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ABSTRACT 

This study investigates the strength and stability of Reinforced Concrete (RC) linearly tapered square 

columns. Evaluating the slenderness ratio of an RC column requires the radius of gyration of its cross-

section, which is well-defined for a prismatic column but not for a non-prismatic one. This study primarily 

investigates the application of the ACI Code formulae to evaluate the slenderness ratio of RC columns with 

the studied geometry. Validated numerical models, using Abaqus, were employed to perform nonlinear 

first- and second-order analyses on the investigated columns subjected to eccentric axial loads. The 

concrete damaged plasticity model was employed to simulate the nonlinear behavior of concrete. The static 
Riks solver, available in Abaqus, was utilized for nonlinear analyses: first, with an inactivated geometric 

nonlinearity for a first-order analysis, and second, with an activated geometric nonlinearity to consider the 

effects of secondary moments (p-δ effects). The findings indicate the reliability of defining the slenderness 

ratio of an RC linearly tapered column based on the ACI Code formulae, using the average cross-section of 
the tapered column. 
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I. INTRODUCTION  

RC non-prismatic columns appear in civil structures to 
satisfy structural and/or architectural goals [1]. As the axial 
loads in columns decrease in multi-story buildings from top to 
bottom, columns that are tapered from larger cross-sections at 
the bottom to smaller cross-sections at the top optimize the 
structural design. Large cross-sections in the lower stories 
increase the strength where the axial loads, shear forces due to 
lateral loads, and overturning moments are higher than those in 
the upper stories. In addition, the weight of the structure is 
reduced compared to the construction of columns with constant 
cross-sections along the height of the building [2]. In addition, 
they are used on highway bridges to reduce the moment 
transferred to the foundation [3]. Such columns are still not 
covered by the codes for stability and other design limitations. 
Some studies dealt with the elastic and inelastic stability of 
homogeneous non-prismatic columns, whereas few studies 
focused on RC non-prismatic columns. The structural behavior 
of reinforced concrete has its distinct nature due to the 
interaction between the steel and the surrounding concrete. The 
propagation of microcracks results in a high nonlinearity in the 
structural response of concrete [4]. 

In [5], the behavior of slender, hinged-hinged, tapered RC 
columns was theoretically and experimentally investigated 

under the effect of eccentric loads. The experimental program 
involved testing 19 full-scale columns. The study adopted the 
average cross-section to evaluate the slenderness ratio. This 
study also introduced charts for the design of RC tapered 
columns, which are also applicable to prismatic ones. In [6], 
rational analysis was introduced to predict the maximum 
strength and structural response of slender RC columns that are 
linearly tapered under the effect of axial loading and end 
moments. The columns were doubly symmetric rectangular 
columns with main reinforcement parallel to the edges. This 
study revealed that as the ratio of the moment applied at the 
smaller end to that applied at the greater end approaches zero, 
the capacity of the axial load increases. This study showed that 
tapered columns become less efficient if the end moments are 
equal with single or double curvature bending and also when 
they are very small. This study recommended that the end 
cross-sections should be proportioned so that the ratio of their 
moments of inertia is the same as the ratio of end moments.  

In [7], fabric formworks were deployed to study the 
strength of the columns of variable cross-sections, all having 
the same height and axial loads. The results revealed that the 
weaker column had a convex geometry and experienced 
sudden failure. This behavior is attributed to the transverse 
tensile stresses developed in the bulging columns, which cause 
longitudinal cracks and subsequent crushing of the column. 
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This case was inversed in concave columns. In [8], the 
structural behavior of hollow and solid non-prismatic RC 
columns was experimentally investigated. The results 
suggested that a 50% increase in longitudinal reinforcement 
raises the axial load capacity by 25%, whereas the same 
augmentation in transverse reinforcement increases the load 
capacity by 12%. In [3], the buckling of slender, square, 
tapered concrete columns, reinforced with longitudinal 
reinforcement parallel to the inclined edges of the columns, 
was investigated. Analytical and numerical Abaqus analyses on 
column models disclosed that a tapering ratio (slope of column 
longitudinal edges) greater than 150 does not affect the 
buckling load and is just an aesthetic feature. 

None of these studies investigated the relationship between 
the slenderness ratio of RC non-prismatic columns and the p-δ 
effect (effect of secondary moment), and whether the formulae 
of the ACI Code established for prismatic columns can be 
applied to non-prismatic columns. This study investigates the 
possibility of dealing with an RC non-prismatic column to 
evaluate its slenderness ratio as a prismatic column having a 
cross-section equal to its average cross-section. The numerical 
model can be validated by comparing it with experimental 
results, analytical models, or semi-empirical results as in [9]. 
The finite element modeling in Abaqus was validated in [10] 
by comparing numerical and experimental results. The 
nonlinear static Riks solver, which is suitable for nonlinear 
solutions, especially in the descending part of the load-
deflection relationship, was used to perform the nonlinear 
analyses. First, this study compared the Abaqus results with the 
ACI Code limitations for the slenderness ratio of two prismatic 
columns. This comparison of the two prismatic models was 
performed as an additional validation for numerical modeling, 
which was already validated by comparing the numerical and 
experimental results. The concrete-damaged plasticity available 
in Abaqus was employed to simulate the nonlinear behavior of 
concrete. The parameters of this model were calibrated with 
many test results [11]. The column is considered short if the p-
δ effect does not reduce its axial load capacity by more than 
5%, otherwise it is long, which is the criterion adopted by the 
ACI Code [12]. Abaqus offers the choice between first- or 
second-order analysis. The first-order analysis means that the 
structure is analyzed based on its original undeformed shape, 
and thus the secondary moments caused by the loads and 
deformations are neglected. In other words, geometric 
nonlinearity is not considered. On the contrary, the second-
order analysis is the analysis of the structure in which its 
equilibrium is based on the deformed shape [13-15]. This study 
performed both analyses for each model to evaluate the 
reduction in the axial load capacity due to the effects of 
secondary moments. For all models studied, the boundary 
conditions were chosen so that all were pin-ended. The top end 
of the column was free to move downward in the y-direction 
and both ends were free to rotate about the x-direction. 

II. MATERIAL STRENGTHS AND CONSTITUTIVE 
RELATIONSHIPS 

For all models, the compressive strength of the concrete 
was 30 mPa and the yield stress of the steel reinforcement was 
400 mPa. The parabolic constitutive model for concrete 

compressive behavior proposed in [16] was utilized. According 
to this model, the compressive stress in concrete is: 

�� � ��� �2�	� 	
� � � �	� 	
� ��   (1) 

where ��  is the concrete compressive stress,  ���  is the 
compressive strength of concrete, 	�  is the concrete 
compressive strain, and 	
  is the concrete compressive strain 
corresponding to the peak stress value. 	
 was taken equal to 
0.002. A linear relationship for the tensile behavior of concrete 
was deployed, which was taken equal to the modulus of rupture 

0.62���� , In both tension and compression, a bilinear elastic-
full plastic model was implemented for steel reinforcement. 

III. PRISMATIC MODELS 

A. Model 1 

Model 1 has a length of 1980 mm and a cross-section of 
300×300 mm. The four longitudinal rebars had Ø 20 mm and 
the transverse reinforcement was Ø 10 mm at 200 mm. Figure 
1(a) depicts the view cut numerical model. The top-end 
eccentricity is 25 mm, the same as that at the bottom end. 
Figure 1(b) illustrates the failure mode of the column. Figure 2 
portrays the load-deflection relationships. 

 

  
(a) (b) 

Fig. 1.  Model 1: (a) view cut, (b) failure mode. 

 
Fig. 2.  Model 1 load-deflection relationships (ρ = 0.014). 

The results of the first- and second-order analyses for the 
load capacity were 2389.7 and 2317 kN, respectively. Thus, the 
reduction in axial load capacity caused by the secondary 
moment was 3%, which is less than 5%, the limit beyond 
which the ACI Code classifies a column as slender or long. For 
frames braced against side sway, the ACI Code [17] classifies 
an RC column as a short column if its slenderness ratio does 
not exceed the value given by: 
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� ��
� � 34 � 12 ��

� 
    (2) 

where !  is the effective length factor, "# is the unsupported 
length of the column, $ is the radius of gyration of the column 
cross-section, %&  is the smaller end moment, and %  is the 
greater end moment. The value %&/% shall be negative if the 
end moments produce a single curvature. The slenderness ratio 
of Model 1 is evaluated as follows: 

� ��
� � &∗&)*+

+.,∗,++ � 22    (3) 

For a single curvature loading, as in the case of loading 
Model 1, the limiting value given by (2) is 22, which means 
that it is a short column but at the transition limit between short 
and long columns. If %& is zero, the limit given by (2) becomes 
34, which is much greater than the slenderness ratio of Model 
1. In this case, the column is short and far from the transition 
limit of the slenderness ratio. Therefore, the 3% reduction in 
load capacity given by the Abaqus analysis indicates that the 
effect of the secondary moment is still relatively far away from 
the criterion value of 5%. It can be interpreted that the ACI 
Code is conservative for the case of a single curvature since the 
lateral deflection is expected to be larger compared to the 
double curvature cases or when %& equals zero. However, the 
numerical simulation of Abaqus predicted well the slenderness 
effect of the model. The steel reinforcement ratio, the steel 
reinforcement area divided by the gross area of the cross-
section, was changed from 0.014 to 0.0218, and the analysis 
was repeated for first- and second-order analysis. Ignoring the 
effect of the secondary moment, the Abaqus result for the load 
capacity was 2618.7 kN, whereas this became 2543 kN when 
taking into account geometric nonlinearity. Thus, the reduction 
in the axial load capacity was 2.88%. Figure 3 presents the 
load-deflection relationships for Model 1 after changing the 
reinforcement ratio. 

 

 
Fig. 3.  Model 1 load-deflection relationships (ρ = 0.0218). 

It can be seen that increasing the steel reinforcement ratio 
reduces the effects of secondary moments. The higher the 
reinforcement ratio is, the less the p-δ effects are. This result 
agrees with the fact that increasing the steel reinforcement area 
in the concrete section augments the flexural rigidity of the 
column, which, in turn, increases its structural stiffness. 
Increasing the stiffness reduces the lateral deflection, and thus 
the p-δ effects are mitigated. The steel ratio of 0.014 is very 
close to the minimum reinforcement ratio required by the ACI 
Code for concrete columns, which is 0.01 [17]. Thus, the finite 

element analysis will give less secondary moment effects for 
any other higher reinforcement ratio. This agrees with the fact 
that the code adopts only the length and the dimensions of the 
cross-section of the column to evaluate its slenderness ratio 
regardless of the amount of steel reinforcement. 

B. Model 2 

Model 2 has the same properties as Model 1 except for the 
length, which is 3600 mm. Conssequently, it is a slender 
column having a slenderness ratio of 40. The column model is 
pin-ended with 15 mm eccentricity at each end. The steel 
reinforcement ratio is 0.014. Figure 4 exhibits the failure mode 
of Model 2 and the stresses in steel reinforcement. Figure 5 
displays the load-deflection relationships. 

 

  
(a) (b) 

Fig. 4.  Model 2: (a) failure mode (b) reinforcement stresses. 

 
Fig. 5.  Load-deflection relationships of Model 2 (ρ = 0.014). 

Neglecting the p-δ effects, the load capacity is 2635 kN, 
whereas it is 2383 kN when considering them. Therefore, the 
reduction in the axial load is 9.57%, which is much greater than 
5%. Through the property module in Abaqus, the area of the 
cross-section of the longitudinal bars was changed and the 
reinforcement ratio was increased to 0.045. Then, the analyses 
were repeated and Figure 6 shows the load-deflection 
relationships. The secondary moment reduced the load capacity 
from 3630.76 to 3336 kN, a decrease of 8.1%. This suggests 
that increasing the reinforcement ratio for a slender column 
reduces the effects of the secondary moments, but the column 
remains in its state as a slender column. Again, this result 
confirms the reliability of defining the slenderness ratio of the 
RC columns depending on their geometry without taking the 
reinforcement area into account, as in the ACI Code. 
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Fig. 6.  Load-deflection relationships of Model 2 (ρ = 0.045). 

IV. NON-PRISMATIC MODELS 

Three RC non-prismatic columns were simulated under the 
effect of eccentric loads. The column models were pin-ended 
with a single eccentricity of 100 mm at the larger end. The 
three columns were tapered from 400×400 mm at the top to 
200×200 mm at the bottom. The longitudinal steel rebars were 
parallel to the inclined edges of the columns. The 
reinforcement ratio calculated based on the mid-span cross-
section area (area of the average cross-section) was 0.014. The 
transverse reinforcement was Ø 10 mm at 200 mm stirrups. 
Table I demonstrates other details of the models. The 
slenderness ratios were computed based on the average cross-
sections. 

TABLE I.  PROPERTIES OF NON-PRISMATIC MODELS 

Model number Length (mm) Slenderness ratio 

3 2700 30 
4 3060 34 

5 3420 38 

 

A. Model 3 

The slenderness ratio of Model 3 was 30 with a zero value 
of %&. Therefore, its slenderness ratio is less than the limit of 
34 given by (1).  

 

  
(a) (b) 

Fig. 7.  (a) View cut of meshed Model 3, (b) Failure mode of Model 3. 

Figure 7 provides the view cut of the meshed model and its 
failure mode. The failure mode is the crushing of the concrete 

at a point close to the smaller end. Figure 8  theiscloses results 
of the first and second-order analyses. The failure load value 
given by the static Riks solution for the first-order analysis was 
1536.5 kN. On the other hand, the second-order analysis gave a 
failure load of 1496 kN. , tA a resulthe reduction in the axial 
load capacity due to the effects of the secondary moment is 
2.6%, which is less than 5%. 

 

 
Fig. 8.  Load-deflection relationships of Model 3. 

B. Model 4 

The slenderness ratio of Model 4 was chosen as 34 to be the 
same as the limit value dividing the RC columns into short and 
long. The effects of the secondary moment in such a column 
are expected to cause a reduction in the axial load capacity of 
about 5%. Figure 9 showcases the results of the first- and 
second-order analyses. The axial load capacity given by the 
nonlinear first-order analysis was 1564 kN, whereas, when the 
p-δ effects were considered, the numerical result for the axial 
failure load was 1477.8 kN, indicating a reduction of 5.5%. 
This is close to the 5% reduction used as a criterion by the ACI 
Code to describe an RC column as short or slender. 

 

 
Fig. 9.  Load-deflection relationships of Model 4. 

C. Model 5 

The slenderness ratio of Model 5, based on the average 
cross-section, was chosen to be slender if it is a prismatic 
column having the average cross-section. When the geometric 
nonlinearity was ignored, the load capacity was 1586.4 kN, 
while it was reduced to 1491 kN due to the effects of the 
secondary moment. Thus, the reduction in load capacity was 
6%, which is greater than the 5% reduction value adopted by 
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the ACI Code. The Abaqus results evaluated well the 
slenderness ratio of the model based on the mid-span cross-
section. Figure 10 portrays the load-deflection relationships. 

 

 
Fig. 10.  Load-deflection relationships of Model 5. 

Figure 11 exhibits the failure mode and stresses in the steel 
reinforcement of Model 5. The failure mode of Model 5, as 
well as other non-prismatic models, agrees with that expected 
for the loading case that concrete will be crushed at some 
distance from the smaller end. The shifting of the crushing 
location from the smaller end to a relatively larger cross-
section somewhere close to it is caused by the existence of the 
eccentricity. The eccentricity varies from 100 mm at the larger 
end (top end) to zero at the bottom end. Therefore, the case of 
pure axial loading at the smaller end cross-section makes it 
stronger than the cross-section where the crushing occurs. 
Yielding of longitudinal bars located on the concave side is 
also expected due to the combined effect of axial and flexural 
loads, as both effects cause compressive stresses on the 
concave side. 

 

  
(a) (b) 

Fig. 11.  Model 5: (a) failure mode, (b): reinforcement stresses. 

Figure 12 displays the pattern of tensile cracks. As 
expected, the location of the crack is on the convex side of the 
column opposite the location of the crushing cracks. 

 
Fig. 12.  Tensile cracks in Model 5. 

V. CONCLUSIONS 

Based on the Abaqus results, the following conclusions can 
be obtained: 

 The effects of the secondary moments in the prismatic 
columns agree with the ACI Code limitations. The 
reduction in load capacity is less than 5% in short columns 
and greater than 5% in slender columns.  

 For slender RC prismatic and non-prismatic columns, the 
effect of the secondary moment on the load-deflection 
relationship appears in an early stage. This reveals the 
effect of the relatively large deformations that result in 
affective secondary moments in the early stages of loading. 

 Using a reinforcement ratio of 0.014, which is close to the 
minimum limit of 0.01 that the ACI Code specifies for RC 
columns, keeps the effect of secondary moments lower than 
5%. This indicates that a short column remains short even 
when a minimum reinforcement is provided, which in turn 
confirms the reliability of defining the slenderness ratio of 
RC columns depending on their geometry regardless of the 
amount of reinforcement.  

 When the longitudinal reinforcement ratio increased from 
0.014 to 0.045, the effect of the secondary moment was 
reduced from 9.57% to 8.1%. Thus, increasing the 
reinforcement ratio of an RC slender column reduces the 
effects of the secondary moments but does not change the 
column to a short one. Again, this finding agrees with the 
fact that the codes define the slenderness ratio of RC 
columns depending on their dimensions regardless of the 
amount of reinforcement. 

 Under the effect of an eccentric axial load, the tapered 
column will not fail at the smaller cross-section but at some 
distance from it, due to the combined axial and flexural 
effects. 

 For the evaluation of the slenderness ratio, an RC column 
that is linearly tapered can be considered as a prismatic 
column having a cross-section equal to its average cross-
section. In other words, the ACI Code formulae regarding 
slenderness are applicable for tapered columns depending 
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on their average cross-section for the evaluation of the 
radius of gyration of the cross-sectional area. 
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