
Engineering, Technology & Applied Science Research Vol. 14, No. 4, 2024, 15378-15383 15378

www.etasr.com Bisht & Gandhi: Performance Evaluation of Data Mining Techniques to Enhance the Reusability …

Performance Evaluation of Data Mining

Techniques to Enhance the Reusability of

Object-Oriented (O-O) Systems

Bharti Bisht

Manav Rachna International Institute of Research and Studies (MRIIRS), India

onebharti@gmail.com (corresponding author)

Parul Gandhi

Manav Rachna International Institute of Research and Studies (MRIIRS), India

parul.fca@mriu.edu.in

Received: 8 March 2024 | Revised: 1 April 2024, 19 April 2024, and 29 April 2024 | Accepted: 15 May 2024

Licensed under a CC-BY 4.0 license | Copyright (c) by the authors | DOI: https://doi.org/10.48084/etasr.7213

ABSTRACT

The software industry is evolving at a rapid pace, making it necessary to optimize efforts and accelerate

the software development process. Software can be reused to achieve quality and productivity goals.

Reusability is a crucial measure that can be used to increase the overall level of software quality in less

time and effort. To better understand the necessity of enhancing the software reusability of Object-

Oriented (O-O) systems, this study employed a semi-automated approach to measure the values of class-

level software metrics on an input dataset collected from the MAVEN repository. This paper explored
several previous studies, data strategies, and tools to predict reusability in O-O software systems. This

study compares various data mining techniques to identify the most suitable approach for enhancing the

reusability of O-O software systems. The analysis was based on performance parameters such as precision,

MSE, and accuracy rates. Due to its higher precision and lower MSE, the SOM technique is considered one

of the top data mining approaches to increase the reusability of O-O software systems. However, the

results show that the different levels of reusability in O-O software systems are not adequately addressed
in current solutions.

Keywords-object-oriented (O-O) system; data mining; reusability level; product quality

I. INTRODUCTION

In a society that relies heavily on software and is
increasingly susceptible to software failures, software
professionals are under tremendous pressure to create more
complex and advanced software systems. With the increase in
the number of computer professionals, the development of
technologies that improve hardware and computing
performance, and massive increases in memory and storage,
the growth in the expected size of the software systems
required is exponential. With increasing demands for even
more sophisticated systems and maintenance of current
software, it has become difficult to maintain the increase in
software productivity. After decades of extensive research in
software engineering, software reuse has emerged as the only
practical and technically possible way to achieve the desired
increases in productivity and quality that the software industry
demands. The reusability of a software component serves as a
key indicator of its capacity to be reused. Components can be
considered autonomous, replaceable parts of applications
carrying explicit and distinct functions. The reusability concept
extends beyond the source code, including design,

documentation, and test cases. Reusing the actual information
from real software data, such as project status and progress,
requires more sophisticated techniques. Software components
(functions and processes) can be tested in traditional procedural
programming before being saved in libraries for later use. This
is certainly a source for reuse, but these components are
restricted to essential application areas. It is difficult to reuse
the software components of normal environments, except for
mathematics subroutines, because there is a very low chance
that they perfectly correspond to the requirements of any
subsequent application. However, modification is challenging
and might occasionally be more expensive than redesign if the
software components are not understood. On the other hand, in
Object-Oriented (O-O) programming, adaptation is achieved by
extending or specializing preexisting components rather than
by altering them. O-O programming languages allow software
to be designed in various forms, including components, making
it easy for users to reuse massive amounts of code. Increasing
the reusability levels requires more emphasis on implementing
O-O methodologies and employing an effective strategy to
achieve this objective. Previous studies have shown that there
are O-O components that can help fix software bugs and

Engineering, Technology & Applied Science Research Vol. 14, No. 4, 2024, 15378-15383 15379

www.etasr.com Bisht & Gandhi: Performance Evaluation of Data Mining Techniques to Enhance the Reusability …

produce higher-quality software [1]. Object orientation is
emphasized in the O-O software creation process in several
phases, including evaluation, design, and deployment.

A key element in the success of software reuse is the ability
to predict the needed variability in future assets. Research is
required to determine reusability metrics, and techniques are
required to estimate and validate potential reuses. Hence, there
is a mismatch between the procedures used in software project
management and the demand for usable data from historical
data. Data mining techniques can effectively and efficiently
extract meaningful data using numerous criteria. The largest
issue in software development is the development of reliable
software and the determination of how to successfully extract
modular elements that can be used to improve software quality.
The methods now in use demonstrate the numerous attempts to
identify reusable parts from software systems. There is an
evolving need for a framework or mechanism that can precisely
extract modules from huge and diverse large-scale datasets and
enrich efficiency, especially with the rise of complex and
massive O-O software systems.

A. Objectives

Software reusability has emerged as a potential tool for
developing cost-effective and time-efficient software systems.
This approach not only helps developers improve software
quality but also addresses software complexity issues
encountered during the software development process. The O-
O approach not only provides a solution for the software
industry to emerge from the crisis but also provides a
dimension to enhance the quality of software systems. In the
context of the increasing number of large and complex O-O
software systems, there is a rising need for an approach or
mechanism that facilitates the extraction of accurate reusable
components from large datasets. This mechanism can
contribute to improving the overall quality of software systems.

This study aimed to:

 Identify O-O metrics to study the reusability of software
systems.

 Identify the most suitable data mining approaches to
enhance the reusability of O-O software systems.

 Evaluate the performance of various data mining
approaches based on precision, MSE, and accuracy rates.

B. Self-Organizing Map (SOM)

This algorithm is a well-known pattern recognition and
classification technique. It belongs to the category of Artificial
Neural Network (ANN) models and operates on the principle
of competitive learning techniques. Additionally, it is classified
as an unsupervised technique. SOM uses an organized array of
neurons arranged in a two-dimensional grid. SOM maps the
arbitrary dimensions of incoming input data signals onto a one-
or two-dimensional space, enabling the exploration and
comprehension of the inherent structure within the data.

II. RELATED WORK

Previous studies focused on various data mining approaches
to improve the reusability of O-O software systems. In [2], a

model was proposed to estimate the reusability of different
software components, incorporating the Neuro-Fuzzy engine
and the Chidamber & Kemerer (C&K) metrics. In [3], the H-
SOM and Naïve Bayes approaches were compared using the R
framework, showing that H-SOM was significantly more time-
efficient compared to the Naïve Bayes approach. In [4], a novel
approach was presented to quantify software reusability using a
Support Vector Machine (SVM)-based classifier. The results
showed the effectiveness of the SVM classifier in measuring
software reusability, providing valuable insights for software
developers looking to improve code reuse practices. In [5],
clustering data mining was used to establish a software
component repository. The algorithm primarily targeted
functions, with a key emphasis on the specifications or
behavior of these components. The specifications of the
software components were represented through preconditions
and postconditions, which were translated into first-order
predicate logic before the clustering process. In [6], various
methods and techniques used in data mining for classification
tasks were explored, examining their effectiveness and
applicability in diverse domains and offering valuable insights
into the nuances of classification algorithms within the context
of data mining. In [7], an innovative approach was introduced
to extract software features from O-O source code, using an
overlapping clustering technique. This method aimed to
overcome the challenges associated with traditional feature
extraction methods in O-O codebases. This approach identified
and clustered software features considering their overlapping
relationships, thereby providing a more comprehensive
representation of the underlying software structure.
Experimentation and analysis demonstrated the effectiveness of
the overlapping clustering approach in accurately capturing
software features, offering valuable insights for software
engineering practitioners seeking to improve feature extraction
processes in OO codebases. In [8], a method was proposed to
identify reusable software modules from available software
data, using genetic algorithms, the Rabin-Karp algorithm, and
the K-means method, to facilitate the identification of software
components that could be recycled, reducing costs, time, and
effort. In [9], the concept of software reusability within
software components was investigated to assess its practical
implications and potential advantages. By examining a diverse
array of software components, this study investigated the
degree to which reusability is evident, the key factors that
affect it, and its impact on software development processes. In
[10], clustering methods were explored to restructure O-O
software systems and improve their scalability and
maintainability.

In [11], a novel approach for software cost estimation was
presented, combining cuckoo optimization and K-Nearest
Neighbors (KNN). This approach aimed to improve the
accuracy and efficiency of software cost estimation by
leveraging the complementary strengths of optimization and
machine learning techniques. The performance of the hybrid
algorithm was evaluated through empirical analysis and
experimentation, providing valuable insights into its
effectiveness compared to traditional methods. In [12], a novel
approach was presented to improve the cohesion of various
classes within O-O software systems by introducing a new

Engineering, Technology & Applied Science Research Vol. 14, No. 4, 2024, 15378-15383 15380

www.etasr.com Bisht & Gandhi: Performance Evaluation of Data Mining Techniques to Enhance the Reusability …

similarity metric based on Frequent Usage Patterns (FUP).
Using the values derived from this similarity metric,
hierarchical agglomerative clustering was performed using a
complete linkage strategy to group member functions into
clusters. The primary objective of [13] was to introduce a
software reuse approach and examine its impact on improving
quality within the software industry.

In [14], various data mining rule-based classification
techniques were applied to multiple datasets sourced from the
NASA software repository, such as PC1 and PC2. The
objective was to categorize software modules as either fault- or
non-fault-prone. This study also modified the RIDOR
algorithm, showing that it outperformed other classification
techniques in terms of both the number of rules extracted and
accuracy. In [15], a pool of 44 factors that could positively or
negatively affect the reusability of software systems was
refined. Regarding software metrics, this study presented
findings across five primary categories of metrics: coupling,
cohesion, complexity, inheritance, and size. The results showed
that most of these metrics assessed reusability at the class level,
with limited availability of software tools for analysis.
Software reuse involves leveraging existing software artifacts
to develop new systems, often with minimal or no
modifications, to incorporate additional functionalities [16, 17].
In [16], a metric framework was used to perform a functional
analysis of O-O-based software components, considering the
maintainability index as a key factor in identifying crucial
attributes to predict reusability levels. Unlike structural-level
analysis, this method operated at the functional level, and its
performance was evaluated based on precision, recall,
accuracy, and classification error. Table I summarizes different
data mining approaches used to enhance the reusability of O-O
software systems.

TABLE I. COMPARATIVE ANALYSIS OF DIFFERENT
DATA MINING TECHNIQUES

Ref. Data MiningApproach Input Dataset

[3] HSOM, Naïve Bayes Structured SE data

[4] SVM Software metrics value

[10] Clustering approach (FCM)
Basis code of the software

with classes

[12]
Hierarchical agglomerative

clustering
JAVA projects

[18] Decision Tree O-O classes

[19] Naïve Bayes and SVM Software metrics data

[20] Agglomerative clustering algorithm Class members

[21]
Hierarchical Clustering (HC) and

Non-HC
C++ modules

[22] Neural Network Software metrics data

[23] SOM

CK metric values of Eclipse

JDT, Eclipse PDE

and Hibernate system

There is an increasing trend in the use of data mining
approaches to enhance reusability. However, there are some
significant research gaps, such as:

 Current strategies focus on reusing software artifacts based
on expected functionality, but non-functional aspects are
equally important.

 The major challenge in component-based software reuse is

to efficiently manage a large cache of reusable elements to
facilitate fast allocation and retrieval.

 Existing solutions are inadequate in addressing the various
reusability levels of software components structured on O-
O architecture.

 Existing reuse repository systems operate independently of
manufacturing processes and tools, assuming software
developers initiate the reuse process when required.

 Developers frequently needed to develop additional code
for every project rather than relying on pre-existing, tested
components, which poses a substantial hurdle to code reuse.

III. MATERIALS AND METHODS

This study aims to understand, evaluate, and project the
impacts of software module metric values on the reusability of
O-O software systems, incorporating the phases shown in
Figure 1.

Fig. 1. Phases of the study.

A. Data Collection and Preprocessing

A dataset was collected, comprising 1000 instances from O-
O software systems, namely Apache Tomcat, Eclipse, and
Apache Sling, sourced from the MAVEN repository. These
instances were prepared using the Data Extraction Algorithm
shown in Algorithm 1.

ALGORITHM 1: DATA EXTRACTION

 //Load data into array G

1: G = importdata("untitled4.mat")

// For each relevant element in G that has a

// missing value, produce an array containing

// a logical 1

2: Ix = ismissing(g, {'.' 'NA' -99})

 // Remove missing entries from G

3: rowsWithMissing = g (any (ix,2))

4: disp(rowsWithMissing)

// Generate a standardized array by

// substituting standard missing values in G

5: G = standardizeMissing (g, -99)

6: disp(G)

// Fill missing values in G from corresponding

// neighbor rows

7: H= fillmissing(g, 'previous')

8: disp(H)

The input dataset underwent further preprocessing to
discern classes suitable for use as a unified form of instances.
All records with a value of -1, representing missing data, were
removed from the dataset [24]. Table II shows the number of
classes before and after cleaning.

Engineering, Technology & Applied Science Research Vol. 14, No. 4, 2024, 15378-15383 15381

www.etasr.com Bisht & Gandhi: Performance Evaluation of Data Mining Techniques to Enhance the Reusability …

A semi-automated approach was employed to measure the
software metrics values in the dataset. A dataset of O-O metrics
and their corresponding reusability value for software
components is required to evaluate the reusability of O-O
software systems. This study incorporated O-O metrics as input
to measure the relationship between metric values and
reusability levels. This study used Message Passing Coupling
(MPC), Response For a Class (RFC), Cohesion Among
Methods of class (CAM), Lack of Cohesion (LCOM3),
Weighted Methods per Class (WMC), and Data Access (DAC)
metrics. The software components in all instances within the
input dataset were evaluated using the software metrics. Figure
2 shows the distribution of the components in the three
reusability classes: high, medium, and low. Analytical
descriptions of these metrics are shown in Table III. The
interpretation of analytical statistics in Table III is that the high
mean value of DAC is associated with low productivity and the
need for more efforts to make the available classes reusable.
The significance of this finding is that it considers the strength
of the main concepts relating to cohesion and coupling.

TABLE II. DATA PREPROCESSING

Software
Original

classes

Classes with

missing data

Cleaned

classes

Apache Tomcat 285 85 200

Eclipse 210 60 150

Apache Sling 255 155 100

Fig. 2. Classification of components.

TABLE III. ANALYTICAL DESCRIPTION OF INPUT
DATASET

 MPC RFC CAM WMC DAC

Minimum value 1 0 0 0 0

Maximum value 2066 28 17 240 8056

Standard deviation 173.67 5.91 4.89 25.56 2812.78

Mean value 72.56 0.78 5.67 27.67 315.67

B. Applying Data Mining Techniques

Various data mining techniques were applied to the input
dataset after data preprocessing. Accuracy, Mean Squared
Error (MSE), and precision were used to evaluate the
performance of all data mining approaches.

IV. RESULTS AND DISCUSSION

The identification of highly reusable components is
facilitated by data mining techniques with high precision, high
recall, and low RSE rates. The precision of a class was
calculated by dividing the total number of data elements

belonging to the positive class by the number of valid positives,
or the number of data elements accurately belonging to the
positive class [25]. Figure 3 shows the precision values for the
Bayesian classification, k-means, feature extraction, decision
tree, backpropagation, agglomerative clustering, hierarchical
clustering, and SOM approaches. When comparing the
precision values, the SOM approach has a high precision of
37.8 % compared to the other techniques. The higher precision
of the SOM technique contributes to better cohesion and
reusability. The results also showed that the k-means technique
may not be suitable for extracting the reusable components due
to its low precision (35.5%). Extraction of appropriate reusable
components will help improve the reusability of O-O software
systems.

Fig. 3. The precision of various data mining techniques against precision.

Fig. 4. Comparison of recall values for various data mining techniques.

Figure 4 compares the recall values for Bayesian
classification, k-means, feature extraction, decision tree,
backpropagation, agglomerative clustering, hierarchical
clustering, and SOM. When comparing the recall values, SOM
had a high recall of 44.8 %, compared to the other data mining
techniques, contributing to better cohesion and reusability.
High cohesiveness is preferred in O-O design, since it provides
simplicity to comprehend, maintain, and reuse. The results also
show that the Bayesian classification may not be suitable for
extracting reusable components due to its low recall (41%).

RMSE is a commonly used metric for comparing the values
[26] predicted by an estimator or model to those observed from
the object being estimated or modeled. Figure 5 compares the
RSME rates of Bayesian classification, k-means, feature

Engineering, Technology & Applied Science Research Vol. 14, No. 4, 2024, 15378-15383 15382

www.etasr.com Bisht & Gandhi: Performance Evaluation of Data Mining Techniques to Enhance the Reusability …

extraction, decision tree, backpropagation, agglomerative
clustering, hierarchical clustering, and SOM approaches. When
comparing the RSME values, SOM had the lowest RSME of
0.4 % compared to the other data mining techniques. The low
RMSE rate of the SOM technique results in the extraction of
highly reusable modules. A low RMSE rate means that the
extracted reusable components produce fewer errors.

Fig. 5. RMSE comparison of various data mining techniques.

After extracting the input dataset from the MAVEN
repository, a preprocessing step was implemented to identify
missing values, check for noisy data, and address any other
inconsistencies. Figure 6 shows the raw data containing
missing values and outliers, which can potentially result in
misleading conclusions during analysis.

Fig. 6. Raw data representing missing values.

Although this study was able to perform well in analyzing
various data mining approaches and find the most suitable one
to improve reusability in O-O software components, it still has
some limitations:

 To enhance the reliability of the results, the study can
incorporate validation using multiple datasets with diverse
metadata attributes.

 This study used only limited software metrics for the
validation of data mining approaches. Including more
software metrics and reuse metrics could improve accuracy.

 This study focused on the impact of data mining techniques
on low and high reusability levels. However, it did not

predict the effects of data mining techniques on medium
reusability levels.

 This study lacks an effective model for identifying reusable
software modules.

V. COMPARISON WITH PREVIOUS STUDIES

Table IV compares the proposed with the data mining
approaches examined in [28] on the classification of low and
high reusability instances, using accuracy, recall, and precision.
Values are considered as depicted in [28].

TABLE IV. COMPARISON OF DATA MINING TECHNIQUES

Approaches Results

K-means

technique

(Technique 1)

[28]

Accuracy:67%

Precision (Low Reusability Level): 0.8 (80%)

Precision (High Reusability Level): 0.7(70%)

Recall (Low Reusability Level): 0.91(91%)

Recall (High Reusability Level): 0.9(90%)

DBSCAN

(Technique 3)

[28]

Accuracy:85%

Precision (Low Reusability Level): NA

Precision (High Reusability Level): 0.81(81%)

Recall (Low Reusability Level): NA

Recall (High Reusability Level): 0.93(93%)

JRA2M2 [28]

Accuracy:87.75 %

Precision (Low Reusability Level): 0.88(88%)

Precision (High Reusability Level): 0.96 (96%)

Recall (Low Reusability Level): 0.8 (80%)

 Recall (High Reusability Level): 0.94 (94%)

SOM approach

(This study)

Accuracy:91.2%

Precision (Low Reusability Level): 0.9(90%)

Precision (High Reusability Level): 0.98 (98%)

Recall (Low Reusability Level): 0.86 (86%)

 Recall (High Reusability Level): 0.96 (96%)

VI. CONCLUSION AND FUTURE WORK

This study examined different data mining approaches used
to improve the reusability of O-O software systems. Some key
observations are as follows:

 Reusability is the premier strategy for improving software
quality while reducing the expense and time needed for
software development.

 O-O software components are far more reusable than
component-based software systems.

 Classes are common components in O-O software that are
easy to reuse.

 The results of the experimental analysis indicated that the
SOM approach is a better data mining technique compared
to the others.

 Pattern recognition and classification are well combined in
the SOM algorithm [27].

Although software reusability helps to improve productivity
and enhance software quality, it is still viewed as a challenging
approach. This study examined several data mining strategies
and tools, as well as a variety of recent studies on reusability
prediction of O-O systems. The findings indicate that current
solutions do not adequately address the diverse levels of
reusability associated with O-O software components.
Encouraging the reuse of components based on the expected

Engineering, Technology & Applied Science Research Vol. 14, No. 4, 2024, 15378-15383 15383

www.etasr.com Bisht & Gandhi: Performance Evaluation of Data Mining Techniques to Enhance the Reusability …

level of reusability of newly developed or already available
components can support software engineers and increase their
productivity. This approach can offer time-to-market
advantages for organizations and new products, since
developers can enhance the efficacy, dependability, quality,
and maintainability of their code. This approach could also
result in significantly higher consumer satisfaction. Future
research could focus on a hybrid approach that considers
reusability variables such as design and code reuse. This
research intends to add more features to the reusability
enhancement framework for the assessment of other object-
oriented languages, such as Python and C++.

ACKNOWLEDGMENT

The author expresses his gratitude to Parul Gandhi for
providing continuous guidance during this work. This study did
not receive a specific grant from any funding agency in the
public, commercial, or non-profit sectors.

REFERENCES

[1] A. Alkhalid, M. Alshayeb, and S. A. Mahmoud, "Software refactoring at
the class level using clustering techniques," Journal of Research and

Practice in Information Technology, vol. 43, no. 4, pp. 285–306, Nov.
2011, https://doi.org/10.3316/ielapa.232430239489663.

[2] A. Shatnawi and A. D. Seriai, "Mining reusable software components

from object-oriented source code of a set of similar software," in 2013

IEEE 14th International Conference on Information Reuse & Integration

(IRI), San Francisco, CA, USA, Aug. 2013, pp. 193–200,
https://doi.org/10.1109/IRI.2013.6642472.

[3] G. Maheswari and K. Chitra, "Enhancing Reusability and Measuring

Performance Merits of Software Component using Data Mining,"
International Journal of Innovative Technology and Exploring

Engineering, vol. 8, no. 6s4, pp. 1577–1583, Apr. 2019,
https://doi.org/10.35940/ijitee.F1318.0486S419.

[4] A. Kumar, "Measuring Software reusability using SVM based classifier

approach," International Journal of Information Technology and

Knowledge Management, vol. 5, no. 1, pp. 205–209, 2012.

[5] S. Vodithala and S. Pabboju, "A clustering technique based on the
specifications of software components," in 2015 International

Conference on Advanced Computing and Communication Systems,
Coimbatore, India, 2015, pp. 1–6, https://doi.org/10.1109/ICACCS.

2015.7324095.

[6] K. Deeba and B. Amutha, "Classification Algorithms of Data Mining,"
Indian Journal of Science and Technology, vol. 9, no. 39, Oct. 2016,

https://doi.org/10.17485/ijst/2016/v9i39/102065.

[7] I. E. Araar and H. Seridi, "Software Features Extraction From Object-
Oriented Source Code Using an Overlapping Clustering Approach,"

Informatica, vol. 40, no. 2, pp. 245–255, 2016.

[8] C. Gupta and M. Rathi, "A Meta Level Data Mining Approach to Predict
Software Reusability," International Journal of Information Engineering

and Electronic Business, vol. 5, no. 6, pp. 33–39, Dec. 2013,
https://doi.org/10.5815/ijieeb.2013.06.04.

[9] M. Arifa, N. Mohamed, and K. Archana, "Study of Software Reusability

in Software Components," International Journal of Information and

Communication Technology, vol. 5, no. 7, pp. 2455-2460, Aug. 2013.

[10] S. Bobde and R. Phalnikar, "Restructuring of Object-Oriented Software

System Using Clustering Techniques," in Proceeding of International

Conference on Computational Science and Applications, Saint

Petersburg, Russia, Jul. 2019, pp. 419–425, https://doi.org/10.1007/978-
981-15-0790-8_41.

[11] E. E. Miandoab and F. S. Gharehchopogh, "A Novel Hybrid Algorithm
for Software Cost Estimation Based on Cuckoo Optimization and K-

Nearest Neighbors Algorithms," Engineering, Technology & Applied

Science Research, vol. 6, no. 3, pp. 1018–1022, Jun. 2016,

https://doi.org/10.48084/etasr.701.

[12] A. Rathee and J. K. Chhabra, "Restructuring of Object-Oriented
Software Through Cohesion Improvement Using Frequent Usage

Patterns," ACM SIGSOFT Software Engineering Notes, vol. 42, no. 3,
Sep. 2017, https://doi.org/10.1145/3127360.3127370.

[13] A. Mateen, S. Kausar, and A. R. Sattar, "A Software Reuse Approach

and Its Effect On Software Quality, An Empirical Study for The
Software Industry," International Journal of Management, IT &

Engineering, vol. 7, no. 2, pp. 266–279, Feb. 2017,
https://doi.org/10.48550/arXiv. 1702.00125.

[14] N. Hassan and I. Alsmadi, "Enhance Rule Based Detection for Software

Fault Prone Modules," International Journal of Software Engineering

and Its Applications, vol. 6, no. 1, pp. 75-86, Jan., 2012.

[15] B. Mehboob, C. Chong, S. Lee, and J. Lim, " Reusability affecting
factors and software metrics for reusability: A systematic literature

review," Journal of Software: Practice and Experience, vol. 51, no. 6,
pp. 1416-1458, Mar. 2021.

[16] C. Gupta, S. Maggo, "An efficient prediction model for software

reusability for Java-based object-oriented systems," International

Journal of Computer Aided Engineering and Technology, vol. 6, no. 2,

pp. 182-199, Jan. 2014, https://doi.org/10.1504/IJCAET.2014.060299.

[17] B. Bisht and P. Gandhi, "Software Reusability of Object-Oriented
Systems using Data Mining Techniques," International Journal of

Recent Technology and Engineering (IJRTE), vol. 8, no. 6, pp. 2144–
2152, Mar. 2020, https://doi.org/10.35940/ijrte.F8155.038620.

[18] P. Divanshi and A. Singh, "A Classification-based Predictive Cost

Model for Measuring Reusability Level of Open Source Software,"
International Journal of Recent Research Aspects, vol. 5, no. 1, pp. 19-

23, Jan. 2018.

[19] M. Gupta and S. Singh, "Empirical Evaluation of Software Design
Patterns using Classification Algorithms based Design Metrics,"

International Journal of Applied Engineering Research, vol. 13, no. 15,
pp. 11816–11823, 2018.

[20] M. Fokaefs, N. Tsantalis, A. Chatzigeorgiou, and J. Sander,

"Decomposing object-oriented class modules using an agglomerative
clustering technique," in 2009 IEEE International Conference on

Software Maintenance, Edmonton, Canada, Sep. 2009, pp. 93–101,
https://doi.org/10.1109/ICSM.2009.5306332.

[21] J. Bhagwan and A. Oberoi, "Software Modules Clustering: An Effective
Approach for Reusability," Journal of Information Engineering and

Applications, vol. 1, no. 4, 2011.

[22] S. Manhas, R. Vashisht, P. S. Sandhu, and N. Neeru, "Reusability
Evaluation Model for Procedure Based Software Systems," International

Journal of Computer and Electrical Engineering, pp. 1107–1111, 2010,
https://doi.org/10.7763/IJCEE.2010.V2.283.

[23] P. N. Smyrlis, D. C. Tsouros, and M. G. Tsipouras, "Constrained K-

Means Classification," Engineering, Technology & Applied Science

Research, vol. 8, no. 4, pp. 3203–3208, Aug. 2018,

https://doi.org/10.48084/etasr.2149.

[24] W. B. Frakes and K. Kang, "Software reuse research: status and future,"
IEEE Transactions on Software Engineering, vol. 31, no. 7, pp. 529–

536, Jul. 2005, https://doi.org/10.1109/TSE.2005.85.

[25] N. S. Gill, "Importance of software component characterization for
better software reusability," ACM SIGSOFT Software Engineering

Notes, vol. 31, no. 1, pp. 1–3, Jan. 2006, https://doi.org/10.1145/
1108768.1108771.

[26] R. Keswani, S. Joshi, and A. Jatain, "Software Reuse in Practice," in

2014 Fourth International Conference on Advanced Computing &

Communication Technologies, Rohtak, India, Feb. 2014, pp. 159–162,

https://doi.org/10.1109/ACCT.2014.57.

[27] V. R. Basili, L. C. Briand, and W. L. Melo, "How reuse influences

productivity in object-oriented systems," Communications of the ACM,
vol. 39, no. 10, pp. 104–116, Oct. 1996, https://doi.org/10.1145/236156.

236184.

[28] S. Maggo and C. Gupta, "MLP based Reusability Assessment
Automation Model for Java based Software Systems," International

Journal of Modern Education and Computer Science, vol. 6, no. 8, pp.
45–58, Aug. 2014, https://doi.org/10.5815/ijmecs.2014.08.06.

