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ABSTRACT 

This study delves into the application of deep learning for precise tomato disease detection, focusing on 

four crucial categories: healthy, blossom end rot, splitting rotation, and sun-scaled rotation. The 
performance of two lightweight object detection models, namely YOLOv5l and YOLOv8l, was compared 

on a custom tomato disease dataset. Initially, both models were trained without data augmentation to 

establish a baseline. Subsequently, diverse data augmentation techniques were obtained from Roboflow to 

significantly expand and enrich the dataset content. These techniques aimed to enhance the models' 

robustness to variations in lighting, pose, and background conditions. Following data augmentation, the 

YOLOv5l and YOLOv8l models were re-trained and their performance across all disease categories was 

meticulously analyzed. After data augmentation, a significant improvement in accuracy was observed for 
both models, highlighting its effectiveness in bolstering the models' ability to accurately detect tomato 

diseases. YOLOv8l consistently achieved slightly higher accuracy compared to YOLOv5l, particularly 

when excluding background images from the evaluation. 
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I. INTRODUCTION  

Tomato production is threatened by diseases. These 
damaging factors not only affect their appearance and 
productivity, but also pose significant economic difficulties for 
producers around the world. Deep Learning techniques, 
inspired by the human brain, enable computers to learn and 
identify patterns from large datasets and can be used in tomato 
disease detection. Deep learning algorithms are trained on a 
large dataset consisting of thousands of images of healthy and 
diseased tomato plants, including leaves and fruits, to detect 
tomato diseases. Algorithms learn to identify minor visual cues 
that indicate the presence of a disease by studying these 
images. Once trained, these algorithms are utilized to diagnose 
tomato diseases with speed and precision in the field. The early 
detection of a disease is essential. Farmers can quickly respond 
by employing specific treatments or isolating affected plants to 
reduce the spread of disease and protect their valuable crops. 
Not only does deep learning involve recognizing issues, but 
also providing suggestions for appropriate courses of action 
depending on the disease's nature and severity. 

The early recognition of fruit diseases relies heavily on 
intricate machine learning algorithms, often requiring complex 
feature engineering and manual extraction processes. However, 
with the emergence of Convolutional Neural Networks 
(CNNs), there has been a revolutionary shift in fruit recognition 
techniques. In [1-5], CNNs, designed to mimic the visual 
processing of the human brain, were proven to be highly adept 
at recognizing patterns and features within images, leading to 
significant improvements in both efficiency and precision. 
These advances have paved the way for the development of 
more sophisticated object detection algorithms, which are 
integral to automating the detection of tomato diseases. Among 
these algorithms, two-stage approaches such as R-CNN involve 
regional proposal and classification stages, and one-stage 
approaches, such as SSD [6-7] and YOLO [8], perform 
detection in a single step. The former includes algorithms, like 
R-CNN [9], Fast-RCNN [10], and Faster-RCNN [11], which 
exhibit high robustness with low error rates but require a long 
run time, making them unsuitable for real-time production. 
YOLO has undergone several iterations, namely YOLOv3 [10, 
12], YOLOv4 [13], YOLOv5 [14-16], YOLOv7 [17], and 
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YOLOv8 [18], each enhancing the effectiveness of object 
detection tasks. 

This study investigates the use of YOLO-based algorithms 
for tomato disease detection, specifically YOLOv5l and 
YOLOv8l, trained on a meticulously designed custom dataset. 
The most effective approach to this task can be identified by 
comparing the performance metrics of these models. This study 
goes beyond simply detecting diseases, as it strives to improve 
overall tomato quality and increase crop yields by promoting 
early and accurate diagnoses. This is achieved by harnessing 
the efficiency and precision of deep learning combined with 
cutting-edge object detection techniques. Furthermore, the 
results obtained from both YOLOv5l and YOLOv8l are 
analyzed and compared, providing valuable insight into their 
strengths and weaknesses in the context of tomato disease 
detection. 

II. LITERATURE REVIEW 

Many artificial intelligence techniques have been studied in 
agriculture [19]. In [20], CNN methods were used to categorize 
potato plant diseases into 15 classes. In [21], three prediction 
models (CNN, SVM, and KNN) were implemented to classify 
apple leaves as healthy or diseased. In [22], five deep-learning 
architectures, namely Vgg16, Resnet18, Resnet50, Resnet152, 
and InceptionV3, were employed to detect diseases in banana 
leaves. In [23], a CNN segmentation model was utilized to 
detect tomato leaves infected by the Tuta Absoluta pest. Many 
studies have engaged various YOLO versions for the detection 
of plant diseases. In [24], YOLOv7 was trained on a dataset of 
4000 digital photos depicting five types of leaf disease obtained 
from tea gardens in Bangladesh. The performance of the 
YOLOv7 model was evaluated based on statistical measures 
including detection accuracy, precision, recall, mean Average 
Precision (mAP), and F1-score, achieving high values in all 
metrics. In [18], YOLOv8s was put into service for automated 
tomato detection to improve tomato harvesting and 
classification automation. Its main elements consist of 
DSConv, DPAG, and FEM to ameliorate accuracy and 
efficiency, achieving a mAP of 93.4%. In [25], YOLOv5m was 
combined with ResNet50, ResNet-101, and EfficientNet-B0 to 
classify vine tomato fruits into three categories: ripe, immature, 
and damaged. When combining YOLO5m with ResNet-101, 
the prediction accuracy for ripe and immature tomatoes was 
100%. When using YOLOv5m with the Efficient-B0 
architecture, the accuracy of predicting damaged tomatoes was 
94%. ResNet-50, EfficientNet-B0, YOLOv5m, and ResNet-
101 networks exhibited testing accuracies of 98, 98, 97, and 
97%, respectively. 

III. MATERIALS  

A. Data Collection 

A tomato fruit disease detection dataset was created by 
collecting images from two principal sources: online resources, 
carefully selecting high-quality tomato images from the 
internet, and existing datasets, leveraging relevant and publicly 
available datasets from previous research studies. Thus, the 
images were classified into two main categories, as portrayed 
in Figure 1: 

 Healthy: This category contains images of tomatoes that do 
not show signs of disease. 

 Diseased: This category includes tomato images that 
demonstrate various disease symptoms. 

To ensure a balanced representation, approximately 1600 
images were collected for each category, including both 
healthy and diseased tomatoes. This process was carried out in 
Roboflow. 

 

    
(a) (b) (c) (d) 

Fig. 1.  Tomato categories: (a) Blossom end rotation, (b) Splitting, (c) sun 

scaled rotation, (d) healthy. 

B. Image Annotation 

This procedure involved the following steps: 

 Image presentation: Each image was individually displayed 
within Roboflow. 

 Manual object labeling: Α rectangular shape was drawn 
manually around the tomato to precisely capture its location 
and size within an image. This precise labeling ensures 
accurate detection and classification later. 

 Specific label definitions: Each tomato received different 
labels reflecting its condition. These labels included 
"Healthy," "Blossom end rot rotation," "Splitting rotation," 
and "Sun-scaled rotation," indicating both the presence or 
absence of disease and its specific type. 

 Visualization of annotations: Figure 2 provides a visual 
representation of the annotated data, offering information 
on the distribution of different labels and the location of the 
bounding boxes around each tomato. 

 

 
Fig. 2.  Annotated image. 

C. Data Resize 

Image resizing was performed in Roboflow, changing all 
images in the collected dataset from various sizes to stretch 
640×640. 
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D. Data Preprocessing 

The collected dataset was carefully divided into three 
distinct subsets for effective training and evaluation of tomato 
fruit disease detection models. 

 The training set (70%) serves as the backbone for model 
training. During this process, the model learns to recognize 
patterns and identify key features crucial for distinguishing 
between healthy and diseased fruit. 

 The validation set (20%) plays a vital role in validating the 
model's performance during training. It is used to fine-tune 
hyperparameters and avoid overfitting, ensuring the model 
generalizes well to unseen data. 

 The test set (10%) remains untouched throughout training 
and is utilized for the final evaluation of the model's 
performance on unseen data. This unbiased evaluation 
offers a reliable indicator of how well the model would 
perform in real-world scenarios. 

E. Data Augmentation 

After meticulously labeling the images in Roboflow, data-
augmentation techniques were applied. This approach aims to 
enrich the dataset by increasing its volume and diversifying its 
content. Data augmentation helps mitigate the risk of 
overfitting, a common challenge when training models with 
limited data. 

 

  
Fig. 3.  Data augmentation example. 

Figure 3 depicts various data augmentation methods 
deployed, including flipping, cropping, rotating, and changing 
the color space. These methods generate additional images 
employing the initial dataset, increasing its variability and 
offering the model a wider array of situations to train on. The 
amount of images increased to more than 3000 photos after 
resizing and data augmentation. The collected dataset [26], was 
separated into three separate subsets for training, evaluation, 
and testing, as observed in Figure 4. 

 

 
Fig. 4.  Dataset split after resizing and data augmentation. 

IV. PROPOSED METHODS 

Using Roboflow, a dataset was generated to access and 
utilize the curated and augmented images. Google Colab was 
deployed to accelerate training and achieve superior results, as 
it provides free access to powerful GPUs. All training and 
testing procedures were carried out on a 12GB NVIDIA Tesla 
T4 GPU. This cloud-based environment helped to efficiently 
train the models in roughly two hours with 50 epochs. 

To evaluate the dataset's suitability for both the YOLOv5l 
and YOLOv8l algorithms, separate models were trained 
engaging each method. This comparative approach was 
adopted to evaluate the precision and effectiveness of each 
algorithm in this specific dataset. Both YOLOv8 and YOLOv5 
are powerful object detection models but differ in their 
underlying architecture, leading to unique strengths and 
weaknesses. Table I presents an outline of their fundamental 
distinctions, and Table II displays the similarity of the proposed 
methods in YOLO. 

TABLE I.  DIFFERENCE BETWEEN YOLOV5 AND YOLOV8  

Architecture YOLOv8l YOLOv5l 

Backbone 

Relies on EfficientNet-Lite 

for feature extraction, 

offering a balance between 

accuracy and speed. 

Employs various backbones, 

such as CSPDarknet53 and 

EfficientNet, allowing for 

customization based on desired 

speed and accuracy trade-offs. 

Neck 

Uses a simple Path 

Aggregation Network 

(PANet) for feature fusion, 

focusing on efficiency. 

Leverages a more complex 

Spatial Attention Module (SAM) 

and Path Aggregation Network 

(PANet) combination for richer 

feature representations. 

Head 

Employs an anchor-free 

approach, directly 

predicting bounding box 

centers and sizes, which 

reduces training 

complexity. 

Utilizes an anchor-based 

approach, requiring pre-defined 

anchors for bounding box 

prediction, offering potentially 

higher accuracy with careful 

anchor design. 

Overall 

Aims for simplicity and 

efficiency, achieving good 

performance with reduced 

training complexity and 

potentially faster inference 

speeds. 

Prioritizes accuracy and 

flexibility, offering various 

backbone and neck options for 

customization but potentially 

requiring more training resources 

and slower inference. 

TABLE II.  SIMILARITY BETWEEN YOLOV5 AND YOLOV8 

Architecture Use YOLOv5l and YOLOv8l 

Backbone CSPDarknet53 backbone 

Anchor Boxes To improve object detection accuracy. 

Non-Maximum 

Suppression (NMS) 
To suppress multiple detections of the same object. 

Post-processing To improve the accuracy of object detection. 

Optimizer Adam optimizer for training the model. 

Activation Function Mish activation function in their architecture. 

 
YOLOv8l could be a better fit for real-time applications 

where speed is crucial because of its lighter architecture and 
potentially faster inference times. YOLOv5l might be preferred 
for tasks that require high accuracy and are not resource-
constrained due to its flexible backbone choices and potentially 
higher accuracy, especially with well-designed anchors. 
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Fig. 5.  YOLOv8 architecture. 

 
Fig. 6.  YOLOv5 architecture. 

V. EXPERIMENTAL RESULT ANALYSIS 

A. Results 

In the beginning, this study trained both YOLOv5l and 
YOLOv8l for disease detection but without data augmentation. 
Table III illustrates the performance metrics (recall, precision, 
and mAP) for both models. As noticed in Table III, YOLOv8l 
was significantly more accurate, but these values were lower 
than expected. Therefore, data augmentation was implemented 
to improve overall performance. Following data augmentation, 
the proposed dataset equipped with diverse images fueled both 
YOLOv5l and YOLOv8l models, leading to outstanding 
results, as spotted in Table IV. This remarkable performance 
enhancement marks this approach as the preferred method for 
accurate tomato disease detection in this specific context. 

TABLE III.  PERFORMANCE USING YOLOV5 AND YOLOV8 
WITHOUT DATA AUGMENTATION 

 Precision Recall mAP50 mAP50-95 

YOLOv5l 69.8% 62.3% 67.9% 49.5% 

YOLOv8l 79.2% 70.1% 78.9% 55% 

TABLE IV.  PERFORMANCE USING YOLOV5 AND YOLOV8 
WITH DATA AUGMENTATION 

 Precision Recall mAP50 mAP50-95 

YOLOv5l 89.3% 74.4% 85.2% 58.5% 

YOLOv8l 91.6% 83.1% 88.5% 60% 
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B. Evaluation Metrics 

Figures 7 and 8 show the confusion matrices for the models 
trained on non-augmented and augmented datasets, 
respectively, revealing interesting findings: 

 Increased True Positives (TP): Both YOLOv5l and 
YOLOv8l exhibit higher TP for classes, such as blossom 
end rot rotation, splitting rotation, and sun-scaled rotation 
after data augmentation, indicating an improved ability to 
correctly identify these diseases. 

 Reduced False Positives (FP): YOLOv8l demonstrates 
lower FP in most classes compared to YOLOv5l, 
suggesting better precision in disease classification after 
augmentation. 

These observations indicate that YOLOv8l exhibits 
superior performance in terms of both TP and FP, signifying 
improved overall accuracy in disease detection. To 
quantitatively assess this change, the accuracy of the models 
was calculated before and after data augmentation using the 
confusion matrices. Accuracy was chosen because of its ability 
to provide a comprehensive view of the model's behavior 
across all disease classes. Equation (1) was employed to 
calculate the accuracy in these different scenarios: 

Accuracy �
�	
��

�	
��
��
�	
   (1) 

where TN denotes True Negatives, and FN denotes False 
Negatives. 

 

 
Fig. 7.  Confusion matrices on the custom dataset before augmentation on 

(a) YOLOv8, (b) YOLOv5. 

 
Fig. 8.  Confusion matrices on the custom dataset after augmentation on 

(a) YOLOv8, (b) YOLOv5. 

Analyzing the confusion matrix, a notable presence of 
background images was identified, devoid of relevant objects. 
These images can potentially skew the accuracy of the 
calculation. While a small number of background images might 
have minimal impact, a significant amount of them can lead to 
the underestimation of the model's true performance. Thus, 
accuracy was calculated in two ways to address this matter: 

 Excluding background images: This approach disregards 
background images, potentially providing a more accurate 
representation of the model's ability to identify actual 
disease instances. 

 Including background images: This method takes into 
account all images, involving those without disease, 
offering a more holistic view of the model's overall 
performance. 

Table V portrays the accuracy values calculated using both 
approaches. YOLOv8l also outperforms YOLOv5l by 
significant margins, achieving accuracy gains of 3.67% and 
9.25% before and after data augmentation, respectively. Figure 
9 depicts the significant impact of augmented data on disease 
detection accuracy. YOLOv5 starts with a modest accuracy of 
86.6% in the dataset without data augmentation and reaches a 
remarkable accuracy of 95.85% after augmentation. The 
accuracy of YOLOv8 increases from 94.3% to 97.9% utilizing 
data augmentation. These significant gains highlight the 
effectiveness of augmented data in improving the ability of 
models to accurately identify various tomato diseases. 

TABLE V.  ACCURACY PERFORMANCE 

 
Blossom end 

rot rotation 
Healthy 

Splitting 

rotation 

Sun scaled 

rotation 

Dataset before 

augmentation 

YOLOv5 

70.75% 58.06% 74.74% 79.82% 

Dataset before 

augmentation 

YOLOv8 

82.14% 77.14% 81.08% 96.97% 

Dataset after 

augmentation 

YOLOv5 

88.04% 84.78% 86.32% 96.00% 

Dataset after 

augmentation 

YOLOv8 

92.78% 91.57% 98.88% 93.41% 

 

 
Fig. 9.  Accuracy for each category in different scenarios. 
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VI. CONCLUSION 

This study addresses the challenge of tomato disease 
detection by taking advantage of the power of deep learning 
techniques and data augmentation. The current study 
meticulously designed and collected a dataset in Roboflow that 
included over 1600 images naturally divided into training and 
validation sets. YOLOv5l and YOLOv8l were trained and 
validated on this dataset, and their initial performance achieved 
promising accuracy of 86.6% and 94.3%, correspondingly. To 
further improve performance, various data augmentation 
techniques, such as flipping, cropping, rotating, and altering the 
color space, were implemented to expand the dataset and enrich 
its content. Retraining both models on the augmented dataset 
revealed a remarkable impact, as both YOLOv5l and YOLOv8l 
models achieved significantly higher accuracy compared to the 
pre-augmented version. Specifically, YOLOv5l jumped from 
86.6 to 95.85% and YOLOv8l climbed from 94.3 to a 
staggering 97.9%. Additionally, confusion matrix analysis 
demonstrated a decrease in FPs, showing increased precision in 
disease classification. Therefore, YOLOv8l showcased superior 
performance on various metrics, including TP, FP, and overall 
accuracy, especially when excluding background images. 
These significant findings disclose the power of data 
augmentation in boosting the effectiveness of deep-learning 
models for tomato disease detection. By expanding the dataset 
with diverse variations and addressing background noise, 
highly accurate and precise identification performance was 
achieved for various tomato diseases. Future research efforts 
will focus on enhancing this tomato disease detection system 
by improving background image training and augmenting the 
YOLO architecture. In addition, the creation of realistic 
disease-free backgrounds and focused enhancements will be 
investigated to reduce disease effects. Finally, attention 
mechanisms and multiscale feature fusion will be incorporated 
into the YOLO architecture to improve disease-specific focus 
and capture important patterns. 
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