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ABSTRACT 

The significant global challenges in eye care are treatment, preventive quality, rehabilitation services for 

eye patients, and the shortage of qualified eye care professionals. Early detection and diagnosis of eye 
diseases could allow vision impairment to be avoided. One barrier to ophthalmologists when adopting 

computer-aided diagnosis tools is the prevalence of sight-threatening uncommon diseases that are often 

overlooked. Earlier studies have classified eye diseases into two or a small number of classes, focusing on 

glaucoma, and diabetes-related and age-related vision issues. This study employed three well-established 

and publicly available datasets to address these limitations and enable automatic classification of a wide 

range of eye disorders. A Deep Neural Network for Retinal Fundus Disease Classification (DNNRFDC) 

model was developed, evaluated based on various performance metrics, and compared with four 
established pre-trained models (EfficientNetB7, EfficientNetB0, UNet, and ResNet152) utilizing transfer 

learning techniques. The results showed that the proposed DNNRFDC model outperformed these pre-

trained models in terms of overall accuracy across all three datasets, achieving an impressive accuracy of 

94.10%. Furthermore, the DNNRFDC model has fewer parameters and lower computational 

requirements, making it more efficient for real-time applications. This innovative model represents a 

promising avenue for further advancements in the field of ophthalmological diagnosis and care. Despite 

these promising results, it is essential to acknowledge the limitations of this study, namely the evaluation 
conducted by using publicly available datasets that may not fully represent the diversity and complexity of 

real-world clinical scenarios. Future research could incorporate more diverse datasets and explore the 

integration of additional diagnostic modalities to further enhance the model's robustness and clinical 
applicability. 
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I. INTRODUCTION 

The eyes are the most vital sensory organs of people, as 
they are responsible for up to 80% of all impressions. The 
status of eye-related diseases constitutes an enormous problem. 
There are 2.2 billion visually impaired people worldwide, of 
which at least 1 billion cases could have been prevented or 
addressed [1-2]. The main issues on the global problem of eye 
diseases are reachability, availability, acceptability, and the 
associated cost of eye care services. One of the major obstacles 
in resolving these matters is the lack of available skilled human 
resources. Artificial intelligence and big data analytics are two 
emerging eye-care technologies that can help improve the 
access to quality healthcare for disadvantaged populations [1]. 
These technologies can use color fundus pictures to provide a 
non-invasive analysis of systemic microvasculature in the 
retinal image. These retinal image analyses provide eye health-
related information and serve as an early indicator of long-term 
health issues, such as diabetes, stroke, hypertension, 

arteriosclerosis, cardiorenal, neurodegenerative, and renal 
diseases [2-5]. Therefore, regular eye screening, consultation, 
and therapy are trusted worldwide to prevent vision loss and 
overall health. Early detection and diagnosis of ocular diseases 
would minimize visual impairment, alleviating its 
socioeconomic cost. Previous studies generally focused on 
Diabetic Retinopathy (DR), glaucoma, and Age-related 
Macular Degeneration (AMD) [6-8]. However, it is critical to 
detect and diagnose uncommon diseases, such as ischemic 
optic neuropathy and retinal arterial blockage. These 
uncommon diseases are generally missed in standard clinical 
examinations, limiting the use of automated screening 
technologies by ophthalmologists. Furthermore, current studies 
emphasize the necessity of multi-disease detection [9-10]. 

Machine Learning (ML) is now an integral part of 
addressing complicated issues in most sciences, opening 
enormous opportunities in medicine. ML approaches can 
accept a variety of data configurations, apply contextual 
weighing, and determine the predictive potential of all possible 
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combinations of variables to assess various diagnostic aspects 
[11]. In [12], different ML models, including Decision Tree, 
Random Forest, Naive Bayes, and neural network algorithms, 
were deployed to classify eye diseases into ten classes. The 
limitation of this study was the use of single data with only ten 
types and weak feature selection. In [13], a neural network was 
employed in conjunction with mathematical morphology to 
classify eye diseases into two categories, but this study used a 
low number of images and had a misclassification rate of 
52.36%. In [14], a method was proposed utilizing Transfer 
Learning (TL), based on the VGG-19 model and Random 
Forest (RF), to perform binary classification on data from 208 
patients with glaucoma. In [15], 1200 Optical Coherence 
Tomography (OCT) images were engaged to classify eye 
diseases in 23 classes using CNN. This study implemented a 
small dataset for training and had low performance in the 
epiretinal membrane class. In [16], Naïve Bayesian, SVM, and 
J48 models were used to classify 1530 data samples into four 
categories. This study showed minor parameter tuning and 
data-splitting strategies. In [17], different ML models were 
applied, including SVM, NB, RF, and LR on a dataset of 2047 
patients. ML-based studies generally struggle with a limited 
amount of data, parameter optimization, and the issue of 
overfitting for eye disease classification [11, 18-19]. 

TABLE I.  PREVIOUS ML AND DL-BASED STUDIES FOR 
EYE CLASSIFICATION  

Area Model References 

Machine 

Learning 

Neural Network [12, 13] 

Random Forest [12, 14, 16] 

SVM [16, 17, 20] 

Naïve Bayes   [11, 12, 16, 17] 

Decision Tree [16, 18] 

Statistical modeling [17, 19] 

Deep 

Learning 

CNN and TL [8, 9, 14, 15, 21-26] 

Encoder [27] 

 

II. TRANSFER LEARNING (TL) FOR EYE DISEASE 
CLASSIFICATION  

ML and Deep Learning (DL) models require a large amount 
of data to improve their generalizability. Insufficient data can 
result in overfitting, which has a detrimental effect on the 
models' performance. In TL, the model is trained on specific 
data, and its parameters are tuned to the corresponding task at 
hand. An ML/DL model trained on some datasets can be fine-
tuned for an eye disease dataset. Pre-trained models are 
selected over traditional neural networks by capturing and 
learning features from images at different hierarchy levels. 
Local connectedness is a feature of convolution layers that 
reduces interconnectivity. It is called parameter sharing 
because the utilization of the weight happens in the pre-trained 
CNN. A connection between each input or output neuron 
reduces the number of parameters. Moreover, pre-trained 
CNNs outperform traditional models. In [22], a TL-based CNN 
was trained on 490 images and then compared with a clinical 
procedure. In [23], a CNN was put into service along with a 
dataset of 32,820 retina fundus images for 1198 patients to 
detect glaucoma. In [24], a TL-based algorithm was applied on 
an eye disease dataset from 490 patients to quantify eye vision 

loss due to glaucoma. In [25], pre-trained models were 
employed using transfer learning to group eye diseases into 
four classes, including normal, DME, and early and late AMD. 
The main drawback of this study was the data split, i.e., 87% 
for training, 12% for validation, and 0.4% for testing. In [27], 
an autoencoder was engaged to identify only one eye disease, 
i.e., glaucoma, using 1426 digital fundus images.  

A. UNet 

UNet has become the gold standard for biomedical 
segmentation. UNet is a convolutional autoencoder based on an 
hourglass architecture [28-29]. The former has been employed 
in a wide range of biomedical applications, and its 
classification process is faster than pixel-wise approaches [28]. 
UNet is a fully Convolutional Neural Network (CNN) that 
efficiently utilizes data augmentation with the available dataset. 
It consists of a contracting and an expansive path with 23 
convolutional layers. Table II portrays the details of UNet and 
other pre-trained models. 

B. ResNet 152 

ResNet is based on microarchitecture modules as opposed 
to traditional sequential networks, such as AlexNet or VGG. 
New networks are often built from the ground up utilizing 
microarchitecture, a collection of tiny building blocks. ResNet-
50, a pre-trained model that won in the ILSVRC 2015 
competition, has gained significant recognition. Trained on a 
subset of ImageNet's extensive image database comprising 
millions of images, this model demonstrates exceptional 
capabilities in classifying images across over 1,000 object 
categories. ResNet is renowned for its structural variants, 
including 18-, 34-, 50-, and 152-layer architectures [30]. 

TABLE II.  CHARACTERISTICS OF VARIOUS PRE-TRAINED 
MODELS FOR IMAGE DETECTION AND CLASSIFICATION 

Architecture 
Number 

of layers 
Application 

Dataset used 

for training 

Runtime 

environment 

ResNet (2015) 
18, 34, 50, 

101, 152 

Detection, 

classification 

COCO and 

ImageNet 
2GPUs 

UNet (2015) 23 
Detection, 

classification 

PhC-U373, 

DIC-HeLa 

NVIDIA Titan 

GPU (6GB) 

EfficientNet 237-813 
Detection 

classification 

ImageNet 

CIFAR-100 

Google Cloud 

TPUs 

 

C. EfficientNetB0 and B7 

CNNs are primarily designed to optimize resource 
utilization and can be extended with additional resources to 
enhance accuracy. In this context, "resolution" pertains to 
image resolution, "depth" signifies the layer size, and "width" 
denotes the number of channels in each layer. Increasing depth 
can process intricate information and yield better 
generalization, but it may lead to challenges, like gradient 
vanishing and increased resource demands. However, 
expanding the network can effectively handle information with 
reduced depth, making the models more manageable to train. 
Nevertheless, the expansion may reach a point of diminishing 
returns in accuracy improvement. Similarly, scaling image 
resolution can provide finer details, but it may also encounter 
accuracy saturation issues. EfficientNet addresses these 
concerns by achieving a balance between resolution, width, and 
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depth scaling through a compound coefficient Φ, resulting in 
ameliorated efficiency. [31-32]. 

Pretrained CNN models were used to classify early and late 
DME in [33]. The general drawbacks of previous studies were 
the use of pre-trained instead of developing new models, the 
small number of images in the dataset, the small number of 
classes for eye disease types, the lack of rigorous fine-tuning of 
parameters, cross-validation of the models on different datasets, 
lack of performance metrics except for AUC, and 
computational complexity. This study aims to fill these gaps 
and propose a novel model, called DNNRFDC, to classify eye 
diseases into various classes. Well-established pre-trained 
models, such as UNet, EfficientNetB7, EfficientNetB0, 
ResNet, and ResNet152V2 were fine-tuned and utilized for 
their performance to be compared with that of DNNRFDC. 
These pre-trained models employed through setting the top 
parameter to false so that the eye disease dataset could be fed 
as an input layer and the results could be classified according to 
the dataset. The first, second, and third datasets had 45, 4, and 8 
classes, respectively. 

III. DATASETS  

This study deployed three eye disease datasets to evaluate 
the unbiased performance of the proposed model. The first 
dataset (Dataset 1) contains 3200 retina fundus images 
comprising 45 distinct eye diseases [34]. This is a recent and 
rich dataset collected at the Sushrusha Hospital's Eye Clinic in 
Nanded (MS), India. Three cameras, Topcon 3D, Topcon TRC, 
and Kowa, were put into service to collect annotated eye 
fundus images [2]. The second dataset (Dataset 2) contains 601 
images categorized into four classes, entailing normal (300), 
cataract (100), glaucoma (101), and other retinal diseases (100) 
[35]. The third dataset (Dataset 3), called ODIR, is a structured 
ophthalmic dataset comprising data from 5,000 individuals, 
involving age information, color fundus images of both eyes, 
and diagnostic assessments by medical professionals [36]. This 
dataset aims to represent a real-world collection of patient data 
sourced from various hospitals and medical facilities in China, 
collected by Shanggong Medical Technology Co., Ltd. The 
fundus images in this dataset are captured using a variety of 
cameras available on the market, including Canon, Zeiss, and 
Kowa, resulting in varying image resolutions [37]. Qualified 
healthcare professionals assigned labels under the supervision 
of a quality control manager, classifying eye diseases into eight 
categories: AMD, cataract, diabetes, glaucoma, hypertension, 
myopia, normal, and others. To facilitate training, categorical 
ordinal data were converted into eight trainable labels 
following a one-hot encoding approach. 

IV. METHODOLOGY 

A. Data Preprocessing and Analysis 

Data preprocessing and analysis were performed to 
understand the datasets and prepare the DL models. Table III 
depicts the classes of the first dataset (Dataset 1) and the 
corresponding number of images [34]. Dataset 1 has well-
defined metadata and labeling information in CSV format. 

 

TABLE III.  DISEASE TYPES WITH CORRESPONDING 
NUMBER OF IMAGES 

Short Form Full-Form No of images 

DR Diabetic retinopathy (DR) 376 

ARMD Age-related macular degeneration 100 

MH Media haze 317 

DN Drusen 138 

MYA Myopia 101 

BRVO Branch retinal vein occlusion 73 

TSLN Tessellation 186 

ERM Epiretinal membrane 14 

LS Laser scars 47 

MS Macular scars 15 

CSR Central serous retinopathy 37 

ODC Optic disc cupping 282 

CRVO Central retinal vein occlusion 28 

TV Tortuous vessels 6 

AH Asteroid hyalosis 16 

ODP Optic disc pallor 65 

ODE Optic disc edema 58 

ST Optociliary shunt 5 

AION Anterior ischemic optic neuropathy 17 

PT Parafoveal telangiectasia 11 

RT Retinal traction 14 

RS Retinitis 43 

CRS Chorioretinitis 32 

EDN Exudation 15 

RPEC Retinal pigment epithelium changes 22 

MHL Macular hole 11 

RP Retinitis pigmentosa 6 

CWS Cotton wool spots 3 

CB Coloboma 1 

ODPM Optic disc pit maculopathy 0 

PRH Preretinal hemorrhage 2 

MNF Myelinated nerve fibers 3 

HR Hemorrhagic retinopathy 0 

CRAO Central retinal artery occlusion 2 

TD Tilted disc 3 

CME Cystoid macular edema 4 

PTCR Post-traumatic choroidal rupture 5 

CF Choroidal folds 3 

VH Vitreous hemorrhage 1 

MCA Macroaneurysm 1 

VS Vasculitis 1 

BRAO Branch retinal artery occlusion 2 

PLQ Plaque 1 

HPED Hemorrhagic pigment epithelial detachment 1 

CL Collateral 1 

Disease Risk Disease Risk 1599 

 
As the ODPM and HR classes do not contain data, they 

were removed. This study intended to identify different 
diseases, so the disease risk attribute was also removed. 
Additionally, as some columns have a smaller number of 
samples, data augmentation was performed using class weights 
for the DR class having 376 instances. Since some images in 
the dataset represent more than one disease, multilabel 
classification was carried out. Image augmentation is deployed 
to artificially increase the size of a training dataset by 
generating modified versions of its images. This study utilized 
various transformations for data augmentation, including a 
range of operations, such as shift, flip, and zoom for images. 
The ImageDataGenerator class in the Keras library enables 
model fitting engaging augmented image data. For data 
generation purposes, horizontal and vertical flips were used 
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with a rotation range of 90°. Data rescaling was performed to 
convert each pixel's value ranging between 0 and 255 to 0 and 
1. In this dataset, some images have high pixel values, whereas 
others have low values. Since all the images in the same dataset 
implement the same model, learning rate, and weights, a pixel 
with a more extensive value range indicates a higher loss, 
whereas a lower range suggests a low loss. The aggregate of 
both losses contributes to the weight update of the learning 
model. Scaling all the images in the same range distributes the 
loss more evenly. As this investigation aimed at multilabel 
classification, class_mode was set to raw in 
flow_from_dataframe during data generation, with a target size 
of 150×150. 

The second dataset (Dataset 2) [35] does not contain any 
metadata file, but it is well-balanced for all three categories of 
eye disease. Thus, image augmentation was not applied. The 
third dataset (Dataset 3) [37] was collected from 6392 eye 
patients, 2968 and 3424 of which were females and males, 
respectively, as shown in Figure 1. The age groups 51-61 and 
11-21 have the most and least instances. It was observed that 
diabetes and other classes signify a negative correlation with 
normal classes, whereas the rest have a little correlation. The 
correlation heatmap for datasets one and three did not imply 
significant relationships among them. However, this provides a 
reasonable estimate of class separability. Dataset 3 also has the 
issue of class imbalance, as three classes represent 78% of data, 
whereas the rest five classes represent only 22% of data. Data 
augmentation was also applied for Dataset 3, corresponding to 
the class with the highest number of instances, i.e., diabetes. 

 

 
Fig. 1.  Age groups of Dataset 2. 

 
Fig. 2.  Classes of Dataset 3. 

B. .Pre-Trained Models' Implementation for Eye Disease 

Classification 

Transfer learning leverages a pre-trained model's 
knowledge to address new problems by applying the insights 
gained from one task to a variety of others. In this process, the 
model takes retina fundus images sourced from three different 
datasets as input and proceeds to group each eye disease based 
on the dataset. Subsequently, the input, classification, and 
output layers were replaced by a pre-trained model. In the next 
step, transfer learning was employed on deep pre-trained 
CNNs, which were then fine-tuned using experimental data 
related to eye diseases. This study employed UNet, ResNet 
152, EfficientNetB0, and B7 pre-trained models. At first, the 
U-Net model was implemented. The energy function for UNet 
was computed based on the softmax function applied pixel-
wise, given by: 

����� � ��	 ������
∑ ��	 ������������

   (1) 

where ����� represents feature channel e for the pixel position 
� ∈  �, � ⊂ ℤ� , E is the class number, and ����� is a max 
function. Cross-entropy (C) is given by: 

� � ∑ w�a� log����� ���� 
 ∈!    (2) 

where l and w represent the actual pixel label and weight maps, 
respectively, such that ", $: Ω → ℝ. The weighted map needs to 
be re-compute to achieve separability of pixels by: 

)��� � )*��� + ),. .�� /0�1����213����3

�43 5 (3) 

where )*  represents a weighted map, 67 and 6�  are the pixel 
distances from the separable border and the second nearest 
pixel distance from the border, such that )*, 67 , and 6�: Ω →
ℝ . Weight initialization was obtained based on Gaussian 

distribution with the standard deviation (SD) of √2 < =, where = 
represents the inbound nodes. 

This study used Keras, PyTorch, TensorFlow, pandas, 
NumPy, time, cv2, matplotlib, seaborn, sklearn, tqdm, and 
mplot3d libraries. The U-Net model contains four convolution 
blocks. In each convolution block, there are two conv2d layers 
followed by a max pool layer. Conv2d is a two-dimensional 
convolution layer in the Keras library that generates a 
convolution kernel winding with the layers' input, resulting in a 
tensor of outputs. A max pool 2D layer was utilized to 
downsample the input dimensions by calculating the maximum 
value based on a pool size of 2. A stride value of 2 was 
employed to shift the window. After four convolution blocks, 
the bottleneck layer was deployed with two conv2d layers. In 
DL, bottlenecks force the model to learn a compression 
algorithm for the input data. Four upsampling blocks were 
added in the U-Net model to add successive layers to a 
conventional contracting network in place of pooling 
operations. The final layer was flattened to obtain the desired 
output size per the dimensions required through the 
intermediate values received from the previous layers. 

The EfficientNet model is based on compound coefficient 
Φ to uniformly scale the three dimensions of the network: 
depth (d), width (w), and image resolution (i) [31].  
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C. DNNRFDC Model Implementation for Eye Disease 

Classification 

The DNNRFDC model has 13 layers, which are fewer than 
the pre-trained models used. For instance, EfficientNet B7 has 
more than 800 layers, and ResNet has 152 layers. The first two 
layers of DNNRFDC were conv2d layers. The parameters of 
the conv2d layers are the size of units, kernel size, input shape, 
and activation function. A kernel size of 3 was selected and the 
softplus activation function was implemented. The third layer 
was the batch normalization layer, which was employed to 
standardize the inputs in the model. The fourth and fifth layers 
were maxpool2d and dropout. Two conv2d layers were added 
as sixth and seventh layers with a kernel size of 3 and the 
softplus activation function, followed by the maxpool2d and 
dropout layers. A flattened layer was also used, followed by a 
dense layer with a softmax function as a classifier for 4, 8, and 
43 output values required for datasets 1, 2, and 3, respectively. 

V. EVALUATION 

Five-fold cross-validation was performed to repeat the 
training procedure before determining the performance of the 
models. The following metrics were applied to gauge the 
quality of the model: precision, recall, F1-score, F-2 score, 
accuracy, Area Under the Curve (AUC), Intersection Over 
Union (IOU), and Matthews Correlation Coefficient (MCC), as 
exhibited in (4)-(9). 

Precision =
DE

(DE 2 FE)
     (4) 

Recall =
DE

(DE 2 FH)
    (5) 

F1 − Score =  
�∗(NO�*PQPRS∗O�*��)

(NO�*PQPRS2O�*��)
  (6) 

F2 − Score =  
(T∗NO�*PQPRS∗O�*��)

(U∗NO�*PQPRS2O�*��)
  (7) 

Accuracy =  
(DE 2 DH)

(DE 2 FH 2 FE 2DH)
   (8) 

MCC =  
(DE × DH 0 FE × FH)

(DE 2 FE)(DE 2 FH)(DH 2 FE)(DH 2 FH)
 (9) 

where TP, TN, FP, and FN represent true positives, true 
negatives, false positives, and false negatives, respectively. 

Along with various performance metrics, floating point 
operations per second (FLOPS) were also used. Arbitrary 
performance indicators, such as accuracy and recall, might 
instill illusionary confidence in the output and result. The 
proposed DNNRFDC and all pre-trained models employed 
were evaluated for their unbiased performance deploying an 
averaged Receiver Operator Characteristic (ROC) curve for all 
classes based on three datasets. The ROC curve is generally 
utilized to evaluate the performance of the binary classifiers. 
However, since this study performed multiclass classification, 
an one-versus-all technique was adopted to construct weighted 
receiver operating characteristic curves. ROC is an important 
performance indicator for classifier evaluation, as it does not 
depend on the class distribution. Comparing different 
classifiers is possible by condensing their output into a single 
metric. The area under the ROC curve is known as the AUC 
metric, which is also used to describe accuracy. 

VI. RESULTS AND DISCUSSIONS 

Table IV displays the results of the DNNRFDC and the pre-
trained models. This study aimed to increase classification 
accuracy while reducing training time latency and preventing 
overfitting. Three datasets were implemented, each one with a 
different number of classification outputs (i.e., 4, 8, and 43). 
The first dataset's classification accuracy ranged from 77.07% 
to 84.47% for the pre-trained networks, whereas the proposed 
DNNRFDC model disclosed better results in all metrics. For 
Dataset 2, DNNRFDC attained an accuracy of 96.75%, 
followed by EfficientNetB7 accomplishing 91.02% accuracy. 
In Dataset 3, the proposed DNNRFDC model achieved an 
accuracy of 93.06% and all other pre-trained models reached 
accuracies between 82.43 to 83.73%. It was expected that the 
deeper architectures should perform well on the large Dataset 1 
compared to the smaller Dataset 2. However, the overall 
highest accuracy was better for Dataset 2, followed by Dataset 
3 and Dataset 1. The primary reason is that Dataset 2 contains 
only four classes, while Datasets 3 and 1 contain 8 and 43 
classes. Figure 3 illustrates the accuracy and loss curve per 
epoch for the proposed DNNRFDC model for eye disease 
classification on the three datasets. 

TABLE IV.  PERFORMANCE EVALUATION OF DIFFERENT TRANSFER LEARNING ARCHITECTURES 

Datasets Model Accuracy AUC Precision Recall F1-score F2-score MCC 

Dataset-1 

DNNRFDC 92.5 93.17 0.93 0.94 0.93 0.94 0.93 

EfficientNet-B7 84.47 86.52 0.85 0.86 0.85 0.86 0.85 

UNet 80.08 81.97 0.81 0.82 0.81 0.82 0.81 

EfficientNet-B0 77.07 78.56 0.77 0.78 0.77 0.78 0.78 

ResNet 152 82.17 82.99 0.82 0.83 0.82 0.83 0.81 

Dataset-2 

DNNRFDC 96.75 98.49 0.96 0.97 0.96 0.97 0.97 

EfficientNet-B7 91.02 90.89 0.91 0.92 0.91 0.92 0.91 

UNet 85.97 86.54 0.85 0.86 0.85 0.86 0.85 

EfficientNet-B0 79.39 81.93 0.79 0.8 0.79 0.8 0.78 

ResNet 152 87.02 88.68 0.88 0.89 0.88 0.89 0.88 

Dataset-3 

DNNRFDC 93.06 94.17 0.93 0.94 0.93 0.94 0.93 

EfficientNet-B7 82.72 83.76 0.83 0.84 0.83 0.84 0.83 

UNet 82.43 84.94 0.85 0.86 0.85 0.86 0.82 

EfficientNet-B0 83.58 83.93 0.84 0.85 0.84 0.85 0.83 

ResNet 152 83.73 85.81 0.86 0.87 0.86 0.87 0.84 
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Fig. 3.  Accuracy and loss performance of the proposed DNNRFDC model for eye disease classification on all datasets. 

The AUC was used to summarize the model performance 
into a single metric. Figure 3(a) shows that the AUC of the 
DNNRFDC model was higher for Dataset 2, being 98.49%, 
followed by 94.17 and 93.17% for Dataset 3 and 1, 
respectively. It was observed that the AUC obtained was 
slightly higher than the accuracy. This can occur if the model 
acquired a high classification for the positive category at the 
expense of high false negatives. Figure 4 represents the ROC 
curve for different models on the three datasets. Interestingly, 
the ROCs for Dataset 1 and Dataset 3 were closer than for 
Dataset 2 for all models, except for ResNet152, where all three 
ROCs have different trajectories.  

A. Comparison with Other Studies 

Table VI manifests a comparison of the results of this study 
along with previous ones to evaluate the developed model and 
the tuned pre-trained models. In [38], eye diseases were 
classified into seven classes, with one normal class, using 

backpropagation with a linear cyclic learning rate, achieving an 
accuracy of 89.83%. The accuracies acquired by [12] ranged 
from 81.53 to 86.63%. In [27], a very high accuracy of 98% 
was attained, but this study performed binary classification of 
glaucoma and no glaucoma. In [24], the Duke glaucoma 
repository was employed to determine the neuroretinal damage 
caused by glaucoma using the ResNet34 pre-trained model. 
The results demonstrated a significant AUC of 0.95, but this 
study has limitations, as it applied only one model for one 
disease, and the chosen data-splitting strategy could affect the 
results. This study developed a novel DNNRFDC model. The 
latest pre-trained models were tuned and trained on three 
different datasets to appraise the developed and pre-trained 
models. The issue of data splitting was addressed with k-fold 
cross-validation to determine the performance based on 
different subsets of the data. The results revealed an excellent 
performance for the proposed DNNRFDC model. 
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Fig. 4.  ROC curves for (a) developed DNNRFDC model, pre-trained models including (b) EfficientNetB7, (c) UNet, (d) EfficientNetB0, and (e) ResNet152. 

B. Computational Complexity  

The experimental environment for this investigation was an 
NVIDIA GeForce GTX 1060 GPU on an Intel Core i9-9900K 
CPU featuring 8 cores and 16 threads. Classification accuracy 
was not affected by variations in the number of training 
parameters and the depth of the architectures, as depicted in 
Table V. Among the four pre-trained networks examined, 
EfficientNetB7 consistently demonstrated the highest overall 
accuracy across all three datasets. Notably, the updated version 
of the pre-trained networks outperformed their predecessor. For 
example, EfficientNetB7 exhibited superior performance 
compared to EfficientNetB0. However, it is worth noting that 
the higher version demanded more resources in terms of depth, 
parameter count, and inference time per operation, presenting a 
potential trade-off between performance and resource 
utilization. 

In contrast, the DNNRFDC model boasted a modest 0.2 
million parameters and a compact 2.39 MB size, making it the 
most resource-efficient among the models employed. With only 
13 layers of depth, DNNRFDC qualifies as a lightweight CNN 
model that maintains impressive accuracy while demanding 
minimal GPU inference time, clocking in at just 1.39 ms. This 
accelerated processing can be attributed to the efficient 
utilization of Google Cloud TPU's v2, offering 180 TFLOPS of 
computing power and 64 GB of high-bandwidth memory. One 
more significant achievement of DNNRFDC was the Ratio 
between Trainable and Total parameters (RTT). DNNRFDC 
tops for RTT with a value of 100%, while UNet, 
EfficientNetB7, EfficientNetB0, and ResNet152 obtained RTT 
values of 0.995, 0.995, 0.99, and 0.985, respectively. 

 

 

TABLE V.  COMPLEXITY METRICS OF MODELS 

Model 
Overall 

accuracy 

Size 

(MB) 
Parameters Depth 

GPU time 

per 

inference 

step (ms) 

TFLOPS 

ResNet152 V2 84.30 232 60,380,648 152 6.64 11.3 

EfficientNetB0 80.01 29 5,330,571 237 4.91 0.39 

EfficientNetB7 86.07 256 66,658,687 813 61.62 37 

UNet 82.83 386.6 18,839,232 23 17.65 0.52 

DNNRFDC 94.10 2.39 208,776 13 1.39 0.0014 

 

C. Limitations 

When the classification layer's learned features cannot 
classify the problem set, transfer learning becomes problematic 
due to the dissimilarity between the datasets on which it was 
initially trained and the dataset for the other problem. 
Additionally, feature transfer fails in this condition. For 
example, some layers can be removed in a conventional model 
to improve accuracy. However, doing the same thing with 
transfer learning reduces the pool of trainable parameters, 
increasing the risk of overfitting. If the model insists, a lengthy 
process is required. The proposed DNNRFDC model shows 
good accuracy on all three datasets with different eye disease 
classifications. However, its accuracy and stability should be 
examined on unseen larger datasets. On the other hand, the pre-
trained models used in this study are well-established and have 
displayed remarkable performance on large datasets, such as 
ImageNet, COCO, and CIFAR. The UNet model was 
developed for semantic segmentation purposes with the ability 
of image localization pixel by pixel. However, the UNet model 
for the classification task disclosed a gradient classification 
issue on Dataset 3. ResNet152 exhibits architectural 
complexity due to its significant parameters and size. 
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TABLE VI.  COMPARISON OF DNNRFDC AND EXAMINED 
PRE-TRAINED MODELS WITH PREVIOUS STUDIES 

Ref Method Accuracy 
F1-

score 
Sensitivity Specificity AUC 

[38] NN 0.90 0.89 0.99 0.89 0.94 

[12] 

DT 0.86 0.85 0.85 0.87 - 

NB  0.82 0.80 0.81 0.82 - 

RF 0.87 0.86 0.89 0.89 - 

NN 0.86 0.85 0.86 0.86 - 

[17] 

LR. - - 0.96 0.77 0.95 

RF. - - 0.94 0.78 0.95 

SVM - - 0.93 0.83 0.93 

NB. - - 0.96 0.79 0.95 

[25] 

VGG-16 0.81 0.80 0.80 0.90 - 

VGG-19 0.91 0.78 0.87 0.94 - 

ResNet-50 0.91 0.85 0.89 0.96 - 

DenseNet-121 0.84 0.83 0.80 0.96 - 

DenseNet-169 0.81 0.81 0.90 0.90 - 

DenseNet-201 0.94 0.90 0.50 0.90 - 

Inception-V3 0.53 0.50 0.75 0.70 - 

InceptionRes

Net-V2 
0.84 0.85 0.90 0.90 - 

Xception 0.94 0.88 0.90 0.92 - 

[26] 
Transfer 

Learning 
0.67 0.52 0.70 0.55 - 

[21] 

LR1 0.70 - 0.91 0.56 0.72 

LR2 0.69 - 0.70 0.59 0.72 

LR3 0.71 - 0.87 0.62 0.78 

HWG 0.72 - 0.93 0.62 0.80 

CNN 0.80 - 0.91 0.77 0.87 

VGG 0.81 - 0.88 0.79 0.87 

GoogLeNet 0.80 - 0.81 0.74 0.87 

ResNet 0.81 - 0.84 0.74 0.87 

NMD+CNN 0.84 - 0.85 0.83 0.91 

SOD+CNN 0.84 - 0.84 0.81 0.90 

NMD+Attenti

on 
0.85 0.00 0.84 0.85 0.91 

TIA-Net 0.86 0.00 0.85 0.87 0.93 

[27] Autoencoder 0.98 0.95 0.98 0.98 - 

[22] DL - - - - 0.80 

[23] DCNN - - - - 0.94 

[24] DCNN - - - - 0.95 

This 

study 

DNNRFDC 0.94 0.94 0.95 0.94 0.95 

EfficientNet-

B7 
0.86 0.86 0.87 0.86 0.87 

UNet 0.83 0.84 0.85 0.84 0.84 

EfficientNet-

B0 
0.80 0.80 0.81 0.80 0.81 

ResNet 152 0.84 0.85 0.86 0.85 0.86 

 

VII. CONCLUSION 

This study described the design and development of an 
improved eye disease classification model, called DNNRFDC, 
evaluated on three separate datasets and compared with four 
well-established pre-trained models. The proposed DNNRFDC 
model demonstrated superior accuracy in the automatic 
classification of a diverse range of eye disorders. Compared to 
existing pre-trained models, such as ResNet152 V2, 
EfficientNetB0, EfficientNetB7, and UNet, the DNNRFDC 
model achieved significantly higher overall accuracy metrics 
across the three datasets. The proposed model introduced 
several key changes to enhance its performance, namely 
optimizing the network architecture, refining the training 
process, and achieving less number of parameters with better 

computational cost. These modifications contributed to the 
model's improved accuracy and efficiency, rendering it a more 
reliable tool for ophthalmological diagnosis and care. The 
future scope of this research will be to implement various other 
features that affect eye disease and incorporate more datasets 
and a variety of advanced models [39-42]. 
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