2018, pp. 67–74,
https://doi.org/10.1109/ICCD.2018.00020.

[14] R. Rohan, B. Papasratorn, W. Chutimaskul, J. Hautamäki, S. Funilkul,
and D. Pal, "Enhancing Cybersecurity Resilience: A Comprehensive
Analysis of Human Factors and Security Practices Aligned with the
NIST Cybersecurity Framework," in 13th International Conference on
Advances in Information Technology, Bangkok, Thailand, Dec. 2023, pp.
1–16, https://doi.org/10.1145/3628454.3629472.

[15] NIST, NIST Cybersecurity Framework 2.0: Resource & Overview Guide.
Gaithersburg, MD, USA: National Institute of Standards and
Technology, 2024.

[16] D. A. Rockenbach et al., "Stream Processing on Multi-cores with GPUs:
Parallel Programming Models’ Challenges," in International Parallel
and Distributed Processing Symposium Workshops, Rio de Janeiro,
Brazil, Dec. 2019, pp. 834–841, https://doi.org/10.1109/IPDPSW.
2019.00137.

[17] M. Kenzel, B. Kerbl, D. Schmalstieg, and M. Steinberger, "A high-
performance software graphics pipeline architecture for the GPU," ACM
Transactions on Graphics, vol. 37, no. 4, Apr. 2018, Art. no. 140,
https://doi.org/10.1145/3197517.3201374.

[18] N. Belleville, D. Courousse, K. Heydemann, and H.-P. Charles,
"Automated Software Protection for the Masses Against Side-Channel
Attacks," ACM Transactions on Architecture and Code Optimization,
vol. 15, no. 4, Aug. 2018, Art. no. 47, https://doi.org/10.1145/3281662.

[19] N. Lungu, S. Tembo, N. Walubita, and S. S. Patra, "Mitigating GPU
Side-Channels via Integrated Monitoring and Response," in
International Conference on Integrated Circuits and Communication
Systems, Raichur, India, Feb. 2024, pp. 1–8, https://doi.org/
10.1109/ICICACS60521.2024.10498584.

[20] A. Danalis et al., "The Scalable Heterogeneous Computing (SHOC)
benchmark suite," in 3rd Workshop on General-Purpose Computation
on Graphics Processing Units, Pittsburgh, PA, USA, Mar. 2010, pp. 63–
74, https://doi.org/10.1145/1735688.1735702.

[21] S. Lee, H. Seo, H. Kwon, and H. Yoon, "Hybrid approach of parallel
implementation on CPU–GPU for high-speed ECDSA verification," The
Journal of Supercomputing, vol. 75, no. 8, pp. 4329–4349, Aug. 2019,
https://doi.org/10.1007/s11227-019-02744-6.

