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ABSTRACT 

The concept of Federated Learning (FL) is a branch of Machine Learning (ML) that enables localized 
training of models without transferring data from local devices to a central server. FL can be categorized 

into two main topologies: Aggregation Server Topology (AST) and Peer-to-Peer (P2P). While FL offers 

advantages in terms of data privacy and decentralization, it also exhibits certain limitations in efficiency 

and bottleneck. However, the P2P topology does not require a server and allows only for a small number of 

devices. To overcome these limitations, this study proposes a hybrid FL Aggregation of P2P (hFedLAP) 

that mitigates some of the limitations of AST by combining it with P2P. This fusion model helps to remove 

the bottleneck and combines the advantages of both topologies. In the proposed hFedLAP model, clients 
are organized into 49 groups, each consisting of 51 clients, including one in each group serving as a client 

and an admin node in a P2P setup. In these groups, communication is restricted to admin nodes, 

supporting a maximum of 2,495 devices. Platform accuracy is maintained by implementing measures to 

prevent new devices with inadequate accuracy levels from joining until they attain the minimum required 

accuracy. The experimental results of hFedLAP were compared with AST and P2P using the MNIST 

dataset, showing that hFedLAP outperformed AST and P2P, achieving remarkable accuracy and 
scalability, with accuracy levels reaching 98.81%. 

Keywords-federated learning; aggregation server; AST FL; peer-to-peer FL; machine learning; hybrid FL 

model 

I. INTRODUCTION  

Federated Learning (FL) was introduced in 2016 as a novel 
approach within the broader field of Machine Learning (ML) 
[1]. Many studies on ML aim to improve accuracy in prediction 
models and address some limitations, such as the centralization 
of training data, data privacy concerns, and the need to handle 
large amounts of data stored on a single server to enhance the 
reliability and accuracy of generated models [1-3]. Classic ML 
models are typically trained following a centralized technique 
in large data centers that are mostly isolated. However, with 
increasing the costs of computing resources and the need to 
ensure data privacy and security coupled with the advent of 
new data collection and processing techniques, FL has emerged 
as a viable alternative [4]. FL enables users to train their 
models locally and implicitly share the generated models [5]. 
FL ensures that all data remain on a local host and is a method 
for collectively training an ML model without the need to 
exchange local data. This training approach yields advantages 
in multiple aspects: 

 Privacy-sensitive: Data are generally privacy-sensitive, 
which means that, for example, a hospital cannot share 
patient data with third parties (other hospitals) due to 
privacy policies and regulations [6]. The isolation concept 
of multiple parties is called Data Islands. 

 Scalability: The FL concept requires multiple devices 
(ranging from tens to thousands), each with its own local 
computing resources/environment [6-7]. This approach not 
only eliminates the need for a large data center or expensive 
computing resources but also improves scalability and 
enables participants to train independently in parallel [7. 

 Unbiased models: The models generated from training can 
be biased when the training is conducted with similar 
servers or when one server contains a disproportionately 
large amount of data, which can negatively affect other 
clients. This issue is prevalent in all topologies and directly 
affects the quality of generated models by decreasing the 
accuracy [7]. 
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FedAvg is a typical FL algorithm, in which the models 
collected from the participants are aggregated on the server [1]. 
Traditionally, the relationship between the server and the 
devices is categorized into two main FL topologies with unique 
advantages: Aggregation Server Topology (AST) and Peer-to-
Peer (P2P). AST offers structured and centralized aggregation 
between millions of devices, ensuring easier global model 
updates. On the other hand, P2P facilitates direct node-to-node 
communication, making it capable of adjusting to changes. 
However, both approaches come with their respective 
challenges. The centralized structure of AST can become a 
bottleneck due to its dependence on a single server, whereas 
P2P has limitations in maintaining the accuracy of generated 
models and the scalability of the framework. According to [7], 
the maximum number of devices within a P2P platform is 
limited to 100 clients. The convergence of these two 
approaches offers an opportunity to leverage their respective 
advantages and mitigate their weaknesses. This study not only 
elucidates the advantages of the proposed hybrid model, but 
also evaluates its efficiency compared to traditional FL 
topologies. The primary contributions of this work can be 
outlined as follows: 

 Introduce the novel hFedLAP, a hybrid FL model that 
seamlessly merges the robustness of the AST and P2P 
topologies. This innovative approach increases prediction 
accuracy and also provides a unique mechanism whereby 
incoming devices must attain a predetermined accuracy 
threshold to participate in training. Furthermore, hFedLAP 
judiciously circumvents the challenges posed by an 
extensive number of devices in P2P configurations, 
representing a significant step forward in scalable and 
efficient FL. 

 Evaluate the accuracy and F1-score of hFedLAP and 
compare it against AST and P2P topologies. 

II. RELATED WORKS 

Centralized FL [1] has addressed some of the challenges in 
ML by training data on mobile devices without compromising 
user privacy. The FedAvg algorithm collects and averages all 
shared models on a server and then shares the global model 
with the participant devices. Several implementations and 
algorithms have been introduced for the aggregation server. In 
[8], the FL concept was applied using the FedAvg algorithm on 
user input on mobile devices from 7.5 B sentences to enhance 
the prediction of words while typing. In [9], a personalized FL 
framework, called pFedLA, was introduced, dubbing layer-
wise personalized FL. pFedLA aims to personalize clients with 
heterogeneous data by assigning unique weights and dedicated 
hypernetwork parameters on the server for each client. When 
applied to several datasets, such as EMNIST and CIFAR100, 
pFedLA exhibits higher performance and higher aggregated 
weight compared to other customized FL frameworks. 
Centralized FL includes different topologies, such as: 

 AST: The training process depends on aggregating models 
directly into a single server, where devices share local 
models with the server. The server collects and aggregates 
models to share a global model with the devices, as noticed 
in Figure 1 [4, 8-11]. 

 The hierarchical topology depends on adding additional 
layer(s) between the server and clients (edge nodes) to 
reduce direct communication between them, as observed in 
Figure 1 [12-14]. 

Decentralized FL has emerged as an alternative to 
previously introduced models to eliminate the dependence on a 
central server. This serverless architecture relies on direct 
communication between clients [7]. It provides users with 
greater autonomy in process control and reduces the risks of 
bottlenecks and data leakage caused by server issues [8]. 
Furthermore, decentralized learning supports various 
topologies, namely: 

 P2P topology: The training process depends on direct 
communication between participant nodes, where each 
node communicates and shares a local model [15-16], as 
portrayed in Figure 1, where all devices are capable of 
communicating, sharing, and aggregating local models 
directly. 

 Ring topology: All nodes within the same platform 
communicate directly with the neighbor node, where each 
node is linked to two nodes, predecessor and successor [17-
18], as depicted in Figure 1, and each device has its local 
model while being linked and connected circularly. 

 

 
Fig. 1.  FL topologies and frameworks. 

Typical decentralized learning can be found mainly in 
healthcare institutes, banking, and industries that have high-
specification servers and require additional security measures 
due to data sensitivity [19]. BrainTorrent [16] is an FL 
framework that does not require a central server. This model 
was applied to the Multi-Atlas Labeling Challenge (MALC) 
dataset that contains 30 manually labeled brain MRI scans. 
BrainTorrent training results demonstrated similar performance 
compared to the training on data collected on a single server, 
which is considered a classic ML. In [13], the Hierarchical 
Federated Averaging (HierFAVG) algorithm, which 
incorporates an edge layer to aggregate the results of clients 
before sharing them with the server, was introduced. This 
model was evaluated in the MNIST dataset, achieving 
accuracies of approximately 96.2% and 95% for the EDGE-IID 
and EDGE-NIID scenarios, respectively. In [20], Federated 
Knowledge Transfer (FedKT) was proposed, utilizing 
knowledge transfer techniques to distribute the subsets of the 
original dataset between client devices, achieving 90.5% 
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accuracy in the MNIST dataset. The Iterative Federated 
Clustering Algorithm (IFCA) [21] enables the creation of user 
clusters that exchange global models. This framework assigns 
devices to clusters with similar devices, and the evaluation on 
the MNIST dataset yielded accuracies up to 96%. In [22], a 
hybrid classifier was introduced for hospital systems, where 
each server trains multiple models locally and then averages 
the results of these models from multiple local servers to 
generate the final version. This is considered a hybrid 
approach, where each silo aggregates models and then adds 
another layer to generate a global average model that leads to 
increased accuracy and reduces biases when averaging 
generated results. In [23], the Federated Hierarchical 
Synchronous platform (FedHiSyn) was proposed by combining 
the ring and hierarchical topologies into a hybrid model, where 
devices, which are clustered based on computational capability, 
train models locally and share the generated models with an 
edge server. In [24], the concept of Multi-stage Hybrid FL 
(MH-FL) was presented.  

This study extends the FL framework into a multilayer 
network structure, featuring multiple layers of nodes between 
end devices and the central server. This model has a multilayer 
structure, where the middle layer communicates vertically with 
either higher or lower devices. This setup requires having a 
main server to aggregate models at the top level, which is not 
demanded in hFedLAP as it communicates horizontally. In the 
proposed conceptual framework, the admin node compiles 
models from various clients within the group, operating in a 
P2P relationship. Contrary to the method presented in [25], this 
aggregation does not aim to develop a global model. 
Additionally, this method does not require the server to 
distribute the model among all members of the cluster. 
Moreover, the proposed approach intentionally avoids 
categorizing clients based on data similarity, a practice that 
could potentially lead to bias in the model. 

III. PROPOSED HYBRID APPROACH 

A. Hybrid Approach Design 

The proposed hFedLAP framework is a hybrid approach 
that combines both P2P and centralized FL mechanisms. The 
proposed framework overcomes the challenge of not having a 
server in P2P by selecting one of the participant nodes to act as 
the admin node, responsible for administering the platform. 
Initially, direct training occurs between the participant nodes. 
After a predefined number of training rounds, all nodes share 
their last accuracy results, and the node with the highest 
accuracy is selected as the admin node for the group. The 
admin node, functions as a regular node but with the additional 
functionality of monitoring the platform without centralizing 
models as in AST. However, in P2P, all clients can be 
considered servers with high hardware specifications [26], 
indicating that any client has the potential to operate as an 
admin node. To increase the number of devices, participant 
devices are organized into groups consisting of multiple 
devices, each of them monitored by the admin node in the 
group. The maximum number of clients in a single group is 
limited to 51 devices. Once the number of devices exceeds 51, 
a new group is formed with new joiners and an admin node. In 
the hFedLAP framework, only the admin node is capable of 

communicating outside the group with other admin nodes. 
Therefore, the total number of nodes can be increased to more 
than 100 devices, which is considered the maximum number of 
clients in P2P [7]. Furthermore, to overcome the challenge of a 
possible bottleneck that can be generated by having a single 
server in AST, hFedLAP prepares another device as a backup 
in case the primary admin client goes down, thus reducing the 
bottleneck. The chosen backup node is the one with the second-
highest accuracy in its group. Moreover, adding a new client to 
the group is one of the optimizations in hFedLAP. The admin 
node will first share the latest model and then train the new 
clients individually to measure and increase their accuracy. If a 
client fails to reach an accuracy of 90%, it will not be allowed 
to join the group and will wait until the new round is 
completed. The process is then repeated, as shown in Figure 2. 
The admin nodes are capable of directly communicating with 
each other to share global models between groups. This process 
maintains the mean accuracy between groups and reduces the 
bias generated by having isolated groups. Table I introduces 
some key notations used in the algorithm's structure and 
operations. 

TABLE I.  NOTATIONS OF HFEDLAP 

Notation Meaning 

K The number of initial clients 

Kadd The number of additional clients that can join the loop 

NK 

The number of random clients (set of clients noted S) used 

for aggregation with each client. If one wants to select all 

the other clients for aggregation (or most likely set to a 

percentage set to choose a random set of clients) 

ninit Number of initial data instances for client Di 

ncurrent Number of current data instances for client Di 

nadd 
Number of data instances added when the devices are 

augmented 

active_users Set of active users 

pending_users 
Set of inactive users waiting to be potentially added to the 

loop 

global_epochs number of global iterations 

p2p_epochs number of peer-to-peer epochs 

agg_epochs number of aggregation epochs 

local_epochs  
number of local iterations (number of epochs for each 

client training in one global epoch) 

new_threshold  
a probability threshold to decide whether to add a new 

client or not 

Perf_threshold 
performance threshold to decide whether a performance 

score is good enough 

 

 
Fig. 2.  hFedLAP Framework. 
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ALGORITHM 1: HYBRID APPROACH 

procedure HYBRID (active_users, pending_users, K, Kadd, Nk, ninit, ncurrent, nadd, global_epochs, p2p_epochs, 

agg_epochs, local_epochs, new_threshhold, perf _threshhold) 

1.  do_peer_to_peer, pending_device, device_added, new_client ← True, False, False, False 

2.  admin_client, ncurrent ← 0, ninit (initialization of the index of administrator node) 

3.  for global_epoch = 1 : global_epochs do : 

4.    if ncurrent reaches the maximum possible (all possible data instances were added) or Kcurrent  

      reaches the maximum possible number of clients (all possible devices were added) then: 

5.      for client_idx = 1 : ncurrent do: 

6.        Local train of the client client_idx for local_epochs 

7.        Aggregate client models to admin node admin_client and send admin model weights to all clients 

8.    else 

9.      if peer_to_peer = True then: 

10.       for p2p_epoch = 1 : p2p_epochs do: 

11.         for client_idx = 1 : ncurrent do: 

12.           Local train the client client_idx for local_epochs 

13.           Each device is peer-to-peer aggregated with respective random Nk clients 

14.     else: 

15.       for agg_epoch = 1 : agg_epochs do: 

16.         for client_idx = 1 : ncurrent do: 

17.           Local train the client client_idx for local_epochs 

18.           Aggregate client models to admin node admin_client and send admin model weights to all clients 

19.     if pending_device = True then: 

20.       new_client ← True (proceed to test whether a new client is eligible to be added to active_clients) 

21.     else: 

22.       p ← random(0, 1) (random float from 0 to 1) 

23.       if p < perf_threshhold then: 

24.         new_client ← True 

25.       else: 

26.         new_client ← False 

27.     if new_client = True then: 

28.       new_client model inherits the weights from admin node and tests the accuracy on validation data  

          (val_acc) 

29.       if val_acc > perf_threshhold then: 

30.         add the new client to active_clients 

31.         do_peer_to_peer, pending_device ← True, False 

32.       else: 

33.         ncurrent ← ncurrent  + nadd (do data augmentation of all clients) 

34.         do_peer_to_peer, pending_device ← True, True 

35.     else: 

36.       do_peer_to_peer, pending_device ← False, False 

37. end 

 

B. Hybrid approach algorithm 

Within the architecture of hFedLAP, the training process is 
a local training and aggregating in P2P form. Models are 
exchanged among devices that form a group. Algorithm 1 
displays the verification process of adding new clients to the 
group and the training process. 

C. The Prediction Model Architecture 

The defined model is a Convolutional Neural Network 
(CNN) composed of multiple stacked layers: 

 2D-Convolution layer: input channels = 1, output channels 
= 10, kernel size = 5. 

 2D-Convolution layer: input channels = 10, output channels 
= 20, kernel size = 5. 

 Dropout layer: p = 0.5 

 Linear layer: input dimension = 320, output dimension = 
50. 

 Linear layer: input dimension = 50, output dimension = 
num_classes = 10. 

D. Validation Metrics 

Since the dataset is equally and identically distributed 
among the users, accuracy and F1-score are appropriate metrics 
to evaluate the performance of the proposed methods using the 
following equations: 

�������� =
�	
��

�	
��
�	
��
   (1) 


1 − ����� =
� � (	�������� � ����  )

	�������� 
 ����  
   (2) 

True Positives (TP), True Negatives (TN), False Negatives 
(FN), and False Positives (FP) are defined to calculate 
accuracy and evaluate performance. The higher the accuracy 
and the F1-score is, the better the model is perceived. The 
average accuracy is used to evaluate the whole system, 
composed of multiple clients. 

IV. EXPERIMENTS 

The PyTorch platform was employed to implement the 
introduced model, with hardware specifications as follows: 
Intel Xeon CPU with 2 virtual CPUs and 13GB of RAM and 
NVIDIA Tesla K80 GPU with 12GB of VRAM. The MNIST 
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[27] dataset, which contains 28×28 pixels grayscale images of 
handwritten digits labeled 0 to 9, almost evenly distributed, 
was utilized. MNIST is made up of 60,000 train images and 
10,000 test images. This experiment deploys the train instances 
for training and the test ones for validation. Both sets are 
equally divided between the clients participating in FL.  

A. Centralized Federated Learning 

Table II provides the training results for the centralized FL 
approach. Four isolated experiments were carried out, C1, C2, 
C3, and C4. The difference between the four experiments was 
in device size (8k or 10k) and the number of devices (4 or 6). 
Having more data points per client and more clients tends to 
result in better performance, up to a certain extent. 

TABLE II.  CENTRALIZED FL FRAMEWORK RESULTS 

Parameters C1 C2 C3 C4 

K 6 6 4 4 

Nk 3 3 2 2 

n 10k+1.67k 8k+1.67k 10k+1.67k 8k+1.67k 

N 60k+10k 48k+10k 40k+6.67k 32k + 6.67k 

global_epochs 6 6 6 6 

local_epochs 4 4 4 4 

F1-score 95.07% 95.02% 95.92% 95.87% 

Accuracy 95.08% 95.04% 95.96% 95.90% 

 

B. Decentralized P2P Federated Learning 

Similarly to centralized FL, the parameters in P2P FL were 
fixed, except for the device size and number of devices (D 
stands for decentralized). Table II manifests the results. 

TABLE III.  DECENTRALIZED FL FRAMEWORK RESULTS 

Parameters D1 D2 D3 D4 

K 6 6 4 4 

Nk 3 3 2 2 

ni 10k+1.67k 8k+1.67k 10k+1.67k 8k+1.67k 

n 60k+10k 48k+10k 40k+6.67k 32k + 6.67k 

p2p_epochs 6 6 6 6 

local_epochs 4 4 4 4 

F1-score 96.26% 96.18% 96.23% 96.30% 

Accuracy 96.28% 96.19% 96.25% 96.31% 

 

C. Hybrid Approach hFedLAP 

The proposed hFedLAP approach was followed with a 
changed set of variables: agg_epochs, p2p_epochs, and 
global_epochs for simplicity, and both agg_epochs and 
p2p_epochs were not running at the same time. agg_epochs 
was equal to p2p_epochs, and the rest of the variables were 
fixed. The 2-3 in Nk means that the selected number of clients 
in the FedAvg or P2P aggregation is either 2 or 3, depending 
on the number of active devices, which varies from 4 to 6. In 
addition, for all experiments Ninit was 8K + 1.67K, 
perf_threshold = 0.98, new_threshold = 0.8, global_epochs = 
10, and local_epoch = 4. Table IV and Figure 3 portray the 
results of the proposed hybrid method. Specific configurations 
were observed, particularly for H1 (p2p_epochs = agg_epochs 
= 6) and H2 (p2p_epochs = agg_epochs = 3), where no data 
augmentation was activated at any global epoch. This implies 
that the admin server could train and achieve over 98% 

validation accuracy for every newly added client from the first 
global epoch to the last. In contrast, for H3 (p2p_epochs = 
agg_epochs = 2), instances were observed where the new 
device validation accuracy fell below 98%. This necessitated 
the activation of data augmentation to train the active clients, 
thereby enhancing the effectiveness of the admin node model. 
This requirement for data augmentation in H3 can be attributed 
to the insufficiency of just two p2p_epochs to attain a 98% 
accuracy on new data, particularly evident from the third global 
model onwards. The parameter combination H3 facilitates 
greater participation of data instances in the experiment 
through progressive data augmentation compared to H1 and H2 
during training. It was noticed that accuracy tends to improve 
with the addition of more data in active learning scenarios. This 
suggests that H1 and H2 may not require data augmentation, as 
active clients achieve desired accuracies within p2p_epochs = 
agg_epochs = 6.  

H1 exhibits superior performance, although at the cost of 
increased aggregation/P2P iterations and without utilizing data 
augmentation. H2 and H3 offer more balanced configurations. 
The H4 experiments were analogous to H3 (2 epochs) but with 
varying n_add values. Experimenting with a higher n_add 
could accelerate the meeting of performance criteria. For 
instance, a new device A might reach the 98% accuracy 
threshold after a single augmentation of 1000 instances, rather 
than after two augmentations of 500 instances each. This 
constitutes a more rapid data augmentation approach, entailing 
fewer augmentation iterations. However, the experiments 
indicate that configuration H4 is optimal assuming that only 
two data augmentations (1k + 1k) would suffice for all clients 
to meet the desired threshold is speculative, particularly if more 
than two clients are added. 

 

 
Fig. 3.  Accuracy of hFedLAP FL models. 

TABLE IV.  HFEDLAP FRAMEWORK RESULTS 

Parameters H1 H2 H3 H4 

Kinit 4 4 4 4 

Kadd 2 2 2 2 

K 6 6 6 6 

Nk 2-3 2-3 2-3 2-3 

nadd 500 500 500 1000 

p2p_epochs 6 3 2 2 

agg_epochs 6 3 2 2 

F1 98.58% 98.31% 98.47% 98.74% 

Accuracy 98.60% 98.33% 98.48% 98.76% 
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D. Result Comparison 

To make the comparison as fair as possible, the same 
specifications were defined for all approaches and then the 
experiment was run on the same dataset (MNIST). In addition, 
similar data sizes were applied in each local epoch and round. 
The average accuracy of each approach was compared, as 
demonstrated in Figure 4, indicating that the proposed hybrid 
approach reached a higher average accuracy compared to the 
others. 

 

 
Fig. 4.  Average accuracy comparison in centralized, decentralized, and 

hFedLAP. 

E. Evaluating hFedLAP Performance and Scalability 

Setting the P2P epochs and aggregation epochs to 4 allows 
the local clients to aggregate and achieve consistent 
performance for the admin node across the epochs. To measure 
the performance of a single group, the model was run using a 
total of 6, 12, and 16 devices. The size of the extra devices was 
set to 500, 250, and 187, respectively, to allow the system to 
perform data augmentation up to 4 times, if necessary, as 
depicted in Table V. 

TABLE V.  HFEDLAP ACCURACY AND F1-SCORES 

Parameters 6 12 16 

Kinit 4 8 11 

Kadd 2 4 5 

K 6 12 16 

Nadd 500 250 187 

F1-score 0.98415 0.9878 0.9843 

Accuracy 0.98419 0.9881 0.9845 

 
Furthermore, each group had initial devices and additional 

devices joined during training. It was observed that the 
accuracy improved as the number of clients increased. This 
improvement can be attributed to the reduced amount of data 
for each client, resulting in an increased number of global 
rounds and, consequently, more aggregation between the 
clients. Figure 5 also displays the F1-score and accuracy for 6 
global epochs. Essentially, in principle, hFedLAP demonstrates 
its potential to extend the total device capacity up to 2,495 
devices. This expansion is achieved by enabling each admin 
node to establish communication with a restricted subset of 100 
devices (comprising 51 devices within the same subgroup and 
49 admin nodes in other subgroups). In particular, the admin 
node can exclusively engage in cross-subgroup 
communication, connecting with fellow admin nodes located in 
distinct subgroups, as shown in Figure 6. However, due to 
MNIST being a comparatively small dataset, the experiments 
were restricted to a maximum of 16 clients. 

(a) 

 

(b) 

 

Fig. 5.  Accuracy and F1-score of the different configurations (6 global 

epochs). 

 
Fig. 6.  Scalability in hFedLAP. 

V. CONCLUSION 

This study introduced hFedLAP, a hybrid FL approach that 
enhances scalability, reliability, and accuracy by combining 
features of both AST and P2P models. By strategically 
grouping devices, hFedLAP not only mitigates the scalability 
limitations typically observed in P2P, but also prevents 
bottlenecks in AST and ensures system resilience during server 
outages. The fusion is applied to have 49 groups, each having 
51 clients, supporting 2495 devices in total. The results 
demonstrated that hFedLAP achieved an accuracy of 98.81%, 
whereas the classical models AST and P2P attained 95.96% 
and 96.31%, respectively. In particular, the strategy of limiting 
new device additions based on the accuracy obtained after the 
first epoch has proven to be effective in maintaining and even 
enhancing the overall platform accuracy while reducing the 
impact on the existing performance metrics. This study 
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addresses a significant knowledge gap in the scalability and 
reliability of federated learning systems, particularly in 
heterogeneous network environments. Compared to existing 
works, hFedLAP introduces a novel model that robustly 
supports an increased number of devices while improving 
accuracy. In future work, this research aims to further evaluate 
the time efficiency and scalability of hFedLAP by testing it on 
larger and higher-resolution datasets using a network of 2,495 
devices to validate the model's effectiveness on a larger scale 
and more importantly to explore potential optimizations that 
could benefit a broader range of applications in FL. 
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