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ABSTRACT 

Temporal-vegetation mapping bearing temporal-related features is important because it helps to 

understand the global climate changes that drive resource management and habitat conservation. This 

paper presents a Supervised Normalized Difference Vegetation Index (SNDVI) approach for mapping the 
vegetation cover in arid environment regions. The NDVI is used to extract features to classify land as a 

vegetation cover, water body, or bare soil. Through the use of Normalized Difference Vegetation Index 

(NDVI), regions can be categorized as dry or sandy, based on the soil reflectance values. NDVI is the most 

commonly deployed index for accurate vegetation cover estimates. The NDVI values lie in a range from -1 

to +1, depending on the environmental region and vegetation conditions. It is difficult to assign a specific 

threshold value to distinguish between vegetation and non-vegetation for all the eco-regions under a 

specific landscape and ecological conditions. The proposed approach is based on the quantitative 

verification of the samples as well as the supervised classification method followed to categorize the images. 

The SNDVI approach has been applied to three different locations in three different seasons in arid 

ecoregions to extract features for vegetation mapping. The results disclose that SNDVI is a very reliable 

parameter in extracting true vegetation cover in arid regions. An accuracy evaluation matrix has been 

performed for each case study and the overall obtained accuracy value ranged from 82% to 100%, 

depending on the season of the area under investigation. The utility of the proposed method is determined 
by bench-marking the results with those of the techniques recently utilized by contemporary researchers. 

Keywords-vegetation indices; crop land mapping; remote sensing 
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I. INTRODUCTION  

Natural resources are managed and preserved trough 
estimating the vegetation cover maps of the target regions 
because vegetation plays a critical role in influencing climate 
changes by providing the primary habitat for all living things. 
Cover maps also help in the policy-making of ecosystem 
management. They offer basic information to estimate the 
vegetation cover over a continuous period of time to identify 
and describe natural and artificially maintained environments 
in detail. It is necessary, therefore, to find out the present status 
of the vegetation conditions in order to plan vegetation 
conservation strategies or other similar vegetation-related 
restoration programs properly at a national scale level [1, 2]. 
Mapping has been used to identify rice fields [3], for the 
understanding and precise monitoring of the land cover in order 
to manage and improve crop production [4]. Alternatively, 
spatial resolution has been deployed for visual illumination [5]. 
Remote sensing technology provides practical and budgetary 
ways to explore the vegetation cover compared to traditional 
methods, especially in vastly dispersed areas. The multispectral 
bands of satellite images allow the extraction of valuable 
information related to the landscape, including the vegetation 
cover. Vegetation can be identified by employing satellite 
images of all the visible features of a land area based on its 
identifiable spectral characteristics. The development of remote 
sensing has led to the extraction of several spectral indices that 
are utilized as the most effective means of measuring the 
specific attributes of land to understand the extent of vegetation 
cover [6]. The most commonly used index due to its general 
usefulness is the Normalized Difference Vegetation Index 
(NDVI). The latter is put into service for estimating the 
vegetation cover across diverse domains of interest [7]. The 
NDVI is calculated from multispectral information as a normal 
ratio of the red to near-infrared frequency spectrums [8]. It is 
the most widely exploited spectral Vegetation Index (VI) by 
ecologists and agriculturalists today [9]. The NDVI is a 
productivity parameter and has been used to measure and 
monitor the environmental conditions in terms of yield 
estimation to understand the fertility of a region [10–12], to 
help in precision farming [13], to mitigate land degradation 
[14], in dry land studies [15–18], and in the estimation of the 
vegetation cover acreage [19]. The NDVI is calculated as a 
simple numerical value to assess from afar the area or object 
under study and to measure the livable green vegetation [20, 
21]. The NDVI is computed by: 

NDVI = (NIR - Red)/(NIR + Red)    (1) 

where Red is the visible red reflectance, and NIR the near-
infrared reflectance.  

The values of NDVI extend from -1 to +1 to provide 
information on spatiotemporal changes in vegetation 
distribution, and to offer further knowledge about the habitats 
and the ecological effects of disasters. Higher NDVI values 
mean higher green intensity and vice versa. The NDVI 
prediction gives a close to accurate analysis of the land cover 
characteristics [22]. This paper does not rely on deploying 
fixed threshold values to describe terrain features. Instead, most 
of this work has made use of study-specific criteria. While 

some researchers divide the NDVI index into different 
categories of regions, very low NDVI values of 0.1 and below 
correspond to arid, rocky, sandy, and snowy regions. Medium 
values of 0.2 to 0.3 show shrubs and grassy lands, whereas 
higher values in the range of 0.6 to 0.8 represent temperate and 
tropical rain-forests [23]. Barren soils are symbolized by NDVI 
values close to 0 and water bodies are denoted by NDVI values 
in the negative range [24]. Other researchers divide the range 
where negative values refer to areas with water, swampy 
surfaces, man-made structures, rocks, clouds, and snow, 
whereas bare land usually gives values that fall within 0.1 to 
0.2. Vegetation, however, always has positive values between 
0.2 and 1. For dense and healthy vegetation, the values are 
above 0.5, whereas for sparse vegetation the values range from 
0.2 to 0.5 [25]. Other researchers reported that NDVI values 
belong to the general 0.2 to 0.4 range for areas of sparse 
vegetation and 0.4 to 0.6 for temperate vegetation, whereas 
values higher than 0.6 indicate the highest possible green 
intensity. These fuzzy thresholds lead to differences in the 
estimation of the area of the land-cover features as suggested in 
[17, 26]. This research aims to develop a cost-effective and 
reliable approach to extract vegetation and non-vegetation land 
cover and to produce accurate vegetation mapping in arid 
environment zones through the proposed Supervised NDVI 
(SNDVI) indexing technique. The main contributions of the 
paper are summarized as: 

 The results in this paper do not rely on employing fixed 
threshold values that lead to having diversely ranging index 
values for varying vegetation covers. 

 The proposed SNDVI technique extracts features that 
represent the vegetation and non-vegetation cover more 
accurately than other contemporary techniques, as listed in 
Table III. 

II. STUDY AREA  

The area under examination lies in the north-western side of 
the Kingdom of Saudi Arabia, between the latitudes 26° N and 
27° N and with longitudes 37° E and 38° E, within the 
Madinah region as observed in Figure 1. Three locations of 100 
km2 are selected, each with sparse natural vegetation and each 
representing different backgrounds and varying amounts of 
vegetation. The first location contains sparse natural vegetation 
and a collection of valleys of fine gray sand and gray rocks in 
the western part and shiny sands and yellow rocks in the 
eastern part. The second location entails only sparse natural 
vegetation and bright white to yellow rocks and sandy structure 
formations next to rocks of different shades of gray areas. The 
third location involves a strip of farms in the western and 
northern part with sparse natural vegetation against a bright 
yellow background of sand and rocks. The study area 
represents an arid environment zone with a maximum monthly 
precipitation of 22 mm and a maximum temperature of 40 °C 
[27]. 

III. DATA COLLECTION  

Three Sentinel-2 level 1C satellite images were downloaded 
from the Earth Explorer website. The image acquisition dates 
are in January, April, and August and are chosen to cover 
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minimum, moderate, and maximum temperatures and 
precipitation rates in the study area, which affect the vegetation 
in each image. Sentinel images are free and are generally used 
to estimate vegetation. The pseudo color combinations from 
Band 3 (B3, green), Band 4 (B4, Red), and Band 8 (B8, NIR) 
were performed (Figure 1) for visual interpretation of the 
images. Band 4 (Red) and Band 8 (NIR) are extracted for each 
study site to separately calculate the NDVI. The climate data 
for temperature and precipitation were obtained from the 
Climate Change Knowledge Portal [27]. 

 

 
Fig. 1.  Location map of the study area. 

IV. THE PROPOSED APPROACH 

The main idea of the proposed approach is to extract the 
NDVI values representing vegetation and non-vegetation 
related traits from a set of control or training points as 
composite site values, which are to be used as thresholds for 
vegetation mapping. The steps of the suggested approach are 
manifested in Figure 2. The first step is to produce a false color 
image for the visual interpretation of the satellite location 
image. The second step is to calculate the NDVI in order to 
compute the Vegetation Condition Index (VCI) accordingly. 
The third step relates to the generation of sample points for 
vegetation and non-vegetation land-cover traits. The fourth step 
is to utilize training points on both vegetation and non-
vegetation features to extract the VCI values. The fifth step is 
to generate vegetation maps employing the extracted VCI 
values. The final step is to assess the accuracy of the generated 
maps. 

A. Band Combination 

A false color image is created using the green, red and 
infrared frequency spectra (B3, B4, B8 in Sentinel 2) to easily 
distinguish the vegetation from the non-vegetation features. 
The latter also helps in choosing the location of the training and 
assessment points. Three false color images for January, April, 
and August are produced for the three study zones. 

B. Vegetation Condition Index (VCI) 

The minimum and maximum values of NDVI vary from 
site to site. In this study, the scaled NDVI values are calculated. 

These scaled values range from 0 to 1 and are known as 
vegetation coverage index [5], green vegetation fraction [28], 
proportion of vegetation [29], or VCI [30], which can be 
derived by: 

VCI = (NDVI - NDVImin) / (NDVImax - NDVImin) (2) 

where NDVImin and NDVImax are the Minimum and Maximum 
values of the NDVI, respectively. 

 

 
Fig. 2.  Flowchart of the proposed approach. 

Deploying the Sentinel 2 image, the NDVI is calculated for 
each pixel using Band-4 and Band-8. The minimum and 
maximum values of NDVI for the study zones are subsequently 
determined. Depending on (2), a vegetation cover map of the 
area under exploration is generated and extracted utilizing 80 
training points, 40 points on vegetation and another 40 on non-
vegetation features as displayed in Figure 3. 

C. Vegetation Maps 

After extracting the VCI values, the vegetation maps are 
created for the three study zones in three different seasons with 
four proposed threshold values of the VCI. These thresholds 
will be numbered as threshold 1 to threshold 4 where: 

 Threshold 1 is the minimum VCI value of vegetation 
features. 

 Threshold 2 is the maximum VCI value of non-vegetation 
features. 

 Threshold 3 is the average of the VCI values of non-
vegetation features. 

 Threshold 4 is the average of the minimum VCI value of 
vegetation and the maximum VCI value of non-vegetation 
features.  

Each study zone contains four maps for each season, which 
means 12 maps for each zone. This makes a total of 36 
combinations for the three study zones. 



Engineering, Technology & Applied Science Research Vol. 14, No. 3, 2024, 14420-14427 14423  
 

www.etasr.com Khalil et al.: Supervised NDVI Composite Thresholding for Arid Region Vegetation Mapping 

 

(a) 

 

(b) 

 

(c) 

 

Fig. 3.  Extracted values of VCI. 

D. Accuracy Assessment 

The accuracy assessment of the generated vegetation maps 
can be described as the procedure of comparing the generated 
map with the geographical data assumed to be correct. Usually, 
a set of reference pixels is implemented where the actual data 
on the generated map are known. The relationship between 
these two comparative pieces of information is commonly 
summarized in an error matrix. In this study, the number of the 
reference points used to assess the accuracy of the resulting 
vegetation maps is 80, 40 on the vegetation and 40 on non-
vegetation features. The overall accuracy and Kappa (statistical 
discrepancy measure) coefficient are computed utilizing the 
error matrix data. 

V. RESULTS AND DISCUSSION 

Data samples from Zones-1, 2, and 3, and the results are 
shown in Figures 4, 5, and 6, respectively. The false color 
composite from Sentinel-2 is portrayed in Figure (a), where 
vegetation features appear in the shade of red, whereas Figures 
(b)-(e) exhibit the results derived from applying the four 
proposed thresholds. The estimated vegetated areas are 
demonstrated in green color whereas the non-vegetated areas 
are shown without color. From Figure 4, it can be noticed that 
the vegetation map generated using Threshold 2 is closest to 

the actual vegetation areas depicted in the satellite image. The 
maps in Figures 4-6 were produced employing the VCI raster 
layer. Reclassification is the procedure of setting up in a raster 
dataset of one or more values to specify the resulting outcome 
values. The reclassification tool can be used in the Spatial 
Analyst extension in ArcMap. The normal work flow for users 
in ArcMap has been to begin with the raster layer code 
rendering varying algorithms meant for classification. After 
displaying the layer and being complied with the classification 
reassigned values, the Classify option can be utilized once the 
Reclassify tool is opened to reproduce the choice classification 
and class intervals. In this study, the mapping intervals are the 
suggested VCI thresholds using the described before values 
extracted for sampling data. 

 

 
Fig. 4.  Vegetation maps of Zone 1 in August using: (a) Sentinel-2 false 

color over the area of interest, (b) Threshold 1, (c) Threshold 2, (d) Threshold 
3, (e) Threshold 4. 

Table I illustrates the error matrices for the four thresholds 
of Zone 1 in August and other derived statistical parameters. It 
can be observed that the best overall accuracy of 96.25% was 
obtained employing Threshold 2 while the Kappa coefficient 
was 92.5. The second-best overall accuracy of 88.75% was 
acquired deploying Threshold 4 with a Kappa coefficient of 
77.50. The third-best overall accuracy of 85% was attained 
using Threshold 1 with a Kappa coefficient equal to 70.00. The 
minimum overall accuracy of 80.00% was reached engaging 
Threshold 3 with a Kappa coefficient equal to 60.00. Table II 
displays the accuracy and Kappa coefficient of the four 
threshold methods in the three study zones for the three 
environmental seasons. It can be noticed from the Tables and 
with reference to Figures 4-6 that the best results were obtained 
when using Threshold 2, since they are higher than or equal to 
those of other thresholds in all seasons for all study zones. The 
results of implementing Threshold 2 are very close to those of 
Threshold 1 and Threshold 4 for Zone 2 in April and August.  



Engineering, Technology & Applied Science Research Vol. 14, No. 3, 2024, 14420-14427 14424  
 

www.etasr.com Khalil et al.: Supervised NDVI Composite Thresholding for Arid Region Vegetation Mapping 

 

 

Fig. 5.  Vegetation maps of Zone 2 in August using: (a) Sentinel-2 false 

color over the area of interest, (b) Threshold 1, (c) Threshold 2, (d) Threshold 
3, (e) Threshold 4. 

 

Fig. 6.  Vegetation maps of Zone 3 in August using: (a) Sentinel-2 false 

color over the area of interest, (b) Threshold 1, (c) Threshold 2, (d) Threshold 
3, (e) Threshold 4. 

The results disclose that Threshold 2 is recommended to be 
used in the generation of vegetation maps during all seasons for 
all study areas. 

VI. COMPARISON AND CROSS VALIDATION 

For cross validation, the vegetation maps were generated 
implementing the procedure and thresholds reported in [31], 
based on the study in Australia in which fixed threshold values 
were used. Results manifesting arid zones are reported in [32] 
by classifying the target area into non-vegetation and 
vegetation, utilizing NDVI values less than 0.19 to extract 
features related to the non-vegetation district. The features 
related to the vegetation region such as green cover, shrubs, 
and trees are extracted by employing NDVI values higher than 
0.19. Following the same procedure with fixed threshold 
values, the results of Figure 7 are obtained on the Sentinel-2 
pictures. These findings can be compared with the results 
portrayed in Figures 4-6, which were acquired by the proposed 
procedure. The former results are outstandingly clearer when 
compared to the latter. 

 

 
Fig. 7.  Vegetation maps using the threshold of [31]: (a) Zone-1, (b) Zone-

2, (c) Zone-3. 

Comparing Figures 4-6 to Figure 7, it is clear that using 
fixed NDVI threshold values leads to generating vegetation 
maps that are not as outstandingly clear as the ones produced 
by the proposed SNDVI approach for the mapping of arid 
environment zones. Much of the natural vegetation areas 
appear to be lost due to the employment of fixed NDVI 
threshold values. The accuracy of vegetation maps in Figure 7 
produced by the procedure of [31] is evaluated against the 
maps of Figure 4-6. The accuracy matrices are listed in Table 
III. 

It is evident from Table III that the results of the proposed 
approach in extracting the vegetation cover are more accurate 
than those of the fixed threshold value procedure. The overall 
accuracy for Zone 3 in Table III is high due to the agriculture 
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plantations that represent the main green cover in the study 
area. The natural vegetation appears to be lost in the three study 
areas. The overall accuracies for Zone 1, Zone 2, and Zone 3 

using the procedure of [31] are 90, 75, and 40%, respectively 
compared to the obtained 96.25, 98.75, and 100.00%, 
correspondingly from the proposed procedure. 

TABLE I. ACCURACY ASSESSMENT OF THRESHOLD (A) 1, (B) 2, (C) 3, AND (D) 4, ON ZONE 1 IN AUGUST 

(A) Threshold 1 (August)  

Predicted 

 
Land cover Non-Vegetation Vegetation Total Row P accuracy Omission Error 

 
Non-Vegetation 29 11 40 72.50 27.50 

Reference Vegetation 1 39 40 97.50 2.50 

 
Total Column 30 50 80 

  

 
U Accuracy 96.67 78.00 

 
Overall accuracy 85.00 

 
Commission Error 3.33 22.00 

 
Kappa Coefficient 70.00 

 

(B) Threshold 2 (August)  

Predicted 

 
Land cover Non-Vegetation Vegetation Total Row P accuracy Omission Error 

 
Non-Vegetation 40 0 40 100.00 0.00 

Reference Vegetation 3 37 40 92.50 7.50 

 
Total Column 43 37 80 

  

 
U Accuracy 93.02 100.00 

 
Overall accuracy 96.25 

 
Commission Error 6.98 0.00 

 
Kappa Coefficient 92.50 

 

(C) Threshold 3 (August)  
Predicted 

 
Land cover Non-Vegetation Vegetation Total Row P accuracy Omission Error 

 
Non-Vegetation 24 16 40 60.00 40.00 

Reference Vegetation 0 40 40 100.00 0.00 

 
Total Column 24 56 80 

  

 
U Accuracy 100.00 71.43 

 
Overall accuracy 80.00 

 
Commission Error 0.00 28.57 

 
Kappa Coefficient 60.00 

 

(D) Threshold 4 (August)  

Predicted 

 
Land cover Non-Vegetation Vegetation Total Row P accuracy Omission Error 

 
Non-Vegetation 33 7 40 82.50 17.50 

Reference Vegetation 2 38 40 95.00 5.00 

 
Total Column 35 45 80 

  

 
U Accuracy 94.29 84.44 

 
Overall accuracy 88.75 

 
Commission Error 5.71 15.56 

 
Kappa Coefficient 77.50 

 

TABLE II. ACCURACY ASSESSMENT OF (A) ZONE 1, (B) ZONE 2, AND (C) ZONE 3 IN JANUARY, APRIL, AND AUGUST. 

(A) Zone 1 January April August 

Method Overall Accuracy Kappa  Overall Accuracy Kappa  Overall Accuracy Kappa  

Threshold 1 52.50 5.00 98.75 97.50 85.00 70.00 

Threshold 2 82.50 65.00 100.00 100.00 96.25 92.50 

Threshold 3 67.50 35.00 75.00 50.00 80.00 60.00 

Threshold 4 75.00 50.00 100.00 100.00 88.75 77.50 

 

(B) Zone 2 January April August 

Method Overall Accuracy Kappa  Overall Accuracy Kappa  Overall Accuracy Kappa  

Threshold 1 98.75 97.50 100.00 100.00 98.75 97.50 

Threshold 2 100.00 100.00 98.73 97.47 98.75 97.50 

Threshold 3 71.25 42.50 70.00 40.00 71.25 42.50 

Threshold 4 100.00 100.00 100.00 100.00 100.00 100.00 

 

(C) Zone 3 January April August 

Method Overall Accuracy Kappa  Overall Accuracy Kappa  Overall Accuracy Kappa  

Threshold 1 98.75 97.50 92.50 85.00 100.00 100.00 

Threshold 2 98.75 97.50 97.50 95.00 100.00 100.00 

Threshold 3 71.25 42.50 73.75 47.50 76.25 52.50 

Threshold 4 100.00 100.00 97.50 95.00 100.00 100.00 
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TABLE III. ACCURACY ASSESSMENT OF VEGETATION MAPS GENERATED USING THRESHOLDS OF [31] ZONE (A) 1, (B) 2, AND (C) 3 

Predicted 

(A) Zone 1 Land cover Non-Vegetation Vegetation Total Row P accuracy Omission Error 

 
Non-Vegetation 32 8 40 80.00 20.00 

Reference Vegetation 40 0 40 0.00 100.00 

 
Total Column 72 8 80 

  

 
U Accuracy 44.44 0.00 

 
Overall accuracy 40.00 

 
Commission Error 55.56 100.00 

 
Kappa Coefficient -20.00 

 

Predicted 

(B) Zone 2 Land cover Non-Vegetation Vegetation Total Row P accuracy Omission Error 

Non-Vegetation 40 0 40 100.00 0.00 

Reference  Vegetation 20 20 40 50.00 50.00 

Total Column 60 20 80 

U Accuracy 66.67 100.00 Overall accuracy 75.00 

Commission Error 33.33 0.00 Kappa Coefficient 50.00 

 

Predicted 

(C) Zone 3 Land cover Non-Vegetation Vegetation Total Row P accuracy Omission Error 

 
Non-Vegetation 39 1 40 97.50 2.50 

Reference Vegetation 7 33 40 82.50 17.50 

 
Total Column 46 34 80 

  

 
U Accuracy 84.78 97.06 

 
Overall accuracy 90.00 

 
Commission Error 15.22 2.94 

 
Kappa Coefficient 80.00 

 

VII. CONCLUSION 

In this study, vegetation cover maps were generated by 
utilizing the proposed Supervised NDVI approach (SNDVI) in 
three arid regions located in northwestern Saudi Arabia. This 
approach solves the problem of using fixed of constant 
threshold values when estimating the vegetation cover from 
satellite images. The proposed SNDVI approach relies on agile 
threshold values depending on the site and vegetation cover to 
generate vegetation maps from satellite images. The research 
investigates four methods of extracting the threshold values 
according to the scaled NDVI Vegetation Condition Index 
(VCI) values. In these four methods, the threshold values were 
calculated as: Threshold 1 as the minimum VCI value of 
vegetation features, Threshold 2 as the maximum VCI value of 
non-vegetation features, Threshold 3 as the average of the VCI 
values of non-vegetation features, and Threshold 4 as the 
average of the minimum VCI value of vegetation and 
maximum VCI value of non-vegetation features. These 
threshold values were applied to the three study zones with 
different vegetation densities in three environmental seasons. 
After vegetation mappings were developed, the accuracy was 
estimated. The scaled NDVI values were extracted using 40 
testing points on vegetation features and 40 points on non-
vegetation features. It has been concluded that applying 
Threshold 2 gives the best overall accuracy and generates the 
more precise vegetation maps. Among the proposed thresholds, 
as listed in Table II, Threshold 2 values exhibit the best 
performance for all study zones and seasons. The technique of 
obtaining a threshold value is the most simple and accurate 
thresholding technique for generating vegetation cover maps. 
From the cross validation process it can be concluded that the 
proposed SNDVI approach is simple in implementation and 
offers more accurate results than the ones acquired when using 
a fixed value, showing accuracy of 96.25% (compared to 90%), 
98.75% (compared to 75%) and 100% (compared to 40%). 

DATA AVAILABILITY STATEMENT 

The satellite images used in this research are taken from 
https://earthexplorer.usgs.gov/ 
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