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ABSTRACT 

Image processing is vital in modern technology, offering a diverse range of techniques for manipulating 

digital images to extract valuable information or enhance visual quality. Among these techniques, image 

inpainting stands out, involving the reconstruction or restoration of missing or damaged regions within the 

images. This study explores advances in image inpainting and presents a novel approach that integrates 

coarse-to-fine inpainting and attention-based inpainting techniques. The proposed method in this paper 

leverages deep learning methods to enhance the quality and efficiency of image inpainting, achieving 

robust and high-quality results that balance structural integrity and contextual coherence. A 

comprehensive evaluation and comparison with existing methods showed that the proposed approach has 
superior performance in maintaining structural integrity and contextual coherence within images. 
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I. INTRODUCTION 

Image processing plays a crucial role in modern 
technology, encompassing a wide array of techniques aimed at 
manipulating digital images to extract valuable information or 
enhance visual quality. Among the various applications of 
image processing, an area of particular interest is image 
inpainting, which involves the reconstruction or restoration of 
missing or damaged regions within an image. Inpainting 
techniques have garnered significant attention due to their 
relevance in various domains, including image restoration, 
object removal, and data augmentation. Inpainting aims to 
seamlessly fill in gaps in an image while preserving its overall 
structure, coherence, and visual fidelity. Previous studies have 
proposed several algorithms and methods to address the 
challenges associated with image inpainting, leveraging 
advances in deep learning and neural network architectures. 

This study explores the field of image inpainting [1], 
presenting novel approaches and methods to enhance the 
quality and efficiency of inpainting techniques. This study also 
presents a novel approach by combining innovative strategies 
such as coarse-to-fine inpainting and attention-based inpainting 
to achieve robust and high-quality results that effectively 
balance structural integrity and contextual coherence within 
images [2]. Through a comprehensive evaluation and 
comparative analysis with the existing methods, the proposed 
method demonstrates superior performance in maintaining 

structural integrity and contextual coherence within images, 
contributing to the advancement of image-processing 
techniques and their practical applications in various domains.  

II. RELATED WORK 

Image inpainting has garnered significant attention in 
computer vision and image processing, offering solutions for 
tasks such as object removal and image restoration [3]. 
Traditional methods, often diffusion-based or match-based, 
struggle with large missing regions due to their limited ability 
to learn high-level semantic information [4]. On the contrary, 
deep learning-based approaches, such as the context encoder, 
leverage powerful representation capabilities to produce 
semantically plausible and sharp content over larger regions, 
typically through GAN-based conditional generation 
architectures [5]. DSNet addressed the limitations of traditional 
methods by dynamically distinguishing corrupted from valid 
regions, enhancing realism and detail in image inpainting. 
DSNet's utilization of innovative modules, such as Validness 
Migratable Convolution (VMC) and Regional Composite 
Normalization (RCN), enables adaptive feature selection and 
normalization styles, leading to superior performance over 
existing methods on public datasets. 

DeepGIN [6] presents a deep-generative inpainting network 
capable of handling various masked image types. Employing 
SPD ResNet blocks, the MSSA mechanism, and the BP 
technique, DeepGIN leverages distant features for 
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reconstruction, exhibiting superior performance on datasets like 
FFHQ and Oxford Buildings, both quantitatively and 
qualitatively. In [2], a comprehensive review of recent 
advancements in image inpainting was presented, covering 
sequential-based, CNN-based, and GAN-based methods along 
with available datasets, offering insights into their performance 
across various image distortions. This study serves as a 
valuable reference for researchers, facilitates method 
comparison, and provides a comprehensive overview of the 
current state of the field. Region Normalization (RN) [7] was 
introduced as a region-wise spatial alternative to Feature 
Normalization (FN) in image inpainting networks to address 
mean and variance shifts caused by corrupted regions. RN 
enhances training by normalizing pixels based on input masks, 
resulting in improved quantitative and qualitative performance 
compared to existing methods. Furthermore, it was generalized 
to other inpainting networks, demonstrating consistent 
performance enhancements [8]. 

Foreground-aware image inpainting systems separate 
structure inference from content completion and achieve 
superior performance, particularly when holes overlap with 
foreground objects [9]. By predicting foreground contours 
before inpainting, these models demonstrate substantial 
improvements in inpainting quality, especially in challenging 
scenarios such as distracting object removal. Generative image 
inpainting systems offer solutions for handling free-form masks 
and guidance, leveraging gated convolutions trained on 
extensive unlabeled image data [10]. These systems overcome 
the limitations of vanilla and partial convolutions, offering 
dynamic feature selection across layers and facilitating 
effective inpainting for diverse mask shapes. PEN-Net [11], a 
deep generative model tailored for high-quality image 
inpainting, ensures both visual and semantic coherence. 
Incorporating a pyramid-context encoder for region affinity 
learning and attention transfer, along with a multiscale decoder 
and adversarial training loss, PEN-Net yields realistic and 
coherent inpainting results with superior performance across 
various datasets. AOT-GAN [12] is an enhanced model for 
high-resolution image inpainting that addresses the challenges 
of distorted structures and blurry textures through aggregated 
contextual transformation blocks and a tailored mask-
prediction task for the discriminator. AOT-GAN outperformed 
state-of-the-art approaches on challenging benchmarks such as 
Places2, demonstrating promising results in practical 
applications such as logo removal and face editing. 

PD-GAN [13] introduced probabilistic diversity for image 
inpainting, generating multiple diverse and visually realistic 
inpainting results through deep feature modulation and 
spatially probabilistic diversity normalization. This model 
achieved effective results on benchmark datasets such as 
CelebA-HQ, Places2, and Paris Street View, balancing realism 
and diversity, and enhancing the quality of inpainted images. In 
[14], an enhanced image inpainting method was presented, 
which leveraged a novel encoder and context loss function to 
achieve clearer and more realistic inpainting results compared 
to state-of-the-art algorithms across various image categories. 
This method demonstrated superior performance by combining 
a generative network with a fusion model of squeeze-and-
excitation networks and a discriminative network based on the 

squeeze-and-excitation residual network, along with a joint 
context-awareness loss training method. Recent advances in 
data-driven image inpainting methods have revolutionized 
fundamental image editing tasks but struggle with high-
resolution inputs that exceed 1K due to memory constraints. To 
address this, a Contextual Residual Aggregation (CRA) [15] 
mechanism enables high-frequency residual generation for 
missing content, facilitating sharp and detailed inpainting 
results up to 8K resolution while maintaining real-time 
performance on GPUs. In [16], a comprehensive review of 
deep learning-based image inpainting methods highlighted 
their significance in computer vision and image processing. 
Categorizing methods by inpainting strategies, network 
structures, and loss functions, this review provides insights on 
open-source codes, datasets, evaluation metrics, and real-world 
applications, offering valuable references for researchers and 
discussing future directions in the field. In [17], a review was 
carried out on inpainting methods for wireless communication 
applications. 

Semantic inpainting that incorporates the AOT block, akin 
to ASPP in semantic segmentation but tailored for low-level 
tasks, offers a promising avenue for advancement. However, 
despite its novel adaptation, the method falls short of fully 
addressing the challenges of completing large missing regions 
within complex scenes. This limitation arises from the reliance 
on patch-based approaches prone to diffusion-related blurs and 
struggles with synthesizing content in regions lacking similar 
patches in known contexts. Moreover, while ASPP has proven 
efficacy in high-level recognition for semantic segmentation, 
its direct application in inpainting models may not sufficiently 
meet the specific demands of low-level inpainting tasks. As 
such, while this method provides valuable insight, further 
refinement and exploration of alternative methodologies are 
needed to overcome these limitations and achieve semantic 
coherence in completing large missing regions. 

III. THE PROPOSED INPAINTING METHOD 

The proposed approach uses both coarse-to-fine and 
attention-based inpainting techniques. Coarse-to-fine inpainting 
provides a systematic strategy to fill in missing regions of an 
image by first generating a rough approximation of the missing 
content and then gradually refining it to capture finer details 
[18]. This method enables the efficient completion of large 
missing areas while preserving the overall structure and 
coherence of the image. Additionally, by integrating attention-
based inpainting mechanisms, the method aims to enhance the 
inpainting process by selectively focusing on relevant image 
features and context. Attention mechanisms allow the model to 
prioritize important regions during inpainting, resulting in more 
accurate and visually pleasing reconstructions. By combining 
these two approaches, this study aims to achieve robust and 
high-quality inpainting results that address both structural 
integrity and contextual coherence within image inpainting. 

To further elaborate on the proposed method, it is crucial to 
highlight the integration and synergistic effects of the coarse-
to-fine and attention-based inpainting techniques. The coarse-
to-fine method starts with a broad reconstruction, laying down 
a foundational layer that captures the essential shapes and 
forms of the missing regions. This step is critical for ensuring 
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that the subsequent finer details are placed within an 
appropriate structural context, thereby maintaining the image's 
overall integrity. Following this, the attention-based inpainting 
technique comes into play, employing sophisticated algorithms 
to analyze the surrounding pixels and textures. This analysis 
enables the model to make informed decisions about the details 
and emphasize the missing areas, based on the context 
provided by the intact parts of the image. The attention 
mechanism acts as a discerning artist, carefully choosing which 
strokes to add next, ensuring that each addition harmonizes 
with the existing elements. This approach is particularly 
effective for handling complex inpainting tasks, such as those 
involving intricate textures or dynamic backgrounds. By 
intelligently directing focus and resources, it can replicate 
detailed and contextually appropriate content that blends 
seamlessly with the rest of the image. 

 

 
Fig. 1.  Visual representation of the coarse-to-fine inpainting method. 

A. Coarse-to-Fine Inpainting 

The coarse-to-fine inpainting network architecture employs 
a multistage approach to effectively fill in missing regions 
within an image while preserving its overall structure and 
coherence. At the core of this architecture lies a hierarchical 
framework consisting of two main components: the coarse 
network and the refinement network. Initially, the input to the 

coarse-to-fine inpainting network includes the raw image and a 
corresponding binary mask indicating the areas to be inpainted. 
The raw image serves as the foundation, while the binary mask 
delineates the regions requiring restoration. The coarse network 
operates as the initial stage in the inpainting process. It takes 
the raw image along with the binary mask as input and 
generates a coarse approximation of the missing regions. This 
coarse output provides a foundational reconstruction, capturing 
the general shapes and structures of the inpainting areas. 

Following the coarse inpainting stage, the output is refined 
through the refinement network. This network is responsible 
for fine-tuning the coarse result and enhancing its details, 
textures, and overall quality. By leveraging higher-resolution 
features and contextual information, the refinement network 
ensures that the inpainting regions seamlessly blend with the 
surrounding content, achieving a visually convincing 
reconstruction. Throughout the coarse-to-fine inpainting 
process, the network iteratively refines its predictions, 
gradually improving the inpainting output with each iteration. 
This hierarchical approach allows for the efficient completion 
of large missing areas while progressively incorporating finer 
details and nuances into the final reconstruction. Figure 1 
illustrates the stepwise progression of the coarse-to-fine 
inpainting process, highlighting the input stages (raw image 
and binary mask), the output of the coarse network (coarse 
result), and the subsequent refinement performed by the 
refinement network. This architectural design facilitates the 
generation of high-quality inpainting images that seamlessly 
integrate with the original content, making it suitable for 
various applications in image restoration and enhancement. 

B. Attention-based Inpainting 

Attention-based inpainting introduces a mechanism inspired 
by human visual perception, where attention is selectively 
directed to relevant regions of an image during the inpainting 
process. This approach aims to prioritize important image 
features and context, enhancing the accuracy and realism of the 
inpainting results. At its core, attention-based inpainting uses 
attention mechanisms to dynamically assign weights to 
different parts of the input image, emphasizing informative 
regions while suppressing irrelevant ones. These mechanisms 
are typically integrated into Convolutional Neural Network 
(CNN) architectures, enabling the model to focus on specific 
areas during feature extraction and reconstruction. The 
attention mechanism can be mathematically formulated as 
follows: 

�� �
������	
��

∑ ������	��
�
��

    (1) 

where ��  represents the attention weight assigned to the � th 
spatial location in the feature map, ℎ� denotes the feature vector 
at the � th

 spatial location, ��. � represents a learnable function 
that computes the relevance of each feature vector, and � is the 
total number of spatial locations in the feature map. This 
formula computes the attention weight ��  for each spatial 
location in the feature map based on its corresponding feature 
vector ℎ� . The function ��. � captures the importance of each 
feature vector, which is then normalized across all spatial 
locations to ensure that the attention weights sum up to one. By 
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incorporating attention mechanisms into the inpainting process, 
the model can effectively prioritize relevant image features and 
context, resulting in more accurate and contextually coherent 
image inpainting. This attention-driven approach enhances the 
inpainting process by simulating human-like visual attention, 
leading to improved reconstruction quality and perceptual 
realism. 

C. Contextual Attention-based Inpainting 

Contextual attention-based inpainting introduces a novel 
approach that harnesses the power of contextual attention to 
enhance the inpainting process. Unlike traditional inpainting 
methods that focus solely on local information, contextual 
attention considers both local and global context, allowing the 
model to better understand the surrounding context of missing 
regions. This approach enables the inpainting model to 
effectively utilize contextual information from non-missing 
regions to guide the reconstruction of missing areas, resulting 
in more coherent and visually pleasing image inpainting. By 
dynamically adjusting the attention mechanism based on 
contextual cues, this method achieves improved accuracy and 
realism in inpainting, making it a promising technique for 
various image restoration tasks. 

 

 
Fig. 2.  The contextual attention layer. 

Figure 2 shows the stepwise progression of the contextual 
attention-based inpainting process, highlighting the key stages 

involved in utilizing contextual attention to inpainting missing 
regions within an image. 

 Input Feature: The process begins with the input features, 
which comprise the feature representations extracted from 
the input image. These features serve as the basis for the 
inpainting procedure, containing essential information 
about the image content. 

 Foreground and Background Separation: The input feature 
undergoes foreground and background separation, where 
the model distinguishes between the foreground objects and 
the background context. This separation enables the 
inpainting model to focus its attention selectively on the 
foreground regions while considering the contextual 
information provided by the background. 

 Reshape Operation: Following the foreground and 
background separation, the feature representations are 
reshaped to facilitate further processing. This reshaping 
operation prepares the feature maps for subsequent 
computations, ensuring compatibility with the attention 
mechanism. 

 Attention Score Computation: The reshaped feature maps 
are then used to calculate the attention scores, which 
determine the relevance of each spatial location within the 
feature maps. The attention mechanism dynamically assigns 
weights to different regions based on their contextual 
significance, emphasizing informative regions while 
suppressing irrelevant ones. 

 Weighted Sum Calculation: Once the attention scores are 
computed, they are applied to the reshaped feature maps to 
obtain a weighted sum of the feature vectors. This weighted 
sum aggregates information from multiple spatial locations, 
with higher weights assigned to regions deemed more 
relevant by the attention mechanism. 

 Reconstructed Foreground: Finally, the weighted sum of 
feature vectors is used to reconstruct the foreground regions 
within the image. By integrating contextual attention, the 
model effectively incorporates information from both local 
and global contexts, resulting in coherent and visually 
appealing inpainting reconstructions. 

IV. COMPARISON AND DISCUSSION 

The proposed image inpainting method was evaluated 
against several existing methods, including GConv, 
EdgeConnect, RN, and DSNet. GConv harnesses graph-based 
CNNs to capture spatial dependencies and semantic 
information, providing a robust framework for inpainting tasks. 
EdgeConnect focuses on leveraging edge information to guide 
inpainting, ensuring accurate reconstruction with detailed edge 
features. RN employs residual learning to effectively handle 
complex textures and structures, contributing to high-quality 
inpainting results. DSNet integrates deep supervision to 
facilitate multiscale feature learning, enhancing inpainting 
performance across various resolutions. Each of these 
approaches offers unique insights and contributions to the field 
of image inpainting, addressing different aspects of the 
inpainting challenge, such as spatial context modeling, texture 
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synthesis, and detail preservation. This comparative analysis 
aimed to provide a comprehensive understanding of the 
strengths and weaknesses of these methods relative to the 
proposed approach, facilitate informed decision-making, and 
advance state-of-the-art image inpainting. 

Figure 3 presents visual assessments performed on 
512×512 images, comparing the performance of the proposed 
with other existing methods. Through these visual 
comparisons, the effectiveness of the proposed method can be 
evaluated in terms of its ability to restore missing or damaged 
regions in images while preserving visual quality and semantic 
coherence. 

 

 
Fig. 3.  Comparative visual assessment on 512×512 images. 

Table I presents a comparative analysis of various metrics 
for different image inpainting methods. The metrics evaluated 
include Frechet Inception Distance (FID), Peak Signal-to-Noise 
Ratio (PSNR), Structural Similarity Index (SSIM), and L1 
distance. In these metrics, a down arrow indicates that lower 
values mean better performance, while an up arrow indicates 
that higher values mean better performance. 

TABLE I.  QUANTITATIVE COMPARISONS BETWEEN THE 
PROPOSED AND OTHER EXISTING APPROACHES 

Metric Mask GConv EC RN DSNet Proposed 

FID (↓) 
10-20% 0.847 0.777 0.809 0.559 0.474 

40-50% 6.384 4.244 6.488 2.842 2.721 

PSNR (↑) 
10-20% 31.23 31.15 33.17 32.28 33.46 

40-50% 23.37 23.57 25.02 24.60 25.15 

SSIM (↑) 
10-20% 0.9538 0.9470 0.9642 0.9582 0.9658 

40-50% 0.8173 0.8025 0.8466 0.8334 0.8490 

L1(%) (↓) 
10-20% 0.67 0.79 0.55 0.61 0.53 

40-50% 2.71 3.04 2.29 2.41 2.23 

 

For FID, which measures the similarity between generated 
and real images (lower values are better), the proposed method 
consistently outperformed the others across different mask 
sizes (10-20% and 40-50%), indicating that it generated more 
realistic images compared to the alternatives. Regarding PSNR, 
which evaluates image quality based on noise levels (higher 
values are better), the proposed approach also demonstrates 
superior performance, especially at larger mask sizes (40-50%), 
suggesting that it produced images with higher fidelity and less 
noise distortion. Similarly, for SSIM, a metric that evaluates 
structural similarity (higher values are better), the proposed 
method achieved the highest scores across both mask sizes, 
indicating that it preserves image structures more effectively 
compared to the other methods. Finally, the L1 distance metric, 
which measures the pixel-wise difference between the 
inpainted and ground truth images (lower values are better), 
shows that the proposed method consistently achieved the 
lowest L1 distances, indicating superior accuracy in 
reconstructing missing regions. In general, the results 
demonstrate the effectiveness of the proposed approach in 
producing high-quality and visually plausible image inpainting, 
surpassing existing techniques across various evaluation 
metrics and mask sizes. 

V. CONCLUSION 

The proposed image-inpainting method demonstrated 
superior performance across various evaluation metrics 
compared to existing techniques, including GConv, EC, RN, 
and DSNet. The results of experimentation and analysis 
showed that the proposed method consistently produced more 
realistic, visually pleasing, and structurally accurate image 
inpainting, particularly in scenarios with larger mask sizes. The 
FID, PSNR, SSIM, and L1 distance metrics confirmed the 
effectiveness of the proposed approach in generating high-
quality image inpaintings with minimal distortion and noise. 
These findings highlight the potential of the proposed method 
to significantly enhance image inpainting, offering promising 
solutions for a wide range of applications in computer vision, 
image editing, and beyond. Further research and development 
in this direction could lead to even more advanced and robust 
inpainting techniques, opening up new possibilities for creative 
image manipulation and restoration. 

Building on this foundation, the untapped potential in 
specific domains, such as manga translation and the application 
of inpainting to integrate textual translations directly onto 
images, should be recognized. This area represents an exciting 
research area, as it blends the challenges of linguistic accuracy 
with visual artistry. Addressing these challenges not only 
expands the scope of image inpainting but also enriches the 
interaction between text and imagery, opening up innovative 
pathways for storytelling and content creation. As moving 
forward, exploring these possibilities will form a key aspect of 
future work, aiming to seamlessly bridge the gap between 
visual and textual content. 
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