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ABSTRACT 

The Internet of Things (IoT) is based on Wireless Sensor Networks (WSNs), which are essential for many 

applications. Denial of Service (DoS) attacks are a major risk for WSNs due to their open architecture and 

limited resources. This paper investigates how different Machine Learning (ML) methods can be used to 

identify DoS attacks and mitigate their effects. The predictions from several models were combined using 

the ensemble method to increase overall accuracy, while explainable Artificial Intelligence (AI) techniques 

were also deployed to enhance transparency and understanding. To compare the performance of both hard 

and soft ensemble methods, the WSN Dataset (WSN-DS) and the WSN Blackhole, Flooding, and Selective 

Forwarding (WSN-BFSF) dataset were utilized. The ensemble techniques aggregated predictions from 

multiple models to improve overall accuracy, while both showed high accuracy for both datasets. With an 

accuracy of 98.12%, the soft ensemble technique slightly outperformed the hard ensemble technique for 

the WSN-DS dataset, which had an accuracy of 97.97%. For the WSN-BFSF dataset, the hard ensemble 

technique achieved an accuracy of 99.967%, while the soft ensemble technique achieved an excellent 

accuracy of 100%. 
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I. INTRODUCTION  

WSNs are geographically distributed networks of sensors 
that communicate wirelessly to track various environmental or 
physical parameters. Small, inexpensive sensor nodes with 
sensing, processing, and communication capabilities make up 
most of these networks. With their ability to collect and 
transmit data in real time without the need for a pre-existing 
communication infrastructure, WSNs have found applications 
across a wide range of fields. They can be detected in a variety 
of industries, supporting increased productivity, improved 
monitoring, and informed decision-making [1]. As a key 
component of contemporary technology, WSNs enable the 
real-time collection and transmission of data for a wide range 
of applications including healthcare, industrial automation, 
agriculture, and environmental monitoring [2]. In the 
healthcare industry, they are used to manage medical 
equipment, track vital signs, and monitor patients, enabling 
remote and customized healthcare solutions. They support 
industrial automation by facilitating machinery monitoring, 

process optimization, and predictive maintenance, thereby 
increasing overall productivity [3]. WSNs are essential for 
environmental monitoring, providing real-time data on climate 
parameters, water quality, and air quality, which helps in 
disaster management and ecological preservation [4]. However, 
due to their widespread use and crucial nature, WSNs are 
vulnerable to constantly changing security threats, with one of 
the most dangerous being the DoS attacks [5]. In WSNs, a DoS 
attack is an attempt by malicious actors to disrupt normal 
network operations, compromise the integrity of data 
transmission, or limit the resources of certain sensor nodes [6]. 
DoS attacks on WSNs can have a serious impact on the 
reliability and efficiency of critical applications of these 
networks. DoS attacks are a type of cyber-attack that disrupts 
computer systems, networks, or the normal operation of online 
services by rendering them inaccessible to users for either a 
period of time or permanently [7]. They exploit security 
vulnerabilities and cause DoS to authorized users by flooding 
the target with traffic or depleting system resources. Flooding 
attacks flood the network with excessive traffic, causing 



Engineering, Technology & Applied Science Research Vol. 15, No. 1, 2025, 19712-19719 19713  
 

www.etasr.com Al Sukkar & Al-Sharaeh: Enhancing Security in Wireless Sensor Networks: A Machine Learning-based … 

 

congestion and even resource exhaustion. Jamming attacks 
cause disruption and increased energy consumption by 
interfering with wireless transmissions [8]. DoS attacks pose a 
significant risk to WSNs, affecting their reliability and 
seamless operation. Attackers exploit the unique vulnerabilities 
of these dynamic networks to disrupt communications, 
compromise data integrity, and consume vital resources [9]. 
Sinkhole attacks, Sybil attacks, and selective forwarding 
manipulate the data flow, compromising the reliability and 
accuracy of the information collected by the network. Physical 
layer attacks pose another level of vulnerability by destroying 
or manipulating the sensor nodes [10]. 

This study aims to address this security challenge by 
investigating how ML techniques can be used in WSNs to 
identify and minimize DoS attacks. The security of WSNs is 
challenging due to their inherent characteristics, which include 
many networked sensor nodes operating with limited resources 
[11]. Traditional security protocols designed for traditional 
networks are inadequate to address the unique problems of 
WSNs [12, 13]. Although several research techniques have 
been developed to address the problems of detecting DoS 
attacks in WSNs, it is still difficult to identify an effective 
detection solution [14]. This study presents ML as a dynamic 
and adaptable method to strengthen the security measures of 
WSNs in response to these problems. ML methods, which are 
known for their ability to detect patterns and anomalies across 
huge datasets, provide the ability to detect indicators of DoS 
attacks. This study aims to develop an effective DoS detection 
system specific to WSNs by utilizing supervised learning 
methods, such as the Logistic Regression (LR), Decision Tree 
(DT) classifier, K-Nearest Neighbors (KNN) algorithm, 
Gradient Boosting (GB) classifier, Support Vector Machines 
(SVM), and the Voting classifier. The investigation of ML 
based DoS detection takes place in a structured manner and 
includes key steps, such as data preprocessing, splitting the data 
into training and test data, and applying multiple ML 
algorithms. The present study focuses on addressing the critical 
security issues that WSNs are facing, by reducing the risk of 
DoS attacks.  

II. LITERATURE SURVEY 

Authors in [15] proposed the Weighted Score Selector 
(WSS), a novel ensemble-based method, to detect attacks in 
WSNs. Several supervised ML classifiers, including Naive 
Bayes (NB), SVM, LightGBM, DT, Random Forest (RF), and 
KNN were used to implement the proposed method and 
increase the detection accuracy. The proposed method was 
applied on the WSN-DS with promising results. Authors in [5] 
presented a simple ML detection technique for DoS attacks in 
WSNs, which combines the Gini feature selection method with 
a DT algorithm and was applied to a modified WSN-DS 
dataset. In comparison to the RF, the proposed method 
demonstrated good performance by achieving a high accuracy 
rate with low overhead. To improve the detection of DoS 
attacks, authors in [16] presented a WSN intrusion detection 
model that combines the KNN with the arithmetic 
optimization algorithm. The experimental results demonstrated 
the usefulness of the proposed detection model on the WSN-

DS dataset. Authors in [14] introduced the CH_Rotations 
algorithm, a revolutionary clustering technique to improve the 
detection accuracy of the DoS attacks. Furthermore, the use of 
feature selection techniques along with ML algorithms in 
examining WSN node traffic and the effect of these techniques 
on the lifetime of WSNs was evaluated. The evaluation results 
using the WSN-DS dataset showed that the Water Cycle (WC) 
feature selection performed better on the WSN-DS dataset 
than other optimization methods. In addition, the proposed 
approach showed good accuracy with only one feature. 
Authors in [9] proposed the Deep Learning-based Defense 
Mechanism (DLDM), a novel lightweight DoS detection 
technique to detect and isolate the attacks in the Data 
Forwarding Phase (DFP), including flooding, homing, 
jamming, and exhaustion. Deep Learning (DL) was combined 
with the proposed detection approach to provide flexible and 
cost-effective cluster-based measures for effective detection 
and isolation. The outcome of the proposed method 
demonstrated that it can achieve high accuracy and low energy 
consumption. Authors in [17] proposed an NB classifier and a 
round-trip time-based method to detect black hole and 
wormhole attacks. The main advantage of the proposed 
method was the reduction of communication overhead. The 
current study aims to address the emerging security threats that 
WSNs are facing, with a particular emphasis on reducing the 
risk of DoS attacks. 

III. DATASETS AND METHODOLOGY 

A. Datasets 

In this study, two datasets are used to train and test the ML 
methods and techniques: 

The WSN-DS dataset by employing the LEACH approach 
[18]. The dataset contains numerous attack scenarios along 
with WSN features for more precise detection and 
categorization of four different types of DoS attacks: Flooding, 
Scheduling (TDMA), Blackhole, and Grayhole. It has a total of 
374661 records and 19 attributes, as evidenced inTable I. 

The WSN-BFSF dataset was introduced in [19]. Three 
categories of network layer attacks for WSNs were developed 
by the WSN-BFSF dataset consisting of 312106 rows. It 
additionally contains information from the selective forwarding 
attack, in contrast to the WSN-DS dataset. Table II shows the 
attributes of the WSN-BFSF dataset. 

B. Preprocessing of Datasets  

The data are considered imbalanced when there is a non-
uniform or unequal distribution of class labels in a 
classification task. That is, the minority class has much fewer 
instances than the majority class. This imbalance in the 
distribution of classes can pose a challenge to ML models, 
particularly those that aim to maximize overall accuracy, as it 
can lead to a bias toward predicting the majority class [20]. In 
ML, class imbalance is a common problem, especially in 
classification problems where one class greatly dominates the 
other. Downsampling is a preprocessing approach used to 
create a more balanced dataset by randomly deleting samples 
from the majority class to address this problem [21]. The 
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process normally starts with understanding the distribution of 
classes and then dividing the data into training and testing sets 
while maintaining class proportions. Next, the imbalance ratio 
is computed [20]. After determining the optimal class balance, 
downsampling is performed utilizing a randomly selected 
subset of the majority class samples to match the size of the 
minority class. To solve the imbalance problem in the two 
datasets, downsampling is applied to them. 

TABLE I.  WSN-DS ATTRIBUTES 

No Attribute Name  Attribute Description 

1 ID 
A unique identification number to identify the 

sensor node at any time and in any round 
2 Time The node's current simulation time 
3 Is CH A flag to distinguish CH from a normal node 
4 Who CH CH identifier in the current round 
5 Dist_To_CH How far the node is from its CH 

6 
Energy 

Consumption 
The amount of energy consumed in the last round 

7 ADV_CH send 
The number of advertized CH's broadcast 

messages sent to the nodes 

8 ADV_CH receives 
The number of advertized CH messages received 

from CHs 

9 Join_REQ send 
The number of join request messages the nodes 

send to the CH 

10 Join_REQ receives 
The number of join request messages received by 

the CH from the nodes 

11 ADV_SCH send 
The number of advertized TDMA schedule 

broadcast messages sent to the nodes. 

12 
ADV_SCH 

receives 
The number of TDMA schedule messages 

received from CHs 

13 Rank 
The order of this node within the TDMA 

schedule 

14 Data S 
The number of data packets sent from a sensor to 

its CH 
15 Data R The number of data packets received from CH 
16 Data sent to BS The number of data packets sent to the BS 
17 Dist- CH to BS The distance between the CH and the BS 
18 Send Code The cluster sending code 
19 Attack Type The type of the node 

TABLE II.  WSN-BFSF ATTRIBUTES 

No Attribute Name  Attribute Description 

1 Event 

It contains information about the operation 
performed on the traffic. It is represented by the 

value 1 for sending, 2 for receiving, 3 for 
forwarding, 4 for dropping, and 5 for Energy 

information 
2 Time The time of the event performed in the row 
3 S_Node The source node's number 
4 Node_id The number of the relevant node 
5 Rest_Energy The remaining energy of the relevant node 
6 Mac_Type_Pck The MAC type of the packet 
7 Source_IP_Port The port number of the source node 
8 Packet_Size The size of the forwarded packet 
9 TTL The lifetime of the forwarded traffic in the network 
10 Hop_Count The number of passed nodes. 
11 Broadcast_ID The ID number of the broadcast packets 
12 Dest_Node_Num The ID of the target node 

13 Dest_Seq_Num 
The sequence number of the traffic forwarded to 

the destination 
14 Src_Node_ID The ID number of the source node 

15 Src_Seq_Num 
The source sequence number of the traffic 

forwarded to the destination 
16 Class The type of classified network traffic 

C. Methodology 

First, the dataset undergoes a preprocessing phase, 
including balancing to ensure that the classes are evenly 
distributed within the dataset, and standardizing the features to 
normalize the data range. The data are then divided into subsets 
for testing and training. Once the data are prepared, they enter 
the model training phase, where multiple ML algorithms are 
applied. These include LR, KNN, SVM, DT, and GB. Each 
algorithm makes predictions denoted as Pred LR, Pred KNN, 
Pred SVM, Pred DT, and Pred GB, respectively. The 
predictions from these models are then fed into two types of 
ensemble techniques, hard and soft voting. Hard voting takes 
the most frequent prediction from the classifiers as the final 
prediction, while soft voting considers the confidence level of 
the predictions from each classifier. Finally, the ensemble 
predictions are evaluated to assess the performance of the 
combined model. The outcome of this evaluation is then used 
in conjunction with explainable AI techniques to provide 
insights and explanations for the predictions made by the 
model, thereby enhancing transparency and the understanding 
of the model's decision process. Techniques like feature 
importance analysis, partial dependence graphs, and model-
agnostic approaches are frequently used in the explainable AI 
methodology. These techniques aim to preserve interpretability 
and transparency while clarifying the decision-making process 
of the AI algorithms. Figure 1 depicts the flowchart of the 
methodology. 

 

 
Fig. 1.  The flowchart of the methodology. 

IV. RESULTS 

The results presented here span across five different ML 
models applied to a dataset for classification tasks, with each 
model yielding different performance metrics. Starting with the 
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WSN-DS dataset, the LR achieved an accuracy of 
approximately 90.1%. The precision and recall metrics varied 
across different classes. For instance, the LR was highly 
precise and completely recall-efficient in identifying the 
'Flooding' class, while it had lower precision in identifying the 
'Blackhole' class, albeit with perfect recall. The F1-score, 
which balances precision and recall, was high for the 'Normal' 
and 'TDMA' classes, indicating good overall performance for 
these categories. The confusion matrix for the LR indicated 
perfect classification for 'Flooding' but there was some 
confusion in distinguishing 'Grayhole' from the other classes. 
The KNN model exhibited an improvement in accuracy of 
approximately 95.3%. This model had high precision and recall 
across all classes, particularly excelling at classifying 
'Flooding'. The F1-scores were consistently high, 
demonstrating a balanced performance in both the precision 
and recall aspects of classification. The confusion matrix for 
the KNN showed very few misclassifications, with most errors 
coming from mislabeling within the 'Blackhole' and 'Grayhole' 
classes. The SVM came in with an accuracy close to that of the 
LR, around 90.3%. Its precision and recall metrics were similar 
to those of the LR, doing exceptionally well with the 'Flooding' 
class and somewhat less so with the 'Grayhole' class. The F1-
scores were comparable to those of the LR, indicating a similar 
balance of performance. The confusion matrix for the SVM 
displayed some misclassification in the 'Grayhole' and 'TDMA' 
classes, but excellent performance in 'Flooding'. The DT 
classifier marked a significant increase in accuracy of about 
96.7%, showing high precision and recall across all classes. 
This model was particularly effective at identifying the 
'Blackhole' class, with nearly perfect metrics. However, there 
were some misclassifications in the 'Normal' and 'TDMA' 
classes, as reflected in the confusion matrix, where 'Normal' 
was sometimes mistaken for 'TDMA'. Lastly, GB achieved the 
highest accuracy among all models at approximately 97.6%. It 
demonstrated very high precision and recall across all classes, 
nearly perfect in many cases. The 'Flooding' class was 
identified with 100% accuracy. The F1-scores for GB were the 
highest, indicating robust performance. The confusion matrix 
revealed very few errors, with 'Grayhole' being the most 
challenging class but still with very high accuracy. In 
summary, while all models performed well, the GB and DT 
stood out in terms of accuracy and other metrics. The models 
varied in their ability to accurately predict different classes, 
with 'Flooding' being the easiest to predict across all models, 
and 'Grayhole' being the most challenging. The high F1-scores 
for GB and DT suggest that these models were able to 
effectively balance precision and recall, making them 
potentially more reliable for this classification task. Each model 
had its strengths and weaknesses, but the ensemble techniques, 
when used, were able to potentially leverage them to further 
improve classification performance. Both ensemble methods, 
soft and hard voting, were deployed to integrate the predictions 
from multiple models to improve the overall classification 
accuracy. Soft voting considers the classifiers' predicted 
probabilities, giving more weight to votes with higher 
confidence. In hard voting, only the predicted class labels are 
considered, and the most frequent label is chosen as the final 
prediction. For the soft voting ensemble, the achieved accuracy 
is approximately 98%, reflecting a sophisticated blend of the 

individual classifiers' strengths. Precision, recall, and F1-scores 
are exceptionally high across all classes, nearly perfect for the 
'Blackhole' and 'Flooding' classes. The 'Grayhole' class also 
displays excellent recall, indicating that the ensemble is very 
effective at detecting this category. The 'Normal' and 'TDMA' 
classes exhibit slightly lower precision, which could indicate 
occasional misclassifications. However, the F1-scores are still 
quite high, suggesting a balance between precision and recall. 
The confusion matrix for soft voting shows very few 
misclassifications across the board, confirming the robustness 
of this approach. The hard voting ensemble performs slightly 
better than the soft voting ensemble, with an accuracy of just 
over 98.1%. However, it matches the soft voting ensemble's 
high precision and recall, with near-perfect scores for the 
'Flooding' and 'Blackhole' classes. The F1-scores for the 
'Grayhole', 'Normal', and 'TDMA' classes are marginally higher 
than those of the soft voting ensemble, indicating an even 
better balance between precision and recall. This suggests that 
the hard voting ensemble is slightly more effective at class 
consensus when it comes to a majority rule approach. The 
confusion matrix for hard voting confirms this, showing 
minimal misclassifications and a high level of accuracy in class 
predictions. When comparing the two ensemble techniques, it 
is evident that they perform exceptionally well, with the hard 
voting ensemble having a slight edge. The increased precision 
and recall rates across the classes with both ensemble methods 
demonstrate the power of combining multiple ML models. By 
leveraging the diverse strengths of individual classifiers, 
ensemble methods can provide a more accurate and reliable 
classification system. This is particularly beneficial for 
complex or imbalanced datasets where single-model 
predictions might falter. The consistency of high F1-scores 
across the classes also indicates that the ensemble is stable and 
robust, which is critical for practical applications where high 
reliability is essential. Figure 2 illustrates the accuracy of the 
applied ML models on the WSN-DS dataset. 

 

 
Fig. 2.  Accuracy of the applied ML models on the WSN-DS dataset. 

Figure 3 portrays an output of the model's prediction 
probabilities for the multi-class classification task, along with 
the feature importance ranking for the class labeled 'Normal'. 
On the left side, the prediction probabilities are displayed, 
indicating the model's confidence in assigning the data point to 
each of the potential classes: 'Normal', 'Grayhole', 'Blackhole', 
'TDMA', and 'Flooding'. In this instance, the model predicts 
with high confidence, 0.99 probability, that the data point 
belongs to the 'Normal' class, while the probabilities for the 
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other classes are 0.00, suggesting that the model is quite certain 
of this classification. The feature importance values for 
predicting the 'Normal' class are listed on the right side. The 
model indicates that features like 'Data_R' with a high positive 
value are more indicative of the 'Normal' class, whereas 
features with negative values, such as 'Expanded Energy', 
'Time', and ADV_S,' are less indicative of the 'Normal' class. 
Each feature has a value that indicates how important it is to 
the model's decision-making process; positive values help the 
model forecast something to be 'Normal,' while negative values 
make it less so. This type of analysis is crucial for 
understanding what drives the decisions of the ML models, 
particularly in the field of explainable AI, where it is important 
to make the model's decision-making process as transparent 
and understandable as possible. It also helps validate the model 
by ensuring that the predictions are based on sensible data-
driven insights. 

 

 
Fig. 3.  Feature importance ranking for the 'Normal' class. 

Figure 4 illustrates the model's prediction output for a 
single instance, focusing on the 'Grayhole' classification. The 
prediction probabilities on the left side indicate that the model 
has predicted with absolute certainty, meaning with a 
probability of 1.00, that the instance belongs to the 'Grayhole' 
class, assigning zero probability to all other classes. On the 
right side of the Figure, a list of features is provided, along with 
their corresponding values that have contributed to this 
classification. These features have varying levels of 
importance, as suggested by their values. Features, such as 
'ADV_S', with a high positive value are strongly indicative of 
the 'Grayhole' class, whereas others, like 'SCH_S', with a 
negative value are less indicative of this class. This list is 
crucial for understanding which attributes the model considers 
important when determining that an instance is a 'Grayhole'. 
Furthermore, some features are highlighted in orange, likely 
indicating their particular significance in the classification 
decision for this instance. For example, 'ADV_S' and 'SCH_R' 
are quite high in their respective positive and negative values, 
implying a strong influence on the 'Grayhole' prediction. This 
visualization of feature importance is a key component of 
explainable AI, shedding light on the model's decision-making 
process and providing insight into the predictive relationships 
within the data. 

 

 
Fig. 4.  Feature importance ranking for the 'Grayhole' class. 

For the WSN-BFSF dataset, there is a range of results 
regarding the performance of the ML models. The LR shows a 
decent performance with an accuracy of roughly 78.9%. It is 
particularly effective in identifying the 'Flooding' class, with 
high precision and perfect recall, indicating that it almost 
always identifies this class correctly. However, it struggles with 
the 'Normal' class, as seen by the lower recall, suggesting that it 
often misclassifies 'Normal' instances as something else, which 
is further evidenced by the confusion matrix, where a 
substantial number of 'Normal' instances are classified as 
'Blackhole'. The KNN improves upon LR, achieving an 
accuracy of about 87.7%. The KNN performs notably better 
across all classes, with impressive precision and recall, 
especially for 'Forwarding', indicating a strong ability to 
accurately identify this class. Nonetheless, it also presents a 
difficulty with the 'Normal' class, but to a lesser extent than the 
LR. The confusion matrix supports this, with fewer 
misclassified 'normal' instances compared to the LR. The SVM 
presents a further improvement in precision and recall for most 
classes, achieving an accuracy of approximately 83.3%. It 
performs exceptionally well with the 'Flooding' class, much 
like the LR, but also shows a balanced performance across 
other classes. The recall for 'Normal' is higher than that of the 
LR but still not as high as for other classes, suggesting some 
difficulty in accurately identifying 'Normal' instances. The DT 
and GB models exhibit nearly perfect accuracy, precision, 
recall, and F1-scores, with the DT slightly outperforming the 
GB. These models display an almost flawless classification of 
the dataset with negligible misclassification, as evidenced by 
their confusion matrices. The performance of the DT and GB 
indicates a very strong fit to the data, which might suggest 
overfitting given their near perfect metrics. Across all models, 
'Flooding' is consistently the easiest class to predict, while 
'Normal' proves to be the most challenging. The high accuracy 
of the DT and GB indicates that they have learned the decision 
boundaries for this dataset exceptionally well, but such near-
perfect performance raises questions about their 
generalizability to unseen data. In contrast, the LR and SVM, 
with their respective modest accuracies, might offer more 
generalizable models, albeit at the cost of some 
misclassification. The KNN serves as a middle ground with 
good accuracy and better generalization than the DT and GB, 
based on its performance metrics. Ultimately, the selection of a 
model would depend on the requirements of the given task, 
weighing the importance of generalization and the risk of 
overfitting. The ensemble methods applied to the second 
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dataset achieved remarkable performance, with both soft and 
hard ensemble techniques nearing or reaching perfect 
classification metrics. The soft ensemble method attains an 
accuracy close to 100%, with precision, recall, and F1-scores 
hitting the maximum for all classes. This ensemble method 
effectively integrates the individual models' predictions, likely 
through a weighted average based on prediction confidence, 
which compensates for the weaknesses of each individual 
model. However, the confusion matrix reveals a slight 
imperfection: two instances of the 'Blackhole' class were 
misclassified. Despite this, the overall predictive power of the 
soft ensemble method remains exceptionally high. The hard 
ensemble method, on the other hand, achieves absolute 
perfection, with an accuracy of 100%. Each class has precision, 
recall, and F1-scores of 1.00, indicating flawless classification 
with no misclassified instances. In the hard voting ensemble, 
the final class prediction is determined by the mode of the 
predictions of the individual models. This means that the hard 
ensemble method has consistently produced a unanimous 
prediction across all models for each instance in the dataset, a 
strong indicator that the models agree on the decision 
boundaries within the data. The impeccable performance of the 
hard ensemble method could raise some concerns about 
overfitting, especially if the dataset lacks diversity or if the 
models have been exposed to all possible variations within the 
data. Although these results are impressive, they would need to 
be validated on a separate, unseen test set to ensure that the 
models generalize well to new data. Figure 5 shows the 
accuracy of the applied ML models on the WSN-BFSF dataset. 

 

 
Fig. 5.  Accuracy of applied ML models on the WSN-BFSF dataset. 

Figure 6 illustrates the prediction probabilities and feature 
importance for a model's classification decision regarding 
network traffic, specifically whether the traffic involves 
'Forwarding'. The prediction probabilities demonstrate that the 
model is highly confident (0. 96) that the current instance is 
related to the 'Forwarding' activity, with very low probabilities 
being assigned to the 'Normal', 'Flooding', and 'Blackhole' 
activities. On the right side, the feature importance chart lists 
the attributes that the model has used to make its decision, 
ranked by their impact. The positive values indicate features 
that support the 'Forwarding' classification, while the negative 
values suggest features that are against it. For instance, 
'Hop_Count' with a high positive value strongly supports the 
'Forwarding' class, whereas 'Rest_Energy' with a negative value 
suggests that the instance is less likely to be classified as 
'Forwarding'. The 'Dest_Node_Num' feature has the most 
positive influence, while 'TTL' has the most negative influence, 

according to the model. This information is valuable for 
understanding the model's reasoning and can be used to 
interpret the model's decisions in a real-world context, such as 
in a network security analysis or in traffic management. It 
provides transparency into the classification process, which is 
essential for building trust in automated systems. 

 

 
Fig. 6.  Feature importance ranking for the 'Forwarding' class. 

Figure 7 depicts the model's prediction probabilities 
regarding network traffic classification. The model predicts 
with perfect certainty that the network traffic is "Normal.". In 
addition, the feature importance for the 'Normal' classification 
is displayed on the right side of the Figure. 

 

 
Fig. 7.  Feature importance ranking for the 'Normal' class. 

V. COMPARISON  

Table III compares the performance of the hard and soft 
ensemble methods on WSN-DS and WSN-BFSF datasets. With 
an accuracy of 98.12%, the soft ensemble technique slightly 
outperformed the hard ensemble technique for the WSN-DS 
dataset, which yielded an accuracy of 97.97%. The small 
difference indicates that while both ensemble techniques are 
very successful with this dataset, the soft ensemble technique 
might be more adept at managing the subtleties of the data. 
When there is diversity in the predictability of the outcomes, 
the soft ensemble usually takes into account the confidence of 
the predictions from various models, which occasionally 
produces more accurate results. In contrast, for the WSN-BFSF 
dataset, the hard ensemble method reached an accuracy of 
99.967%, with the soft ensemble method achieving a perfect 
accuracy of 100%. The hard ensemble method, which likely 
uses a majority voting scheme, was almost perfect, indicating 
that the models that make up the ensemble were mostly in 
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agreement on/regarding the predictions. However, the soft 
ensemble's perfect score implies that when the models' 
confidence levels were considered, the ensemble was able to 
correct any remaining errors, achieving flawless classification. 
The fact that both datasets have such high accuracy with both 
ensemble methods indicates that the models are very well 
suited to the data, and the ensemble methods are effectively 
leveraging their collective predictive power. However, such 
high accuracies, especially the 100% accuracy on the WSN-
BFSF dataset, might raise questions about the complexity of 
the dataset, the possibility of overfitting, or whether the 
ensemble methods would maintain such high performance on 
unseen data. It is essential to ensure that the models do not 
simply memorize the data, but can generalize from the patterns 
they have learned when they encounter new, unseen data. This 
can be tested through a cross-validation or by evaluating the 
models on a separate test set that was not used during the 
training process. Furthermore, Table IV presents the 
performance of the proposed method in comparison to two 
different studies that have deployed the WSN-DS dataset. 

TABLE III.  RESULTS OF THE PROPOSED METHOD ON WSN-
DS AND WSN-BFSF DATASETS 

Dataset Hard Ensemble Soft Ensemble 

WSN-DS dataset 97.97% 98.12% 
WSN-BFSF dataset 99.967% 100% 

TABLE IV.  TWO STUDIES USING WSN-DS DATASET 
COMPARED TO THE PROPOSED METHOD   

Method Description Results Limitations 

[22] 

Homogeneous ensemble 
with Hoeffding Adaptive 

Tree (HAT) algorithm 
and heterogeneous 

ensemble consisting of an 
Adaptive Random Forest 
(ARF) combined with the 

HAT algorithm 

Homogeneous: 
96.84%  

and 
heterogeneous: 

97.2 %  

Higher 
computational 
load and lower 

accuracy than the 
proposed method 

[23] Various DL models 98.79%  

DL causes more 
overhead, which 
is not suitable for 

working on 
WSNs 

This 
study 

Proposed method 
97.97% and 

98.12% 

For future work, 
DL combined 
with ensemble 
techniques may 

be used 

 

VI. CONCLUSION 

Wireless Sensor Networks (WSNs) are increasingly 
becoming an essential component in many applications. This 
study focused on the integration of Machine Learning (ML) 
into the essential field of WSN security to reduce the impact of 
Denial of Service (DoS) attacks. The studies of various ML 
techniques for DOS attack detection have shown promise in 
significantly improving the WSN security posture. This study 
investigates the detection and mitigation of DoS attacks 
employing several ML methodologies. The WSN Dataset 
(WSN-DS) and WSN Blackhole, Flooding, and Selective 
Forwarding (WSN-BFSF) dataset were used as two distinct 

datasets to test the efficacy of hard and soft ensemble 
techniques, and the results demonstrated that their overall 
accuracy is increased by combining predictions from different 
models. With an accuracy of 98.12%, the WSN-DS dataset was 
slightly more accurate with the soft ensemble technique than 
with the hard ensemble technique, which achieved an accuracy 
of 97.97%. For the WSN-BFSF dataset, the soft ensemble 
technique achieved 100% perfect accuracy, while the hard 
ensemble technique achieved 99.967% accuracy. 

REFERENCES 

[1] K. Gulati, R. S. Kumar Boddu, D. Kapila, S. L. Bangare, N. Chandnani, 
and G. Saravanan, "A review paper on wireless sensor network 
techniques in Internet of Things (IoT)," Materials Today: Proceedings, 
vol. 51, no. 1, pp. 161–165, Jan. 2022, https://doi.org/10.1016/j.matpr. 
2021.05.067. 

[2] I. Ali, I. Ahmedy, A. Gani, M. U. Munir, and M. H. Anisi, "Data 
Collection in Studies on Internet of Things (IoT), Wireless Sensor 
Networks (WSNs), and Sensor Cloud (SC): Similarities and 
Differences," IEEE Access, vol. 10, pp. 33909–33931, 2022, https:// 
doi.org/10.1109/ACCESS.2022.3161929. 

[3] D. Kandris, C. Nakas, D. Vomvas, and G. Koulouras, "Applications of 
Wireless Sensor Networks: An Up-to-Date Survey," Applied System 
Innovation, vol. 3, no. 1, Mar. 2020, Art. no. 14, https://doi.org/10.3390/ 
asi3010014. 

[4] F. Alawad and F. A. Kraemer, "Value of Information in Wireless Sensor 
Network Applications and the IoT: A Review," IEEE Sensors Journal, 
vol. 22, no. 10, pp. 9228–9245, May 2022, https://doi.org/10.1109/ 
JSEN.2022.3165946. 

[5] M. A. Elsadig, "Detection of Denial-of-Service Attack in Wireless 
Sensor Networks: A Lightweight Machine Learning Approach," IEEE 
Access, vol. 11, pp. 83537–83552, Aug. 2023, https://doi.org/10.1109/ 
ACCESS.2023.3303113. 

[6] M. N. U. Islam, A. Fahmin, Md. S. Hossain, and M. Atiquzzaman, 
"Denial-of-Service Attacks on Wireless Sensor Network and Defense 
Techniques," Wireless Personal Communications, vol. 116, no. 3, pp. 
1993–2021, Feb. 2021, https://doi.org/10.1007/s11277-020-07776-3. 

[7] A. Cetinkaya, H. Ishii, and T. Hayakawa, "An Overview on Denial-of-
Service Attacks in Control Systems: Attack Models and Security 
Analyses," Entropy, vol. 21, no. 2, Feb. 2019, Art. no. 210, https:// 
doi.org/10.3390/e21020210. 

[8] S. Balaji and T. Sasilatha, "Detection of denial of service attacks by 
domination graph application in wireless sensor networks," Cluster 
Computing, vol. 22, no. 6, pp. 15121–15126, Nov. 2019, https:// 
doi.org/10.1007/s10586-018-2504-5. 

[9] M. Premkumar and T. V. P. Sundararajan, "DLDM: Deep learning-based 
defense mechanism for denial of service attacks in wireless sensor 
networks," Microprocessors and Microsystems, vol. 79, Nov. 2020, Art. 
no. 103278, https://doi.org/10.1016/j.micpro.2020.103278. 

[10] A. Huseinović, S. Mrdović, K. Bicakci, and S. Uludag, "A Survey of 
Denial-of-Service Attacks and Solutions in the Smart Grid," IEEE 
Access, vol. 8, pp. 177447–177470, Sep. 2020, https://doi.org/10.1109/ 
ACCESS.2020.3026923. 

[11] E. Suryaprabha and N. M. Saravana Kumar, "Enhancement of security 
using optimized DoS (denial-of-service) detection algorithm for wireless 
sensor network," Soft Computing, vol. 24, no. 14, pp. 10681–10691, Jul. 
2020, https://doi.org/10.1007/s00500-019-04573-4. 

[12] M. A. Elsadig, A. Altigani, and M. Abuelaila, "Security Issues and 
Challenges on Wireless Sensor Networks," International Journal of 
Advanced Trends in Computer Science and Engineering, vol. 8, no. 4, 
pp. 1551–1559, Aug. 2019, https://doi.org/10.30534/ijatcse/2019/ 
78842019. 

[13] M. B. Apsara, P. Dayananda, and C. N. Sowmyarani, "A Review on 
Secure Group Key Management Schemes for Data Gathering in Wireless 
Sensor Networks," Engineering, Technology & Applied Science 
Research, vol. 10, no. 1, pp. 5108–5112, Feb. 2020, https:// 
doi.org/10.48084/etasr.3213. 



Engineering, Technology & Applied Science Research Vol. 15, No. 1, 2025, 19712-19719 19719  
 

www.etasr.com Al Sukkar & Al-Sharaeh: Enhancing Security in Wireless Sensor Networks: A Machine Learning-based … 

 

[14] R. Wazirali and R. Ahmad, "Machine Learning Approaches to Detect 
DoS and Their Effect on WSNs Lifetime," Computers, Materials & 
Continua, vol. 70, no. 3, pp. 4922–4946, Oct. 2021, https://doi.org/ 
10.32604/cmc.2022.020044. 

[15] S. Ismail, Z. El Mrabet, and H. Reza, "An Ensemble-Based Machine 
Learning Approach for Cyber-Attacks Detection in Wireless Sensor 
Networks," Applied Sciences, vol. 13, no. 1, Jan. 2023, Art. no. 30, 
https://doi.org/10.3390/app13010030. 

[16] G. Liu, H. Zhao, F. Fan, G. Liu, Q. Xu, and S. Nazir, "An Enhanced 
Intrusion Detection Model Based on Improved kNN in WSNs," Sensors, 
vol. 22, no. 4, Feb. 2022, Art. no. 1407, https://doi.org/10.3390/ 
s22041407. 

[17] K. Lakshmi Narayanan, R. Santhana Krishnan, E. Golden Julie, Y. 
Harold Robinson, and V. Shanmuganathan, "Machine Learning Based 
Detection and a Novel EC-BRTT Algorithm Based Prevention of DoS 
Attacks in Wireless Sensor Networks," Wireless Personal 
Communications, vol. 127, no. 1, pp. 479–503, Nov. 2022, https:// 
doi.org/10.1007/s11277-021-08277-7. 

[18] I. Almomani, B. Al-Kasasbeh, and M. AL-Akhras, "WSN-DS: A 
Dataset for Intrusion Detection Systems in Wireless Sensor Networks," 
Journal of Sensors, vol. 2016, no. 1, 2016, Art. no. 4731953, https:// 
doi.org/10.1155/2016/4731953. 

[19] M. Dener, C. Okur, S. Al, and A. Orman, "WSN-BFSF: A New Data Set 
for Attacks Detection in Wireless Sensor Networks," IEEE Internet of 
Things Journal, vol. 11, no. 2, pp. 2109–2125, Jan. 2024, https://doi.org/ 
10.1109/JIOT.2023.3292209. 

[20] T. M. Barros, P. A. Souza Neto, I. Silva, and L. A. Guedes, "Predictive 
Models for Imbalanced Data: A School Dropout Perspective," Education 
Sciences, vol. 9, no. 4, Nov. 2019, Art. no. 275, https://doi.org/10.3390/ 
educsci9040275. 

[21] D.-X. Zhou, "Theory of deep convolutional neural networks: 
Downsampling," Neural Networks, vol. 124, pp. 319–327, Apr. 2020, 
https://doi.org/10.1016/j.neunet.2020.01.018. 

[22] H. Tabbaa, S. Ifzarne, and I. Hafidi, "An Online Ensemble Learning 
Model for Detecting Attacks in Wireless Sensor Networks," Computing 
and Informatics, vol. 42, no. 4, pp. 1013–1036, Dec. 2023, https:// 
doi.org/10.31577/cai_2023_4_1013. 

[23] S. Salmi and L. Oughdir, "Performance evaluation of deep learning 
techniques for DoS attacks detection in wireless sensor network," 
Journal of Big Data, vol. 10, no. 1, Feb. 2023, Art. no. 17, https:/ 
/doi.org/10.1186/s40537-023-00692-w. 


