
Engineering, Technology & Applied Science Research Vol. 14, No. 3, 2024, 14049-14055 14049

www.etasr.com Brekalo et al.: Enhancing Rendering Performance in Complex Visualizations by using Optimization …

Enhancing Rendering Performance in Complex

Visualizations by using Optimization

Techniques and Algorithms in Browser

Environments

Sanja Brekalo

Medimurje University of Applied Sciences in Cakovec, Croatia

sbrekalo@mev.hr (corresponding author)

Klaudio Pap

Faculty of Graphic Arts, University of Zagreb, Croatia

klaudio.pap@grf.hr

Bruno Trstenjak

Medimurje University of Applied Sciences in Cakovec, Croatia

btrstenjak@mev.hr

Received: 6 March 2024 | Revised: 22 March 2024 and 25 March 2024 | Accepted: 27 March 2024

Licensed under a CC-BY 4.0 license | Copyright (c) by the authors | DOI: https://doi.org/10.48084/etasr.7201

ABSTRACT

This research is based on the hypothesis that optimization techniques can significantly improve the

performance of complex visualizations in web browsers. The aim of the former was to determine to which

extent the optimization can be achieved. Optimizations were coded to improve visualization, reduce the

need for visual rendering, and decrease script execution time as well as the needed resources. To test the

hypothesis, various optimization methods and algorithms were implemented on the initial visualization

script and were tested. The main goal of this implementation was to assess how optimization methods,

including quadtrees, spatial hashing, binning, LOD adjustments, and the use of the map data structure,
affect the performance of web visualization. The obtained results confirmed the hypothesis and the original

animation was significantly improved. The implementation of optimizations had a positive effect on the

performance of visualizations. The conducted tests gave concrete evidence confirming the validity of the

initial hypothesis. This led to certain conclusions regarding which methods provide the best results when

optimizing complex visualizations. Key recommendations for code optimization, which can be used in the
development of complex visualizations in web browsers, were derived.

Keywords-optimization; complex visualizations; browser environments; spatial indexing algorithms;

performance enhancement

I. INTRODUCTION

The challenge of effectively rendering complex
visualizations is a significant area of research in the field of
computer graphics and data visualization. The demand for
more complex visual presentations is growing, and thus the
need for optimization techniques to improve visualizations.
Optimization algorithms have been utilized in diverse scientific
and industrial domains to improve efficiency. Various
optimization techniques and algorithms have been applied to
enhance the effectiveness in processing and displaying data to
varying degrees of success [1, 2]. The application of
optimization techniques offers the potential of increasing the
efficiency of displaying complex visualizations in real time.

Advances in this area highlight the critical role of optimization
in overcoming problems associated with computational
limitations and performance deficiencies. Techniques, such as
quadtrees [3], spatial hashing [4], binning, and Level-of-Detail
(LOD) adjustments [5], along with code improvements using
data structures like Map were chosen to be tested as effective
strategies for optimizing rendering. The importance of
optimization in rendering is not a new concept, however, its
application within browser environments by deploying p5.js for
complex visualizations, is a relatively unexplored area. This
paper aims to demonstrate how a combination of optimization
techniques can ameliorate rendering performance in such
scenarios. Building on the work of implementing optimization
with algorithms in various fields [6-9], this study extends those

Engineering, Technology & Applied Science Research Vol. 14, No. 3, 2024, 14049-14055 14050

www.etasr.com Brekalo et al.: Enhancing Rendering Performance in Complex Visualizations by using Optimization …

principles to the specific challenges associated with rendering
complex visualizations in browser environments.

JavaScript library p5.js was chosen for testing purposes. It
is a library developed for learning, prototyping, electronic art,
visualizations, visual programming and creating interactive
installations [10]. p5.js is used in web environments, utilizing
the JavaScript language. In addition to serving as a tool for
artistic expression and design, p5.js is employed in education to
introduce programming and computer graphic concepts to
students in an intuitive way enabling those who are at
introductory programming levels to master a wide range of
academic concepts more effectively [11].

Despite the extended research in the field of rendering
performance optimization, this paper recognizes and explores a
specific niche within the p5.js environment. p5.js is a tool
widely used in education and digital art, but less explored in the
context of advanced performance optimization. This research
attempts to fill this gap through detailed analysis and
application of various optimization techniques, thereby
providing new insights that are directly applicable and useful to
the developer and research community.

II. VISUALISATIONS DEVELOPED FOR TESTING

HTML documents with p5.js script were created for the
purposes of testing. The constructed animation was a flow field
animation that utilizes the concepts of vector fields and Perlin
noise [12] to generate a dynamic animation. The developed
animation simulates natural flows [13] through the interaction
of particles with a generated flow field. The flow of particles
can simulate natural phenomena, such as wind, water, or flock
behavior, and is applied to achieve more natural animations.
The flow field in the code is made from vectors with a specific
direction representing the direction of particle movement. The
former changes in each drawing cycle by altering the Perlin
noise, resulting in a dynamic animation which is transformed
over time. This script was selected for testing due to its
capability to be evaluated across various degrees of
complexity. Complexity can be easily introduced and amplified
by adding more particles to the animation. Firstly, the original
animation was created, and then it was optimized in multiple
ways with various optimization techniques. All developed
scripts share common parts, which have been extracted into
external files. The settings for the script (the configuration file)
and the class for creating particles for animation and flow field
creation are identical in all tested cases and do not change
performance between scripts. Variations in optimized files
were made by modifying the draw method (draw method in
p5.js defines changes in each animation frame in browser
Canvas) through which the animation is updated and displayed
in each drawing cycle. Within each draw method of the tested
scripts, a flow field is defined. This flow field affects the
movement of particles and is influenced by Perlin noise. After
setting up the flow field, all particles are iterated through, and
the flow field is applied to them, determining their movement,
their reaction to the edges of the canvas, and their display on
the canvas. The animation visually represents how particles
follow the flow field, creating complex patterns as shown on
Figure 1.

Fig. 1. Created flow field animation used for testing.

Canvas size was set to 800×600 px for testing. The Canvas
is divided by 10, both horizontally and vertically to obtain
fields for vectors that influence the direction of particle
movement. In p5.js, the noise() function is used to generate
Perlin noise. The implementation of the noise() function in
p5.js supports up to three parameters representing coordinates
in the n-dimensional noise space. For testing purposes, xoff and
yoff are altered by 0.05 and zoff by 0.01, every time the vector
field is generated (in each frame). The speed of the particles
during the animation is not differentiated. Particles are defined
in the code via a class within which methods that determine the
appearance and movement of particles and their display on the
Canvas are determined.

During testing, the animation was limited to 15 s, and the
number of animated particles varied. The original animation
was modified in several ways, but the change was made only
within the draw method, in which the way particles are drawn
on the screen was altered by applying optimization algorithms.
During testing, increasing the number of particles being
animated, leads to animation issues, and its framerate
decreases. Optimization techniques aim to increase the
framerate in animations with many particles. Generally,
optimization techniques intend not to draw or delete particles
that are not visible on the screen to improve the animation
performance. Particles that are hidden from view can be
temporarily excluded from the rendering process, thereby
reducing the load on the GPU or CPU. For particles displayed
as small dots or circles on the screen, a difference which is not
visible to the human eye would typically be within a few
pixels, especially if the screen is viewed from a normal
distance. Threshold in optimising particle visualisation for
detecting "overlap" between particles was set to the distance of
1 pixel as the rule for removing or hiding particles. With such
intervention, the difference between original and optimized
animation is difficult to detect. Over time, more and more
particles overlap because they are affected by the same vector
field. To prevent a situation in which nearly all particles are
removed, a minimum threshold of 1000 particles was
established to ensure the animation does not alter to that point.
This ascertains that the animation remains as similar as
possible to the original. Tests were conducted with the
following optimized files:

Engineering, Technology & Applied Science Research Vol. 14, No. 3, 2024, 14049-14055 14051

www.etasr.com Brekalo et al.: Enhancing Rendering Performance in Complex Visualizations by using Optimization …

1. Array and Array/Delete: Not displaying or deleting

particles if they overlap, checking overlap with arrays. The

array of particles is traversed, and only particles that are
located more than 1 px away from the particles already

placed in the new array are kept. When deleting, the array

created ultimately replaces the initial array of particles.

2. Map and Map/Delete: Not displaying particles that

overlap, with verification via Map. A Map is used to store
particles from the original array of particles, with the keys

in the Map defined as coordinates rounded to whole

numbers. This ensures that particles with identical

coordinates are not stored in the Map, thereby reducing the
number of particles displayed, especially those that are

very close to each other (less than 1 px difference). When
deleting particles, an array that replaces the original one is
created from the map.

3. Binning and Binning/Delete with Map: Binning [14]
divides space into rows and columns, directly mapping

particles to a grid according to their coordinates. For

testing, bins were defined as a Map and the size of bins
was set to 50×50 px. Within each bin, another Map is used

to store particles with a precision of 1 px. This allows for

the removal/deletion of particles that overlap by less than 1

px within the same bin.

4. Spatial Hashing and Spatial Hashing/Delete: Spatial
hashing [15] deploys the idea of dividing space into fixed
"buckets" and then assigning particles to these cells based

on their position. This allows for quick searching of

neighboring particles without the need to review all
particles. Each "bucket" within the spatial hash grid is set

to have a size of 50×50 pixels, within which the particles

are grouped. For each particle, only other particles within
the same bucket need to be checked for particle overlap.

5. LOD and LOD/Delete: This approach allows only part of

the particles to be displayed in areas of high particle

density. In the created animation, each cell for density

analysis is 50×50 px and the particle density is analyzed
separately for each particle. The density threshold is set to

50 particles per cell. If there are 50 or fewer particles

within a cell, all will be displayed, otherwise, a random

selection determines which particles will be shown, or in
the case of deleting particles, which will be kept.

6. Quadtree and Quadtree/Delete: The code initiates a

Quadtree [16] with a capacity of 4. Quads are divided into

smaller squares only if they are larger than 1 px and if they
exceed their capacity. This enables precise organization of

particles without unnecessary overlapping. Particles are

initially marked as invisible and are then inserted into the

Quadtree for more efficient searching. Only particles that
are within a defined range (1 px) and marked as visible

(only 1 px in range) are exhibited.

The animations were tested on a computer equipped with an
Intel® Core™ i7-9750H processor with a 2.60 GHz clock
speed, and 16 GB of installed RAM. The system uses a 64-bit

version of the Windows 10 Education N operating system.
Google Chrome web browser (Ver. 122.0.6261.95, 64-bit) was
utilized for executing and testing the animations.

III. TESTING AND RESULTS

During the testing phase, all animations were set to run for
15 s, and during this period, the average framerate of the
animation, the total number of frames created, the maximum
and minimum framerate, the mode, and the standard deviation
were measured. Each animation was run 10 times, and the
values presented in this paper are the averages of the conducted
measurements. Table I illustrates the results. Results higher
than 30 fps are considered as Satisfactory/Optimal framerates,
while 30 fps is considered the lower limit for smooth animation
in many digital applications. Values from 29-12 fps are
somewhat acceptable framerates. They provide less smooth
animation but are still capable of conveying motion. In
practice, if the animation is not too fast or complex, 12 fps can
be acceptable, though some flickering may be noticeable.
Values below 12 fps are considered unacceptable.

TABLE I. AVERAGE FRAMERATE FOR ANIMATIONS
WITH DIFFERENT NUMBERS OF PARTICLES

 Number of particles in the animation

1000 2500 5000 7500 10000 12500 15000

Original 60 37 18 12 9 7 6

Array 60 41 8 3 2 1 1

Array/Delete 60 51 10 4 2 1 1

Map 60 53 28 16 11 9 7

Map/Delete 60 56 41 27 19 13 9

Spatial Hashing 60 51 27 16 11 9 7

Spatial

Hashing/Delete
60 54 36 23 13 10 8

LOD 60 44 25 18 15 13 11

LOD/Delete 60 52 41 39 39 39 37

Binning 60 39 20 13 9 8 6

Binning/Delete 60 56 42 25 17 12 9

Quadtree 60 40 20 13 10 8 7

Quadtree/Delete 60 56 44 32 23 15 10

30-60 fps Satisfactory/Optimal

13-29 fps Marginal

1-12 fps Unacceptable

Given the results, it is clear that increasing the number of

particles leads to a significant drop in framerate. This expected
behavior occurs because a larger number of particles demands
more computing resources for processing and displaying. The
obtained findings reveal that the animation remains fluid for
animations with 1000 particles, regardless of the animation
code used. With 2500 particles, all code interventions led to
improvements. Beyond 5000 particles, Array and Array/Delete
optimization yields unsatisfactory results. In the context of flow
field animations, adding an additional layer of logic to manage
particle overlap proved to be counterproductive. This becomes
particularly pronounced when the particle count is high, as it
requires extensive computations to determine which particles
not to display or delete. When implementing an array to check
for overlaps, each particle is compared to those already added
to the new array. As the number of particles increases, the
number of comparisons exponentially grows, significantly
increasing the total time needed for processing all particles.

Engineering, Technology & Applied Science Research Vol. 14, No. 3, 2024, 14049-14055 14052

www.etasr.com Brekalo et al.: Enhancing Rendering Performance in Complex Visualizations by using Optimization …

Array optimization may be beneficial for a smaller number of
particles, where there are fewer comparisons and less memory
load. However, with a larger number of particles, the benefits
are lost due to raised computational and memory demands,
suggesting that such a form of optimization should be avoided
in these cases. Other techniques proved useful in maintaining a
higher framerate compared to the original approach with a
larger number of particles.

Methods that involve deleting overlapping particles tend to
maintain a higher framerate due to the elimination of the
overlapping particles which reduces the number of particles to
1000, essentially restoring fluid animation. From this, it can be
concluded that in situations with a high density of particles,
managing memory and the number of active objects is key to
performance. The greatest impact on performance will come
from reducing the number of particles that need to be animated.

Optimization using Maps for filtering and displaying
particles demonstrated significantly better results compared to
optimization using Arrays. This improved performance can be
attributed to the more efficient overlap check using Maps.
Defining Map keys as spatial coordinates ensures that particles
with identical coordinates are not stored multiple times. This
automatically filters particles that are very close to each other,
reducing the total number of particles to be displayed and
facilitating the deletion of hidden particles. Using Maps
eliminates the need for double loops and decreases the
computational complexity of the process. The efficiency of
Maps comes from their ability to provide quick access and data
updates, significantly speeding up the decision-making process
on which particles to retain for display. Although this method
does not utilize complex optimization algorithms, its simplicity
and efficiency in practice make it a good option. Deploying
Maps to filter particles by coordinates can achieve significant
performance improvements with relatively simple logic.

Table II displays the results of performance calculations
after code optimization. The table depicts the percentages of
improvement calculated using the formula
((FPSoptimised−FPSoriginal)/ FPSoriginal)×100%. Improvement is
classified as minimal, significant, or optimal depending on its
percentage. Any improvement that is statistically significant
and consistently reproducible can be considered beneficial.
Improvements of 20% or more are regarded significant and can
greatly enhance user experience, reduce the load on hardware
resources, or enable additional functionalities that were not
feasible before due to performance limitations. Improvements
of 50% or more are thought as optimal and often result in
significant changes in application performance. Such
improvements can change the way an application is used,
enabling more complex simulations, faster data processing, or
smooth animations in high resolution. For highly interactive
applications or games, a framerate improvement leading to
smoother display can have a direct impact on user experience
and is thus considered highly valuable. Ultimately, the goal is
to achieve a balance between the costs of optimization
(including the time and resources needed for implementation)
and the benefits that this optimization brings in terms of
performance and user experience.

TABLE II. PERFORMANCE OPTIMIZATION PERCENTAGES
FOR ANIMATIONS WITH VARYING NUMBERS OF

PARTICLES

 Number of particles in the animation

2500 5000 7500 10000 12500 15000

Array 11 -56 -75 -78 -86 -83

Array/Delete 38 -44 -67 -78 -86 -83

Binning 5 11 8 0 14 0

Quadtree 8 11 8 11 14 17

Spatial

Hashing
38 50 33 22 29 17

Map 43 56 33 22 29 17

LOD 19 39 50 67 86 83

Spatial

Hashing/Delete
46 100 92 44 43 33

Binning/Delete 51 133 108 89 71 50

Map/Delete 51 128 125 111 86 50

Quadtree/Delete 51 144 167 156 114 67

LOD/Delete 41 128 225 333 457 517

> 50% Optimal Improvement

20-50% Significant Improvement

1-20% Minimal Improvement

< 0% No change or deterioration in performance

Fig. 2. Average optimization percentage.

Figure 2 portrays a comparison of the average optimization
for all measurements. It is evident that all Delete algorithms
bring optimal improvements. Generally, it can be concluded
that methods involving particle deletion show better
performance as the number of particles increases. This is
because delete techniques reduce the number of particles for
the animation, thereby decreasing the complexity of the code
being executed. The LOD/Delete method exhibits
exceptionally good performance stability and the best results
from those of all the tests. With LOD/Delete, even at the
highest number of particles, the framerate remains high.
LOD/Delete has proven to be the most effective technique,
with high percentages of improvement even at the highest
number of particles. The LOD approach has proven very
effective in dynamically adjusting animation details according
to the available resources. This technique provides the best
improvements due to the modified deletion technique. With
this algorithm, deletion is determined by the density of particles
in a specific area, and is randomly performed. The particular
technique, which differs from other algorithms that precisely
delete particles, requires fewer comparisons to exactly
determine which particles need to be deleted, thus optimizing

Engineering, Technology & Applied Science Research Vol. 14, No. 3, 2024, 14049-14055 14053

www.etasr.com Brekalo et al.: Enhancing Rendering Performance in Complex Visualizations by using Optimization …

the code to the greatest extent. Such a code modification also
changes the way the animation is displayed, as random deletion
of particles is noticeable in the animation. The best
optimization of the animation is achieved with LOD/Delete but
it sacrifices precision in deleting particles and losses in the
visual quality of the animation occur. Adaptive techniques like
LOD, which adjust the level of detail in real-time, can provide
consistent performance even under heavy load.

If there is a need for deletion precision to be maintained,
Quadtree/Delete has proven to be very effective, especially
with a higher number of particles, as it shows a significant
improvement in performance compared to the original
animation. Interesting results are also provided by Map/Delete,
where high code execution optimization is achieved without the
implementation of an optimization algorithm but only by
changing the code execution logic. This technique
demonstrates consistent improvements with an increasing
number of particles, indicating the efficiency of using the Map
to eliminate overlapping particles.

Among the techniques that do not delete particles and only
hide them from the animation, LOD, Map, and Spatial Hashing
have proven to be the best. If the precision of the animation is
not important, LOD provides optimal optimization while Map
and Spatial Hashing offer satisfactory results. From the
obtained results shown in Figure 3, it is evident that techniques,
such as LOD/Delete, Quadtree/Delete and Map/Delete reveal
higher standard deviations during execution. In the case of
Delete scripts, the higher standard deviation and oscillations in
script execution can be attributed to changes in the framerate
that occur due to the deletion of particles, i.e. as the number of
particles in the visualization decreases, the framerate increases.
This is precisely why these visualizations give a large standard
deviation. Standard variation and framerate are anticipated to
normalize through script execution, aiming for an average
framerate of 60 fps to ensure smooth and fluid animations.

Fig. 3. Average standard deviation in fps across all tests for each

optimization script.

In standard animations, variations in execution and variable
framerate can result from several factors, namely source code
complexity, memory and processor efficiency, and other
system resources. A high standard deviation may suggest that

animations vary in predictability, potentially affecting user
experience. Due to variations in performance, some
frameworks may run smoothly, while others may experience
stutters or delays, depending on system load and code
efficiency. Higher standard deviation indicates unpredictable
performances, which can be problematic from the point of view
of user experience or interactive visualizations. An example of
large fps variations is shown by Array, where problems arise
due to inefficient use of resources.

Key conclusions were drawn from the conducted research
and comparisons. These can be applied to other code
visualizations and optimizations, regardless of the specific
implementation details or technology used:

 Optimized computation of complex visualizations is
important to ensure smooth interaction and user experience.
Various optimization strategies are key to achieving this
goal.

 Optimizations that enable dynamic adaptation under
increased load can enable high performance.

 Reducing the load on processing and memory resources
ensures fluid visualizations. With demanding calculations
and complex scripts, it is necessary to optimize the
management of data sets and avoid unnecessary processing.

 Application of various optimization techniques and
algorithms can significantly improve visualization
performance. When choosing optimization techniques, it is
necessary to strategically select and combine different
approaches, with continuous evaluation and adaptation
based on specific project requirements and constraints.

 By adjusting the LOD in rendering, based on density and
random deletion, visualizations can be greatly optimized
with less change in visual quality for the user.

 The implementation of Quadtree algorithms for the
organization of particles and more efficient detection of
overlaps or collisions permits the creation of more fluid
visualizations.

 Utilizing the Map structure in JavaScript promotes fast
filtering and comparison of data, while reducing the need
for double loops and computational complexity, allowing
for fast data access and updates.

The findings of this study support the hypothesis that
optimization techniques can significantly improve (more than
500% in the optimal cases) rendering performance in browser
environments. The obtained results emphasize the wider
applicability and potential of optimization methods in
improving visualizations based on web technologies.

This paper contributes to the academic discourse on code
optimization and provides practical insights and guidance for
developers and researchers investigating complex visualization
tasks and their performance. Although some techniques have
demonstrated remarkable results, it is important to continue
research and experimentation. It is necessary to discover new
models and approaches to optimization, which can be achieved

Engineering, Technology & Applied Science Research Vol. 14, No. 3, 2024, 14049-14055 14054

www.etasr.com Brekalo et al.: Enhancing Rendering Performance in Complex Visualizations by using Optimization …

by combining different techniques or developing new
algorithms.

The application, comparison, and evaluation of various
optimization techniques within the p5.js [17-19] environment
was performed in an innovative way, including Quadtree,
Spatial Hashing, Binning, LOD adjustments, and the use of the
Map data structure. This detailed analysis presents a new
approach in optimizing the performance of complex animations
in web browsers, demonstrating how advanced optimization
techniques can be successfully applied and adapted to improve
performance in p5.js applications. This paper presents specific
recommendations for the implementation of these optimization
techniques, thus providing practical value for developers and
researchers engaged in the creation of complex visualizations.
By comparing the performance of different optimization
approaches, the most efficient techniques were identified,
thereby providing important guidelines that can contribute to
more effective coding and a better user experience. The
discovery that techniques like LOD/Delete provide significant
performance improvements even under high load is another
important contribution of this paper. This finding highlights the
potential of adaptive optimization techniques in dynamic web
environments, which may inspire further research and
development in the field of rendering optimization. Finally, the
application of specific optimization algorithms within the
browser environment, especially applying p5.js, adds new
dimensions to the existing literature. Not only does this
research demonstrate how advanced optimization techniques
can be successfully implemented in p5.js applications, but also
encourages further exploration and innovation in pedagogical
approaches to computer graphics programming and learning,
with a particular focus on performance and optimization. With
these contributions, this work is positioned as a significant
reference in continuous efforts to improve the efficiency and
performance of web-based visualizations, contributing to both
the academic and practical spheres of software development.

IV. CONCLUSION

The acquired results show significant improvements in
rendering performance through the application and adaptation
of various optimization techniques in the p5.js environment.
The findings not only confirm the effectiveness of our
approaches, but also contribute to the existing literature by
offering new insights into the application of optimization
strategies in the specific contexts of web development, digital
art and education.

In order to execute complex computer calculations and
perform visualizations and animations, it is recommended to
use optimization techniques and algorithms as displayed in this
paper. As a result of the optimization, the original tested
animation was improved by over 500% in its performance. The
percentage of improvement varied depending on the applied
optimization algorithm. Techniques that can be applied when
optimizing the code include the application of various
optimization algorithms, the development of algorithms related
to the problem being solved, or the application of code
improvement using optimized data structures such as Maps.

This research contributes to the academic discussion on
optimization. From the acquired results, practical tips and
guidelines can be drawn for developers and researchers
involved in solving complex optimization tasks. The novelty of
the conducted research lies in the application of optimization
techniques within the browser environment using the p5.js
library, JavaScript code, and HTML Canvas. The p5.js library
has not been thoroughly explored for such purposes. Further
research could be aimed at researching and achieving even
greater efficiency when applying optimization techniques,
which could be accomplished by applying dynamic and
adaptive algorithms in web browsers.

The conducted research and the obtained results indicate the
fact that the application of optimization techniques can
crucially improve performance efficiency, reduce the load on
resources, and ameliorate user experience. The integration of
optimization techniques into the program code can affect the
possibility of developing more complex and resource-efficient
web applications. The application of optimization algorithms in
p5.js also opens space for innovation in pedagogical
approaches to learning programming and computer graphics,
where performance and optimization topics could be studied.

REFERENCES

[1] R. V. V. Krishna and S. Srinivas Kumar, "Hybridizing Differential
Evolution with a Genetic Algorithm for Color Image Segmentation,"

Engineering, Technology & Applied Science Research, vol. 6, no. 5, pp.
1182-1186, Oct. 2016, https://doi.org/10.48084/etasr.799.

[2] B. K. Alsaidi, B. J. Al-Khafaji, and S. A. A. Wahab, "Content Based

Image Clustering Technique Using Statistical Features and Genetic
Algorithm," Engineering, Technology & Applied Science Research, vol.

9, no. 2, pp. 3892-3895, Apr. 2019, https://doi.org/10.48084/etasr.2497.

[3] M. Platings and A. M. Day, "Compression of large-scale terrain data for
real-time visualization using a tiled quad tree," Computer Graphics

Forum, vol. 23, no. 4, pp. 741-759, Dec. 2004, https://doi.org/10.1111/
j.1467-8659.2004.00806.x.

[4] W. Duan, J. Luo, G. Ni, B. Tang, Q. Hu, and Y. Gao, "Exclusive

grouped spatial hashing," Computers & Graphics, vol. 70, pp. 71–79,
Feb. 2018, https://doi.org/10.1016/j.cag.2017.08.012.

[5] M. Trapp and J. Döllner, "Interactive Close-Up Rendering for

Detail+Overview Visualization of 3D Digital Terrain Models," in 2019

23rd International Conference Information Visualisation (IV), Paris,

France, Jul. 2019, pp. 275–280, https://doi.org/10.1109/IV.2019.00053.

[6] S. Weiss and R. Westermann, "Differentiable Direct Volume
Rendering," IEEE Transactions on Visualization and Computer

Graphics, vol. 28, no. 1, pp. 562-572, Jan. 2022, https://doi.org/10.1109/
TVCG.2021.3114769.

[7] Q. Zaheer and J. Masud, "Visualization of flow field of a liquid ejector
pump using embedded LES methodology," Journal of Visualization, vol.

20, no. 4, pp. 777-788, Nov. 2017, https://doi.org/10.1007/s12650-017-
0429-3.

[8] M. Auer and A. Zipf, "3D WebGIS: From Visualization to Analysis. An

Efficient Browser-Based 3D Line-of-Sight Analysis," ISPRS

International Journal of Geo-Information, vol. 7, no. 7, Jul. 2018, Art.

no. 279, https://doi.org/10.3390/ijgi7070279.

[9] M. Emelianenko, "Fast Multilevel CVT-Based Adaptive Data
Visualization Algorithm," Numerical Mathematics-Theory Methods and

Applications, vol. 3, no. 2, pp. 195-211, May 2010, https://doi.org/
10.4208/nmtma.2010.32s.5.

[10] B. Subbaraman, S. Shim, and N. Peek, "Forking a Sketch: How the

OpenProcessing Community Uses Remixing to Collect, Annotate, Tune,
and Extend Creative Code," in Proceedings of the 2023 ACM Designing

Interactive Systems Conference, New York, NY, USA, Apr. 2023, pp.
326–342, https://doi.org/10.1145/3563657.3595969.

Engineering, Technology & Applied Science Research Vol. 14, No. 3, 2024, 14049-14055 14055

www.etasr.com Brekalo et al.: Enhancing Rendering Performance in Complex Visualizations by using Optimization …

[11] C. Orban, C. D. Porter, N. K. Brecht, R. M. Teeling-Smith, and K. A.
Harper, "A novel approach for using programming exercises in

electromagnetism coursework," in 2017 Physics Education Research

Conference Proceedings, Mar. 2018, pp. 288–291, https://doi.org/

10.1119/perc.2017.pr.067.

[12] C. Gasch, M. Chover, I. Remolar, and C. Rebollo, "Procedural
modelling of terrains with constraints," Multimedia Tools and

Applications, vol. 79, no. 41-42, pp. 31125-31146, Aug. 2020,
https://doi.org/10.1007/s11042-020-09476-3.

[13] W. Lefer, B. Jobard, and C. Leduc, "High-quality animation of 2D

steady vector fields," IEEE Transactions on Visualization and Computer

Graphics, vol. 10, no. 1, pp. 2-14, Jan.-Feb. 2004, https://doi.org/

10.1109/TVCG.2004.1260754.

[14] "Binning in Data Mining," GeeksforGeeks. https://www.geeksforgeeks.

org/binning-in-data-mining/.

[15] "Spatial Hashing," GameDev.net. https://gamedev.net/tutorials/
programming/general-and-gameplay-programming/spatial-hashing-

r2697.

[16] "Quad Tree," GeeksforGeeks. https://www.geeksforgeeks.org/quad-tree/.

[17] "Optimizing p5.js Code for Performance," GitHub. https://github.com/
processing/p5.js/wiki/Optimizing-p5.js-Code-for-Performance.

[18] "Overview. A short introduction to the Processing software and projects

from the community," Processing. https://processing.org//overview/.

[19] "Home," p5.js. https://p5js.org/.

