
Engineering, Technology & Applied Science Research Vol. 14, No. 4, 2024, 14832-14839 14832

www.etasr.com Garba et al.: Utilizing Ant Colony Optimization for Result Merging in Federated Search

Utilizing Ant Colony Optimization for Result

Merging in Federated Search

Adamu Garba

School of Computer Science and Communication Engineering, Jiangsu University, China

Adamugarba84@gmail.com

Shah Khalid

Department of Computing, National University of Sciences and Technology (NUST), Pakistan

shah.khalid@seecs.edu.pk (corresponding author)

Aliya Aleryni

Department and College of Computer Science, King Khalid University, Abha, Saudi Arabia

amalaryani@kku.edu.sa

Irfan Ullah

Department of Computer Science, Shaheed Benazir Bhutto University, Sheringal, 18050, Pakistan

irfan@sbbu.edu.pk

Nasser Mansoor Tairan

Department and College of Computer Science, King Khalid University, Abha, Saudi Arabia

mmtairan@kku.edu.sa

Habib Shah

Department and College of Computer Science, King Khalid University, Abha, Saudi Arabia

hurrahman@kku.edu.sa

Diyawu Mumin

Department of Computer Science, Tamale Technical University, Tamale, Ghana

mdiyawu@tatu.edu.gh

Received: 20 March 2024 | Revised: 16 April 2024 | Accepted: 18 April 2024

Licensed under a CC-BY 4.0 license | Copyright (c) by the authors | DOI: https://doi.org/10.48084/etasr.7302

ABSTRACT

Federated search or distributed information retrieval routes the user's search query to multiple

component collections and presents a merged result list in ranked order by comparing the relevance score

of each returned result. However, the heterogeneity of the component collections makes it challenging for

the central broker to compare these relevance scores while fusing the results into a single ranked list. To

address this issue, most existing approaches merge the returned results by converting the document ranks

to their ranking scores or downloading the documents and computing their relevance score. However,

these approaches are not efficient enough, because the former methods suffer from limited efficacy of

result merging due to the negligible number of overlapping documents and the latter are resource

intensive. The current paper addresses this problem by proposing a new method that extracts features of

both documents and component collections from the available information provided by the collections at

query time. Each document and its collection features are exploited together to establish the document

relevance score. The ant colony optimization is used for information retrieval to create a merged result list.

The experimental results with the TREC 2013 FedWeb dataset demonstrate that the proposed method

significantly outperforms the baseline approaches.

Engineering, Technology & Applied Science Research Vol. 14, No. 4, 2024, 14832-14839 14833

www.etasr.com Garba et al.: Utilizing Ant Colony Optimization for Result Merging in Federated Search

Keywords-information retrieval; distributed information retrieval; federated search; result merging; ant

colony optimization

I. INTRODUCTION

Internet users rely on search engines like Google, Bing, and
Yahoo to find information. However, some information sources
are not fully accessible through these traditional search engines
for commercial or security reasons [1]. In addition,
understanding the semantics of a search query can be
challenging to traditional search engines [2]. As such, users
relying on search engines miss valuable collections of
information sources that may be relevant, but not fully
accessible. Federated search, also known as Distributed
Information Retrieval (DIR) [3], connects users directly to
those information sources through a unified search interface.
This interface can perform multiple searches across distributed
collections and combine their results into a single list [4].
However, with multiple collections involved, users cannot
know beforehand which collections will most likely be relevant
to their query. This is where the central broker acts as an
intermediary between the component collections and users [3].
This way a user issues the query to the search interface, which
is transmitted directly to the broker, and the broker selects a
few collections that may contain relevant documents and routes
the query toward them (Figure 1). Each collection processes the
received query, returns a ranked result list to the broker, and
the broker merges them into a single ranked list and presents it
to the user.

Fig. 1. User interaction with a federated search system.

The literature divides the domain of federated search into
three separate research areas: resource description, collection
selection, and result merging [3]. The resource description [5],
also called collection representation [3], regards obtaining
information concerning each collection's content and size. The
collection selection [6, 7] uses the sampled information to
select a few collections that may contain the most relevant
documents for a given user query. Finally, the result merging
[8, 9] combines the results returned by the component
collections into a single ranked list. This paper focuses on the
result merging problem as it plays a key role in satisfying users'
information needs, because user satisfaction is compromised if
the most relevant collections are selected and their result lists

are merged poorly, where the most relevant documents may not
make it to the top of the merged result list. In addition, merging
multiple result lists is a challenging task, especially in non-
cooperative environments [3] due to the differences in the
collections corpus statistics, the use of varying indexing
schemes and retrieval models, and the non-availability of the
documents' full-text at the merging time. Moreover, some
collections may have non-text content, such as images or
videos. Learning to Rank (L2R) techniques are considered an
alternative to traditional document-ranking approaches. Several
research works [8, 10-14] used L2R for various retrieval tasks.
In these techniques, a set of queries, each associated with the
ranked list of documents and their relevance judgments, is
exploited as training data [15]. These training data are
employed to extract query-document relevance features and
then to learn a ranking function that predicts the documents'
relevance for each given query. For example, in federated
search, authors in [14] considered the result merging problem
as a classification problem. They extracted some features from
the returned documents by the collections and learned a
ranking function that merged the multiple result list. This
method's drawback is the need for a huge amount of training
data when learning the ranking function.

Swarm intelligence and genetic programming are widely
deployed in various domains to solve optimization problems.
When applying these techniques, multiple rounds of iterative
processes of selections, variations, and mutation are performed
on the extracted features to obtain the optimum solution. These
techniques have been reported to provide better solutions than
the algorithms defined by experts [16]. Recently, authors in [8]
used genetic programming to solve the result merging problem
in which returned documents by the collections are
downloaded, some likely relevance features are extracted from
the documents at each iterative process, and then the
documents are re-ranked based on their relevance scores.
However, the drawbacks of this approach are the increases in
bandwidth usage, computational resources, and latency time.
The proposed work addresses this issue by extracting similar
features, like in [14], but with a few modifications: First, the
mentioned studies consider only the document's features in
obtaining their relevance score, whereas the present study
considers the quality of the collection as an important factor in
addition to these features. Second, the current study departs
from learning a ranking function because it requires colossal
training data. Instead, the former utilizes the Ant Colony
Optimization (ACO), a swarm intelligence algorithm, to
generate the merged result list. The novelty of the proposed
method lies in the usage of the only available information in a
way that neither overwhelms the broker nor increases its
computational resources or response time. Key points to this
research are:

 A method that uses only the information provided by the
component collections at query time is proposed.

 The proposed method applies the ACO algorithm and
considers collection quality and document features in
computing the document results merging score.

Engineering, Technology & Applied Science Research Vol. 14, No. 4, 2024, 14832-14839 14834

www.etasr.com Garba et al.: Utilizing Ant Colony Optimization for Result Merging in Federated Search

 The effectiveness of the proposed approach is tested by
conducting experiments with the TREC 2013 FedWeb
dataset. The experimental results demonstrate the
robustness of the recommended approach as it outperforms
both the learning and non-learning models utilized as the
baselines.

II. BACKGROUND AND RELATED WORKS

Result merging combines the results returned by multiple
collections into a unified list before serving to the search user.
Many factors make result merging challenging, the most
prominent among them is the incomplete information about
collections' corpus statistics and the use of different retrieval
models [3]. The simplest scenario to assume is that the
component collections return their documents' relevance score
or run the same retrieval model. Even with this assumption, the
document's returned relevance score cannot be compared
directly due to the differences in their documents index and
processing method [9]. For these reasons, only a few models
have been proposed for the result merging problem. The first
models assumed that the component collections share their
documents' index information with the broker [17] or that they
should return their results with their index terms statistics [18].
Neither of these assumptions is achievable in a realistic web
environment because most component collections are
uncooperative and treat the broker as an ordinary search user.
As such, the only response to the broker request for each query
received is by returning a ranked result list without sharing
information about the documents index [19].

Owing to the uncooperative nature of the component
collections, several studies [9, 20, 21] engaged query-based
sampling to sample representative documents from each
component collection. They built a Centralized Sample Index
(CSI) at the broker site. When the broker receives a user query,
it forwards it to the most relevant collections and runs it on the
CSI. The final merging score of the documents is estimated by
mapping the documents' ranks returned in the collections result
lists to their corresponding relevance scores obtained from the
CSI. The drawback of these models is that their effectiveness
hinges on the high number of overlapping documents between
the collections' result lists and the CSI list [3]. Various
approaches [5, 22] were proposed in the TREC FedWeb search
track for the result merging task. Authors in [23] merged the
results in a round-robin manner, where the first document in
the merged result list is the first document of the most relevant
collection selected in the resource selection phase, the second
document is the first document in the second most relevant
collection, and so on. The models proposed in [24, 25]
estimated the document merging scores by converting their
ranks into a ranking score. Specifically, authors in [24]
converted the ranks of the documents into a ranking score
deploying the modified reciprocal rank fusion [26]. They
estimated the merging score for each document by taking the
log of the reciprocal of the document rank and then multiplying
it with the relevance score of the collection that returned it [20].
Similarly, the ICTNET [27] computes each document merging
score by computing the BM25 score of the document parts (i.e.
title, URL, heading, etc.) and combining them with a linear
weighting method. The L2R approaches have displayed

competitiveness in generating effective document ranking
compared to non-learning methods. Recently, authors in [13,
14, 28, 29] used L2R for result merging. Authors in [14]
utilized the information in the collections' results list to extract
some likely relevant features, which include the occurrences of
query terms in the titles, the order of occurrences of the terms,
and the presence or absence of URLs for a document. These
features were fed to the boosting algorithm [30] to learn the
ranking function. Authors in [23] applied a gradient boost
algorithm to learn the composition of the final merged result
list when different verticals returned it. However, the downside
of machine learning algorithms is the need for huge training
data and their computational cost.

The meta-heuristic approach has recently gained much
attention due to its ability to solve hard combinatorial
optimization problems [31]. Most meta-heuristic algorithms
study the behavior of social insects and design algorithms that
mimic their behavior to solve real-world problems. Authors in
[32] focused on the Ant Colony Optimization (ACO) algorithm
to see how the ants communicate and perform complex tasks.
Interestingly, ants can locate the shortest path between their
nest and food sources by depositing a chemical called
pheromone on the ground. One of the characteristics of this
pheromone is that it evaporates with time. Because of this
evaporating nature, the pheromone deposit of the path followed
by most ants is continuously updated, and their trail is
sustained as the shortest path. On the other hand, the
pheromone deposit of the path followed by fewer ants is
quickly evaporated, their trail is lost, and the ants abandon that
path. In solving optimization problems, artificial ants are
created to mimic natural ones with additional capabilities. The
number of ants created equals the number of data points for
solving the problem. Each ant is placed on a data point with
some pheromone value. The selection bias is avoided by
initializing the same pheromone value to all the data points.
The ants select the next data point based on its importance in
solving the problem. The pheromone value is updated after the
first iteration (i.e. the ants transverse the data points). The
update is performed by increasing the pheromone values of the
data points the ants selected, whereas the pheromone value of
the data points the ants did not select remains unchanged. This
pheromone update is performed multiple times until the
algorithm converges. The data points with the highest
frequency after the convergence are considered the optimal
solution to the problem.

In the literature on federated search, the genetic algorithm
has been employed to fuse multiple result lists into a single list
[4]. This approach extracts the BM25 and language modeling
scores of features like titles and URLs from the downloaded
collection to rank the merged results. A better alternative is
using document features only [4]. However, it is not explicitly
explained how the component collections are created from the
dataset implemented for their experiment. The problem with
this and the above mentioned studies is that they consider
document features but cannot consider collection-level
features. Therefore, one possible solution could be to not only
consider the document and collection features in estimating the
document merging scores, but to also use the foraging behavior
of ants. This method does not require any training data and

Engineering, Technology & Applied Science Research Vol. 14, No. 4, 2024, 14832-14839 14835

www.etasr.com Garba et al.: Utilizing Ant Colony Optimization for Result Merging in Federated Search

relies only on the click-through data or relevance judgments of
the documents. The following section explains how the
proposed approach can be materialized.

III. MATERIALS AND METHODS

A. Preliminaries

To explain the proposed method, a CSI, an accumulation of
sample documents from all the collections involved, must be
created. The sample documents are obtained employing the
most widely used Query-Based Sampling (QBS) method [5]. In
QBS, a random query is issued to all component collections
and the top five documents are downloaded to the CSI.
Querying and downloading documents to the CSI continues
until 300 documents are sampled from each collection. In this
paper, the CSI is deployed only for collection selection
purposes. For the experiment, let us suppose a search query q is
issued to the broker, and the broker selects �� collections, with
1 < � ≤ � as probably the most relevant to the search for
query q in the collection selection phase. The broker routes q to
those collections and each one processes the query and
responds by returning a ranked result list �� = {
��,
�
, … ,
��}
to the broker. The main goal in this paper is to fuse these result
lists into a single ranked list � = {
�,

, … ,
�} similar to what
is obtained. The query is issued to a centralized search system.

B. The Proposed Approach

Unlike most existing approaches, the proposed method uses
only the available information that the collection returned to
the broker at query time in merging the result list. The detailed
description of the processes involved in the proposed method
follows:

Step 1: Assume that for a query � issued to the broker, the
broker runs the query on the CSI and selects the most relevant
collection to search.

Step 2: The query is routed to the collections selected in
Step 1. Each collection processes the query and returns a
ranked result list. This results list is expected to contain
snippets of documents similar to those attained in real-world
search systems.

Step 3: For each snippet returned in Step 2, its query-
dependent features are extracted, as shown in Table I.

Step 4: For each collection that returns a result list, its
quality concerning query � is represented by the features
depicted in Table II.

Step 5: The number of ants is initialized to be equal to the
number of features in Tables I and II. The pheromone value is
also initialized to a unit value and assigned to all features. Each
ant is assigned a random feature for the first iteration to begin
its search. From the second iteration to convergence, the ants
select a feature based on its importance in determining the
document's relevance, which is obtained based on the
probability specified by:

�� = ��Δ�� (1)

where �� is the pheromone value, which is initiated at a unit
value, Δ�� is the proportion of the ants that select that

particular feature. Whenever an ant selects a feature, the
pheromone value of the feature is updated by:

���� = (�� + ����) (2)

where ���� is the next iteration pheromone value, and r is the
relevance label of the document �� provided in the relevance
judgment file.

Step 6: At each iteration of feature selection, the relevance
score of each document is obtained by aggregating its features
and that of the collection that returned it, as observed in (3):

S(d�) = ∑ ��#�$� ∗ ∑ (�&)�&$� (3)

where �� and �& represent the document and the collection

quality features, respectively. The feature selection, pheromone
update, and relevance score estimation continue until the
algorithm converges.

TABLE I. LIST OF EXTRACTED FEATURES OF THE
DOCUMENT

Feature ('() Description

Document

rank

Convert each document's rank in a collection result list into

a ranking score:

ℛ(*) = ��� − (�
�)

where r is the document ranking position in a particular

collection's returned results list, and n is the number of

documents in the results list.

Query terms

in the URL

Count the occurrences of query terms of each document

URL:

, �(�� , -)
|/|

�$�

Query terms

in the title

Count the number of query terms in the title:

, �(�� , 0)
|/|

�$�

Query terms

in the

description

Count the number of query terms in the description:

, �(�� , 1)
|/|

�$�

BM25 of the

title

Relevance score of the title using BM25 as a retrieval

model

BM25 of the

description

Relevance score of the description using BM25 as a

retrieval model

LM of the title
Relevance score of the title using a Language Model (LM)

as a retrieval model with Dirichlet prior

LM of the

description

Relevance score of the description using an LM as a

retrieval model with Dirichlet prior

Average

query terms in

the description

The average number of query terms in the description is:

234(�, 1) = ∑ 5(/6, 7)|8|
69:

|7|

where |1| is the length of the description.

TABLE II. THE LIST OF EXTRACTED FEATURES OF THE
COLLECTION QUALITY

Feature (';) Description

Relevance

score

The relevance score of the collection, obtained in the

collection selection phase.

No. of query

terms

Count the total number of query terms in the collection

result list

0<(=, ��) = , 0<(=/, ��)
>8∈56

No. of

documents

The total number of documents a collection returned in its

result list.

Average query

terms
The average number of query terms in a collection

Engineering, Technology & Applied Science Research Vol. 14, No. 4, 2024, 14832-14839 14836

www.etasr.com Garba et al.: Utilizing Ant Colony Optimization for Result Merging in Federated Search

C. Experimental Evaluation

For the experiments carried out, this study utilized search
engine snippets sampled from the FedWeb Greatest Hits
dataset [22, 33] of the TREC 2013 FedWeb compilation as the
collections. This is the first standard dataset created to promote
federated search research while discouraging the artificial
creation of collections using TREC web track datasets [34].
The dataset contains the results downloaded from 157 real-
world search engines in 24 vertical categories (i.e. academics,
blogs, entertainment, jobs, kids, etc.). In its creation, each
search engine received 2000 queries, resulting in a total of
1,973,591 snippets extracted. On average, each search engine
returned 12,570.6 results, stored in XML format. This dataset is
more suitable for the current work because each search engine
uses its proprietary retrieval method to retrieve its result, and
each result is separated in the dataset [35]. The present work
used 50 queries released with the dataset to represent the user
information needs. The queries are judged employing the five
levels of graded relevance judgment, i.e. not relevant (NRel),
relevant (Rel), highly relevant (HRel), top relevant (Key), and
navigational (Nav) by the team of experts.

ALGORITHM 1: RESULT MERGING USING ACO

Input: Initial pheromone value ��, number
of ants, number of features, and number of

iterations.

Output:

A merged results list of documents

� = {
�,

, … ,
�}
Repeat

Create the number of ants equal to the

number of features extracted in Tables 1

and 2.

Initialize the pheromone values �� to 1
Allow ants to select the features based on

their pheromone value using (1).

Perform pheromone update using (2).

For each iteration, rank the documents

based on their score computed using (3).

Check if the number of iterations is not

reached, then repeat steps 3 to 5

Return the final merged results list

Regarding the collection selection, it was observed that
routing a query to all the relevant and non-relevant collections
would waste resources. Therefore, utilizing a modified version
of the collection selection algorithm proposed in [36], only the
top five most relevant collections were put into service for each
query. In the model, a collection is considered relevant based
on the number of relevant documents in the top N-ranked list
and the documents ranking positions.

The collection selection experiments were performed using
Apache Solr version 8.2 with Python 3.6 on an Intel core i7-
based system running Linux and 8 GB memory. The default
vector space model of the Apache Solr was implemented for
indexing and retrieval of the results snippets. This study
queried the title and description of each indexed snippet and
then summed up their scores as the snippet relevance score.

The required parameters for the ACO algorithm were set as
number of ants = 40, number of iterations = 20, �� = 1.0, @ =
0.45, and A = 0.55. Regarding the evaluation of the proposed
approach, the selected baselines can be categorized into
learning [4, 10] and non-learning [20, 23] methods. The official
evaluation metric for the TREC 2013 FedWeb results merging
task is nDCG@k [37]. The nDCG metric measures the
goodness of the retrieved result list compared to the best/ideal
ordering of the result list. The results are reported at the top B
cutoff ranks, where the value of B is 1, 3, 5, and 10,
respectively.

IV. RESULTS AND DISCUSSION

Table III showcases the experimental results. For each
cutoff rank, the best-performing method is boldfaced. The
introduced approach is represented as ACO-RM. From the
result, it can be observed that the recommended approach has
the highest performance compared to the baselines across all
the cutoff ranks. The highest performance of over 94.75% on
nDCG@1 was achieved compared to the baselines, and the
lowest was 61.97% on nDCG@10. It can be further noticed
from the results that except for TF-RF, which achieved its
highest performance on nDCG@3, all the other methods
obtained their highest performance on nDCG@1. Among the
baseline methods, nsRRF has shown the strongest performance,
followed by TF-RF. The poor performance of the BTM method
can be attributed to insufficient training data. That is, for
fairness, only the result of the top five selected collections is
utilized for the model's training and testing. This result has
once again proved that without enough training data, the non-
learning methods, in some cases, can outperform machine
learning models. The following two subsections further
elaborate these findings.

TABLE III. PERFORMANCE COMPARISON OF THE
PROPOSED METHOD WITH THE BASELINES

Works nDCG@1 nDCG@3 nDCG@5 nDCG@10

nsRRF 0.5075 0.4515 0.4294 0.4253

ICTNET 0.3790 0.3579 0.3401 0.3397

BTM 0.3499 0.3556 0.3499 0.3452

TF-RF 0.3353 0.3892 0.3852 0.3559

ACO-RM 0.9475 0.8037 0.7411 0.6197

A. Ranking Construction at Each Iteration

Figures 2 and 3 are the sample of the first iteration
generated ranking and the relevance label of the top 5
documents extracted from the TREC relevance judgment file,
respectively. Looking at the top 5 documents highlighted in red
in Figure 2 and their corresponding relevance label in Figure 3,
it can be seen that only the top document is marginally
relevant, whereas all the remaining are non-relevant. At this
stage, the ants explore features by selecting them based on the
initialized pheromone value. However, as the iteration
progresses, the pheromone update increases the merging score
of highly relevant documents while decreasing the ones of non-
relevant documents. This can be observed in the fifth iteration
generated ranking portrayed in Figure 4. Comparing the first
and fifth iterations generated ranking as illustrated in Figures 2
and 4, it can be noted that the top ranking document of Figure 2

Engineering, Technology & Applied Science Research Vol. 14, No. 4, 2024, 14832-14839 14837

www.etasr.com Garba et al.: Utilizing Ant Colony Optimization for Result Merging in Federated Search

is now on the ranking position 3 in Figure 4 and the document
that was on position 3 is now on ranking position 5, while, the
remaining three documents have lost their ranking spot.
Finally, Figures 5 and 6 manifest the top 5 documents of the
proposed model after its convergences and their corresponding
extracted relevance label. The extracted relevance label
exhibited in Figure 6 indicates that the suggested model could
rank most of the highly relevant documents at top-ranking
positions, as shown in Figure 5.

Fig. 2. First iteration generated ranking. Query is the query number,

Search Engines ID is the search engine identity created by the FedWeb

organizers. Here e185 is the search engine number, 7001 is the query number,

and 09 is the document rank in the search engine result list. Rank is the
ranking positions generated by our model, and Score is the document score

used in generating the ranking.

Fig. 3. First iteration top documents relevance label extracted from the

TREC relevance file.

Fig. 4. Fifth iteration generated ranking.

Fig. 5. Convergence-generated ranking.

Fig. 6. Convergence top document relevance label extracted from the

TREC relevance file.

B. The Contribution of Collection Quality to Relevance

This study attributed the superior performance achieved by
the adopted approach to including collection quality features in
computing the merging score of the documents. However, to
provide more insight into how much collection quality features
contribute to identifying the most relevant documents, a further
experiment was performed by removing the collection quality
features in computing the merging score and comparing the
results with ACO-RM. Table IV depicts the experimental
results in which we denoted the result of merging scores
without collection quality features as ACO-RMN. From the
results, it can be seen that by removing the collection quality
features in computing the merging score, the effectiveness of
the merged results list has decreased by 18.2% on nDCG@1
and 3.67% on nDCG@10. These findings allow the assumption
that including collection features in computing the documents
merging score increases the effectiveness of the merged results
list in a federated search environment.

TABLE IV. CONTRIBUTION OF COLLECTION QUALITY IN
IDENTIFYING RELEVANT DOCUMENTS

Works nDCG@1 nDCG@3 nDCG@5 nDCG@10

ACO-RM 0.9475 0.8037 0.7411 0.6197

ACO-RMN 0.7755 0.7354 0.6835 0.5969

V. SUMMARY

Most of the existing approaches consider only the
documents relevance in merging results into a single ranking
list. However, considering only document relevance in
federated search result merging neglects the contextual
understanding provided by the collections. Some collections
may specialize in certain domains or types of information and
ignoring their relevance can result in overlooking valuable
resources that may contribute significantly to the user's
information needs. Considering this, this work presented the
proposed method that utilizes the collection quality in
calculating the documents merging score. Specifically, the
proposed model draws inspiration from ACO's foraging
behavior. It leverages information returned by collections to the
central interface, akin to ants depositing pheromones along
their paths and then extracts both documents’ features and
collection quality features. Through this decentralized
approach, the model dynamically merges the returned results to
improve retrieval efficiency.

The contribution of this work to the literature of federated
search is three-fold. First, it introduces a bio-inspired approach
based on ACO for improved retrieval effectiveness of the
federated search. Second, it promotes efficient resource
utilization by deploying only the information returned by
collections to the central interface, minimizing redundancy and
optimizing relevance. Third, unlike most of the previous model
which considered only the documents relevance, this work
considers both the documents’ as well as the collection’s
quality in calculating the documents merging score.

VI. CONCLUSIONS AND FUTURE WORK

This paper proposeS a result merging method for federated
search that employed the foraging behavior of ACO in merging

Engineering, Technology & Applied Science Research Vol. 14, No. 4, 2024, 14832-14839 14838

www.etasr.com Garba et al.: Utilizing Ant Colony Optimization for Result Merging in Federated Search

the multiple result lists. Unlike the existing methods, the
suggested method uses document and component collection
features to compute the result merging score. The features are
first extracted and then summed as the relevance score of the
documents. Then a pheromone value is assigned to each
relevance score and it is updated at each iteration of the result
until it converges. This study experimented with the TREC
2013 FedWeb dataset. The experimental results demonstrated
the effectiveness of the proposed method, as it significantly
outperformed both the learning and non-learning methods
employed as baselines.

Even though the recommended approach exhibits
remarkable performance compared to the baselines, its
limitation lies in the fact that it is not fully automating the
learning process, as the model parameters are selected based on
trial and error instead of learning. A possible direction for
future work should be to utilize a learning method in selecting
the parameters. In addition, there is an intention for this work
to be extended to scholarly search [38, 39] and book retrieval
[40], especially in federated search settings.

ACKNOWLEDGMENT

The authors extend their appreciation to the Deanship of
Scientific Research at King Khalid University for funding this
work through the Small Groups Project under grant number
RGP.1/369/44

COMPETING INTERESTS

The authors explicitly declare that "No Competing Interests
are at stake and there is No Conflict of Interest" with other
people or organizations that could inappropriately influence or
bias the article's content. A pre-print of this article can be found
at [41].

REFERENCES

[1] A. Garba and S. Wu, "Snippet-based result merging in federated search,"
Journal of Information Science, Jan. 2023, Art. no.
01655515221144864, https://doi.org/10.1177/01655515221144864.

[2] B. Nethravathi, G. Amitha, A. Saruka, T. P. Bharath, and S. Suyagya,
"Structuring Natural Language to Query Language: A Review,"
Engineering, Technology & Applied Science Research, vol. 10, no. 6,
pp. 6521–6525, Dec. 2020, https://doi.org/10.48084/etasr.3873.

[3] M. Shokouhi and L. Si, "Federated Search," Foundations and Trends®
in Information Retrieval, vol. 5, no. 1, pp. 1–102, Mar. 2011,
https://doi.org/10.1561/1500000010.

[4] V. Stamatis, M. Salampasis, and K. Diamantaras, "Machine learning
methods for results merging in patent retrieval," Data Technologies and
Applications, Jan. 2023, https://doi.org/10.1108/DTA-06-2021-0156.

[5] J. Callan and M. Connell, "Query-based sampling of text databases,"
ACM Transactions on Information Systems, vol. 19, no. 2, pp. 97–130,
Dec. 2001, https://doi.org/10.1145/382979.383040.

[6] A. Garba, S. Khalid, I. Ullah, S. Khusro, and D. Mumin, "Embedding
based learning for collection selection in federated search," Data
Technologies and Applications, vol. 54, no. 5, pp. 703–717, Jan. 2020,
https://doi.org/10.1108/DTA-01-2019-0005.

[7] L. Li, Z. Zhang, and S. Wu, "LDA-Based Resource Selection for Results
Diversification in Federated Search," in 15th International Conference
on Web Information Systems and Applications, Taiyuan, China, 2018,
pp. 147–156, https://doi.org/10.1007/978-3-030-02934-0_14.

[8] H. T. Vo, "New Re-ranking Approach in Merging Search Results,"
Informatica, vol. 43, no. 2, pp. 235–242, Jun. 2019, https://doi.org/
10.31449/inf.v43i2.2132.

[9] D. Hong and L. Si, "Mixture model with multiple centralized retrieval
algorithms for result merging in federated search," in 35th international
ACM SIGIR conference on Research and development in information
retrieval, Portland, OR, USA, Aug. 2012, pp. 821–830,
https://doi.org/10.1145/2348283.2348393.

[10] T. Wu, X. Liu, and S. Dong, "LTRRS: A Learning to Rank Based
Algorithm for Resource Selection in Distributed Information Retrieval,"
in 25th China Conference on Information Retrieval, Fuzhou, China, Sep.
2019, pp. 52–63, https://doi.org/10.1007/978-3-030-31624-2_5.

[11] M. Ibrahim and M. Carman, "Comparing Pointwise and Listwise
Objective Functions for Random-Forest-Based Learning-to-Rank," ACM
Transactions on Information Systems, vol. 34, no. 4, Dec. 2016, Art. no.
20, https://doi.org/10.1145/2866571.

[12] P. Mohapatra, M. Rolinek, C. V. Jawahar, V. Kolmogorov, and M. P.
Kumar, "Efficient Optimization for Rank-Based Loss Functions," in
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Salt Lake City, UT, USA, Jun. 2018, pp. 3693–3701, https://doi.org/
10.1109/CVPR.2018.00389.

[13] K. Tjin-Kam-Jet and D. Hiemstra, "Learning to merge search results for
efficient Distributed Information Retrieval," in 10th Dutch-Belgian
Information Retrieval Workshop, DIR 2010, Nijmegen, Netherlands, Jan.
2010.

[14] B. Ghansah, S. Wu, and N. Ghansah, "Rankboost-Based Result
Merging," in IEEE International Conference on Computer and
Information Technology; Ubiquitous Computing and Communications;
Dependable, Autonomic and Secure Computing; Pervasive Intelligence
and Computing, Liverpool, UK, Oct. 2015, pp. 907–914,
https://doi.org/10.1109/CIT/IUCC/DASC/PICOM.2015.136.

[15] H. Li, "A Short Introduction to Learning to Rank," IEICE
TRANSACTIONS on Information and Systems, vol. E94-D, no. 10, pp.
1854–1862, Oct. 2011.

[16] J. R. Koza, Genetic programming: on the programming of computers by
means of natural selection. Cambridge, MA, USA: MIT Press, 1992.

[17] Y. Rasolofo, D. Hawking, and J. Savoy, "Result merging strategies for a
current news metasearcher," Information Processing & Management,
vol. 39, no. 4, pp. 581–609, Jul. 2003, https://doi.org/10.1016/S0306-
4573(02)00122-X.

[18] S. T. Kirsch, "Document retrieval over networks wherein ranking and
relevance scores are computed at the client for multiple database
documents," US5659732A, Aug. 19, 1997.

[19] P. Ogilvie and J. Callan, "The effectiveness of query expansion for
distributed information retrieval," in 10th international conference on
Information and knowledge management, Atlanta, GA, USA, Oct. 2001,
pp. 183–190, https://doi.org/10.1145/502585.502617.

[20] M. Shokouhi and J. Zobel, "Robust result merging using sample-based
score estimates," ACM Transactions on Information Systems, vol. 27,
no. 3, Feb. 2009, Art. no. 14, https://doi.org/10.1145/1508850.1508852.

[21] C. He, D. Hong, and L. Si, "A weighted curve fitting method for result
merging in federated search," in 34th international ACM SIGIR
conference on Research and development in Information Retrieval,
Beijing, China, Jul. 2011, pp. 1177–1178, https://doi.org/10.1145/
2009916.2010107.

[22] T. Demeester, D. Trieschnigg, D. Nguyen, D. Hiemstra, and K. Zhou,
"Overview of the TREC 2014 Federated Web Search Track," in Twenty-
Third Text REtrieval Conference, Gaithersburg, MD, USA, Nov. 2014,
pp. 1–14.

[23] E. Di Buccio and M. Melucci, "University of Padua at TREC 2014:
Federated Web Search Track," in Twenty-Third Text REtrieval
Conference (TREC 2014), Gaithersburg, MD, USA, Nov. 2014.

[24] [24] A. Mourao, F. Martins, and J. Magalhaes, "NovaSearch at TREC
2013 Federated Web Search Track: Experiments with rank fusion," in
The Twenty-Second Text REtrieval Conference, Gaithersburg, MD,
USA, Nov. 2013, pp. 1–8.

[25] D. Pal and M. Mitra, "ISI at the TREC 2013 Federated task," in
Proceedings of the Twenty-Second Text Retrieval Conference, Trec
2013, Gaithersburg, MD, USA, 2013.

[26] G. V. Cormack, C. L. A. Clarke, and S. Buettcher, "Reciprocal rank
fusion outperforms condorcet and individual rank learning methods," in

Engineering, Technology & Applied Science Research Vol. 14, No. 4, 2024, 14832-14839 14839

www.etasr.com Garba et al.: Utilizing Ant Colony Optimization for Result Merging in Federated Search

32nd International ACM SIGIR conference on research and
development in Information Retrieval, Boston, MA, USA, Jul. 2009, pp.
758–759, https://doi.org/10.1145/1571941.1572114.

[27] F. Guan, Y. Xue, X. Yu, Y. Liu, and X. Cheng, "ICTNET at Federated
Web Search Track 2013," in Twenty-Third Text REtrieval Conference
(TREC 2014), Gaithersburg, MD, USA, Nov. 2014.

[28] A. K. Ponnuswami, K. Pattabiraman, Q. Wu, R. Gilad-Bachrach, and T.
Kanungo, "On composition of a federated web search result page: using
online users to provide pairwise preference for heterogeneous verticals,"
in Fourth ACM International Conference on Web Search and Data
Mining, Hong Kong, China, Feb. 2011, pp. 715–724, https://doi.org/
10.1145/1935826.1935922.

[29] R. Takanobu, T. Zhuang, M. Huang, J. Feng, H. Tang, and B. Zheng,
"Aggregating E-commerce Search Results from Heterogeneous Sources
via Hierarchical Reinforcement Learning," in The World Wide Web
Conference, San Francisco, CA, USA, Dec. 2019, pp. 1771–1781,
https://doi.org/10.1145/3308558.3313455.

[30] Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer, "An Efficient
Boosting Algorithm for Combining Preferences," Journal of Machine
Learning Research, vol. 4, pp. 933–969, 2003.

[31] P. Shunmugapriya and S. Kanmani, "A hybrid algorithm using ant and
bee colony optimization for feature selection and classification (AC-
ABC Hybrid)," Swarm and Evolutionary Computation, vol. 36, pp. 27–
36, Oct. 2017, https://doi.org/10.1016/j.swevo.2017.04.002.

[32] M. Dorigo and G. Di Caro, "Ant colony optimization: a new meta-
heuristic," in Congress on Evolutionary Computation-CEC99 (Cat. No.
99TH8406), Washington, DC, USA, Jul. 1999, vol. 2, pp. 1470-1477
Vol. 2, https://doi.org/10.1109/CEC.1999.782657.

[33] T. Demeester, D. Trieschnigg, D. Nguyen, D. Hiemstra, and K. Zhou,
"FedWeb Greatest Hits: Presenting the New Test Collection for
Federated Web Search," in 24th International World Wide Web
Conference, Florence, Italy, Dec. 2015, pp. 27–28, https://doi.org/
10.1145/2740908.2742755.

[34] D. Trieschnigg, T. Demeester, A. Zhou, D. Nguyen, and D. Hiemstra,
"FedWeb Greatest Hits." [Online]. Available: https://fedwebgh.intec.
ugent.be/.

[35] C.-J. Lee, Q. Ai, W. B. Croft, and D. Sheldon, "An Optimization
Framework for Merging Multiple Result Lists," in 24th ACM
International on Conference on Information and Knowledge
Management, Melbourne, VIC, Australia, Oct. 2015, pp. 303–312,
https://doi.org/10.1145/2806416.2806489.

[36] M. Shokouhi, "Central-Rank-Based Collection Selection in
Uncooperative Distributed Information Retrieval," in 29th European
Conference on IR Research, Rome, Italy, Apr. 2007, pp. 160–172,
https://doi.org/10.1007/978-3-540-71496-5_17.

[37] C. L. A. Clarke et al., "Novelty and diversity in information retrieval
evaluation," in 31st Annual International ACM SIGIR Conference,
Singapore, Asia, Jul. 2008, pp. 659–666, https://doi.org/10.1145/
1390334.1390446.

[38] S. Khalid, S. Khusro, I. Ullah, and G. Dawson-Amoah, "On The Current
State of Scholarly Retrieval Systems," Engineering, Technology &
Applied Science Research, vol. 9, no. 1, pp. 3863–3870, Feb. 2019,
https://doi.org/10.48084/etasr.2448.

[39] S. Khalid and S. Wu, "Supporting Scholarly Search by Query Expansion
and Citation Analysis," Engineering, Technology & Applied Science
Research, vol. 10, no. 4, pp. 6102–6108, Aug. 2020, https://doi.org/
10.48084/etasr.3655.

[40] I. Ullah, S. Alam, Z. Ali, M. Khan, F. Jabeen, and S. Khusro, "On the
current state of query formulation for book search," Artificial
Intelligence Review, vol. 56, no. 10, pp. 12085–12130, Oct. 2023,
https://doi.org/10.1007/s10462-023-10483-7.

[41] A. Garba, S. Khalid, H. Shah, I. Ullah, N. M. Tairan, and D. Mumin,
"Using Ant Colony Optimization for Results Merging in Federated
Search." researchsquare, Jul. 17, 2023, https://doi.org/10.21203/rs.3.rs-
3115769/v1.

