
Engineering, Technology & Applied Science Research Vol. 14, No. 3, 2024, 14148-14154 14148

www.etasr.com Saini & Sehrawat: Enhancing Data Security through Machine Learning-based Key Generation …

Enhancing Data Security through Machine

Learning-based Key Generation and Encryption

Abhishek Saini

USIC&T, Guru Gobind Singh Indraprastha University, India

abhishek.saini.00902@gmail.com

Ruchi Sehrawat

USIC&T, Guru Gobind Singh Indraprastha University, India

ruchi.sehrawat@gmail.com

Received: 2 March 2024 | Revised: 26 March 2024 | Accepted: 3 April 2024

Licensed under a CC-BY 4.0 license | Copyright (c) by the authors | DOI: https://doi.org/10.48084/etasr.7181

ABSTRACT

In an era marked by growing concerns about data security and privacy, the need for robust encryption

techniques has become a matter of paramount importance. The primary goal of this study is to protect

sensitive information during transmission while ensuring efficient and reliable decryption at the receiver's

side. To generate robust and unique cryptographic keys, the proposed approach trains an autoencoder

neural network based on hashing and optionally generated prime numbers in the MNIST dataset. The key

serves as the foundation for secure communication. An additional security layer to the cryptographic

algorithm passing through the first ciphertext, was employed utilizing the XORed and Blum-Blum-Shub
(BBS) generators to make the system resistant to various types of attacks. This approach offers a robust

and innovative solution for secure data transmission, combining the strengths of autoencoder-based key

generation and cryptographic encryption. Its effectiveness is demonstrated through testing and

simulations.

Keywords-AES; autoencoder; DES; ElGamal; key generation; neural cryptography; RSA

I. INTRODUCTION

In an increasingly interconnected world, the transmission of
sensitive information has become an integral part of
indivinduals’ daily life. Whether it involves personal
messaging, confidential documents, or financial transactions,
promising data security and privacy during its journey from the
sender to the receiver has become an essential concern [1]. As
digital communication continues to grow, so do malicious
threats' methods, which aim to compromise the confidentiality
and integrity of data [2-3]. To address these obstinate security
challenges, this study presents an innovative approach that
integrates neural networks and cryptographic algorithms [4].
By utilizing the input, hidden, and output layers of the network
structure, this technique ensures secure data transfer over
unreliable channels, enhancing the overall system resilience.

The foundation of the proposed method is the use of
autoencoder neural network models, which are renowned for
their ability to learn compact representations of complex data.
Although traditional encryption methods often rely on
manually generated cryptographic keys, this study introduces a
novel method in which the cryptographic keys are
autonomously generated by an autoencoder, an artificial neural
network designed for data compression and reconstruction,
thus introducing an additional security layer to the encryption
process. The training of the autoencoder model is accomplished

implementing the MNIST dataset, a well-known collection of
handwritten digital images. By exploiting the autoencoder's
ability, a unique cryptographic key for symmetric and
asymmetric algorithms is generated. This key, shaped by the
properties learned from the neural network, serves as the
foundation for secure data transmission. The proposed
encryption process consists of two crucial stages. The plaintext
undergoes bitwise XOR operation and subsequent encryption
deploying symmetric cryptographic algorithms, such as
Advanced Encryption Standard (AES) [5] and Data Encryption
Standard (DES) [6], and asymmetric cryptographic algorithms,
such as Rivest-Shamir-Adleman (RSA) [7] and ElGamal [8].
This two-layer strategy ensures that the data are kept extremely
secure.

This groundbreaking approach to secure data transmission
incorporates autoencoder-based key generation with traditional
symmetric or asymmetric encryption methods, striking a
balance between enhanced data security and minimization of
key interception risks. The merger of XOR-based
preprocessing with a cryptographic algorithm promises robust
protection against unauthorized access, thus offering a versatile
solution for secure communication across various domains,
from secure messaging platforms to confidential file-sharing
networks. This study aims to contribute to the constantly
changing field of data security at a time when protecting user
privacy is of the utmost importance.

Engineering, Technology & Applied Science Research Vol. 14, No. 3, 2024, 14148-14154 14149

www.etasr.com Saini & Sehrawat: Enhancing Data Security through Machine Learning-based Key Generation …

II. RELATED WORKS

In [9], an autoencoder neural network model was used in
the proposed cryptographic approach. The sender creates a
training set that consists of a binary representation of
alphanumeric characters and special symbols, including
padding and a shared secret key. This dataset is securely sent to
the receiver, who also utilizes it to train their autoencoder
neural network model. In the encryption process, the plaintext
is transformed, including converted to ASCII and binary forms,
and encrypted employing the trained autoencoder with the
secret key. The resulting ciphertext is transmitted to the
receiver and the whole process is reversed in the decryption
phase, where the ciphertext is passed to the decoder of the
autoencoder with the same secret key to generate the original
plaintext. In [10], a method was proposed to secure the
encryption of color images, addressing the issues of encryption
speed and bandwidth usage. The encryption scheme was a
combination of a convolutional autoencoder, DNA, and chaos
theory. For key generation, the color image was converted into
a grayscale image and passed to the SHA-256 hash function to
obtain the key. This scheme proposed a dimensional
conversion module that reduced the dimension of the input
color image engaging the convolution autoencoder while
maintaining image fidelity. Furthermore, this study deployed
DNA and multiple chaotic sequences along with the
substitution box of the encryption algorithm.

In [11], an approach based on Ant Colony Optimization
(ACO) with Encryption Curve Cryptography (ECC)-based
steganography was presented with a specific focus on
improving the security of medical image management,
particularly concentrating on a diabetic retinopathy dataset. The
proposed method combined two main techniques, encryption
with ECC by maximizing the Peak Signal-to-Noise Ratio
(PSNR) to maintain image quality during transmission, and key
generation with ACO, where the encryption key is created by
finding the best coefficients to hide information in the integer
wavelet transform of the source image. This strategy aims to
secure complex regions of the image while applying LSB
steganography efficiently. ACO-based key generation
effectively creates a secure key stream for binary image
encryption by coordinating ant agents to produce pheromones.
In [12], a 3D cube algorithm was introduced, which employed
deep neural network learning to facilitate the creation of
symmetric keys without sharing the pre-shared key between
systems. The 3D cube algorithm hashed and XORed patterns
related to shuffle operations in an initially arranged 3D cube to
create a 256-bit secret key, providing an impressive level of
security. This approach used AES-256-based symmetric key
encryption and the DeepCube AI technique for shuffled pattern
resolution. The former achieved the highest recognition rate
with four shuffles and three hidden layers in the DNN model.
In [13], a bioinspired cryptography system that used hybrid key
generation methods was presented. This system utilized DNA
encoding, translation, and transcription processes for
encryption and decryption based on the Central Dogma of
Molecular Biology (CDMB) and the Central Molecular
Biology (CMB) principle. The Whale Optimization Algorithm
(WOA) was applied to optimize the weight vectors to achieve
an effective encryption and decryption process. Additionally, a

Bidirectional Associative Memory Neural Network (BAMNN)
was put into service for key generation and storage during the
encryption and decryption processes. In [14], a private key was
generated using the features of color images. The frequencies
of RGB coolers in the image were calculated, and the
maximum frequencies of each color were multiplied by the
number of frequencies for each of their colors. The result
represented the key, which was converted into binary form.
The generated key remains unchanged even after hiding a text
in the image.

In [15], the BAMNN model, which saves memory space by
remembering and recreating sets of keys repeatedly in a
recurrent manner, was implemented for key generation. A
bioinspired cryptosystem based on CDMB was proposed for
encryption and decryption. The encryption process involves
converting binary input into DNA bases, simulating the genetic
coding process, followed by transcription and translation to
generate protein-based ciphertext. The decryption procedure
involved the reverse of the encryption process. In [16], two
distinct disciplines, machine learning and DNA-based
encryption, were combined. A modified Hebbian neural
network was used for message encryption, and a ciphering
neural network was employed to encode plaintext utilizing
LNN-generated keys and DNA techniques to enhance data
confusion and compression. The cipher neural network
transformed the plaintext into ASCII code and engaged
ciphered LNN keys as weights.

ALGORITHM 1: PROPOSED METHOD

#Key Generation

Generate-Key ():

 Random-Integer = Autoencoder (MNIST-Dataset)

 Hash-Integer = SHA512 (Random-Integer, size)

 If (Required Prime Number):

 prime-integer = Convert-prime (Hash-Integer)

 return (prime-integer)

 else:

 key = Hash-Integer

 return key

#Encryption

Encryption (plaintext):

 Key = Generate-Key ()

 Tweak-value = BBS-Generator ()

 #Obtain first cipher text

 Hash-key = SHA_512 (Tweak-value, size)

 Cipher_text_1= XOR (plaintext, Hash-key)

 # Pass through Symmetric/ Asymmetric

 Cryptographic Algorithm (e.g. AES, DES, RSA,

 ElGamal)

 Cipher_text_2 =

 Cryptographic-Algorithm (Cipher_text_1, Key)

 Return (Cipher_text_2, Tweak-value, Key)

#Decryption

Decryption (Cipher_text_2, Tweak-value, Key):

 # Pass through Symmetric/ Asymmetric

 Cryptographic Algorithm

 Decrypted_Cipher_text_1 = Cryptographic-Algorithm

 (Cipher_text_2, Key)

 #Obtain Final Plain text

 Hash-key = SHA_512 (Tweak-value, size)

 Original Plain Text =

 XOR(Decrypted_Cipher_text_1, Hash-key)

 return (Original Plain Text)

Engineering, Technology & Applied Science Research Vol. 14, No. 3, 2024, 14148-14154 14150

www.etasr.com Saini & Sehrawat: Enhancing Data Security through Machine Learning-based Key Generation …

III. THE PROPOSED METHOD

This study introduces a novel approach to secure data
transmission by integrating cryptographic algorithms with the
strength of machine learning through an autoencoder model.
The MNIST dataset is implemented for secure key generation,
and the entire approach encompasses several distinct phases, as
shown in Figure 1 and the above pseudocode.

Fig. 1. Flowchart of the proposed method.

A. Key Generation

The main objective of this approach lies in the generation
of a highly secure cryptography key. This approach generates a
distinctive and reliable cryptographic key using the wide range
of patterns and digits in the MNIST dataset. This phase deals
with the key distribution, as well as with ensuring the
confidentiality of the key. The following processes are
deployed to create a key:

 An appropriate autoencoder architecture [17-18] is designed
and implemented. The model is trained on the MNIST
dataset to obtain a high dimensional integer representation
based on the learned representations, ensuring their
uniqueness and security, as illustrated in Figure 2.

Fig. 2. Proposed Autoencoder Model.

 SHA-512, a secure and robust hashing algorithm [19], is
applied to the integer representation to produce a hash value
between 8 and 512 bits, per user requirements, that can be
computed as:

Initialize:

�����_��	
� � �
�_8����_���� (1)

Hashing:

ℎ��ℎ_��� � �������_��	
�� (2)

����_��� � ℎ��ℎ_����: ���_���� / 8� (3)

Conversion:

��� � �����_��_� ��!�������_���� (4)

where key_str is an integer received from the autoencoder,
bytes_value contains the converted byte value of key_str, H(x)
represents the SHA-512 hash function, and key_size is defined
by the user. Up to a 512-bit long key can be generated, which is
stored in Byte_key in bytes form, and the Key stores the
converted integer value of Byte_key. Users have the option to
convert the hash value into a prime number. The following
pseudocode gives the next prime of the given hash value.

ALGORITHM 2: NEXT PRIME CALCULATION

next prime (n):

 if n < 2:

 return 2

 if n == 2:

 return 3

 if n % 2 == 0

 n = n + 1

 else

 n + 2

 while True:

 if is prime (n):

 return n

 n += 2

If the user needs a key for symmetric cryptography then the

generated hash value will go as the key. In addition, if the user
wants prime numbers for asymmetric cryptography, then the
next prime number of the hash value will be passed.

B. Encryption

This study adopts the properties of the tweakable block
cipher model [20] to strengthen the security and versatility of
the proposed cryptographic framework. A BBS generator [21-
22] is employed to produce a 32- or 64-bit number using the
following procedure.

ALGORITHM 3: BBS GENERATOR

n = p*q

where p & q is a large prime number such that

 p ≡ q ≡ 3 mod 4

Select random seed value S0 such that gcd(S0, n) = 1

X0 = (S0)
2
 mod n

for i =1 to ∞

 Xi = (Xi-1)
2
 mod n

 Append Xi to the list L

Where Xi is the pseudo random number

This produces a list of multiple random numbers, while a

random number is taken from the list as tweak T, which is
passed to the hash function SHA-512 H(T). The plaintext data

Engineering, Technology & Applied Science Research Vol. 14, No. 3, 2024, 14148-14154 14151

www.etasr.com Saini & Sehrawat: Enhancing Data Security through Machine Learning-based Key Generation …

P undergoes a bitwise XOR operation with H(T) to obtain the
first cipher text C1, represented as:

"# � ��
� ⊕ % (5)

The first ciphertext C1 is passed to the cryptographic
algorithm to create the final ciphertext C2. In the case of
symmetric cryptography, this algorithm uses the generated key
from the key generation model. For asymmetric cryptography,
the algorithm deploys the generated prime numbers from the
key generation model to produce the final key. The cipher text
C2 will be:

"& � '��, "#� (6)

where E represents the encryption. The sender transmits the
cipher text C2 along with the key K and the tweak value T.

C. Decryption

To retrieve the original plaintext data from the encrypted
cipher text, the recipient will perform inverse operations,
including symmetric or asymmetric decryption, as well as XOR
decryption. At first, the recipient will determine which type of
encryption algorithm was applied and then perform the
decryption operation to calculate the recovered text RT:

)
 � *��, "&� (7)

To get the original text, tweak T is passed to the SHA-512 hash
function, i.e. H(T). The recovered text RT is bitwise XORed
with H(T) to obtain the original plain text P:

% � ��
� ⊕)
 (8)

IV. RESULTS & DISCUSSION

The proposed method was implemented in Python on a
machine equipped with an Intel Core i3-2328M processor
running at 2.20 GHz, 4 GB of RAM, and 256 GB SSD. An
autoencoder neural network model was trained on the MNIST
dataset to generate keys, with an input dimension of 784 and an
encoding dimension of 32, consisting of two dense layers, one
for encoding and one for decoding. The MNIST dataset was
loaded and preprocessed, transforming the pixel values to the
[0, 1] range. The training process utilizes the Adam optimizer
and binary cross-entropy loss over 10 epochs, indicating its
effective data reconstruction capabilities. The model achieved a
final training loss of 0.0974 and a validation loss of 0.0953. As
displayed in Figure 3, these values emphasize the capability of
the model, exhibiting a minimal reconstruction error. In the
end, the model produced approximately a 7554-digit long
integer key, which passed through the compression function.

A. Keyspace Analysis

Keyspace analysis is a crucial aspect in addressing the
security and effectiveness of a cryptographic system. Keyspace
refers to the total number of possible keys that can be utilized
in a cryptographic algorithm and determines the size and
complexity of the key, providing information about the security
and usability of the encryption scheme. For example, a 512-bit
key is capable of producing a total of 2512 distinct keys, which
is a huge key space and so it is difficult to search the full key
space thoroughly with a brute-force attack. Suppose that an
attacker can test one trillion (10

12
) keys per second. Then, it

would take an impractical amount of time, such as 4.23254 ×
10141 years to search the entire 512-bit key space. The proposed
neural network model produces up to 512-bit dynamic keys and
provides an exceptional level of security, making it
significantly more difficult for adversaries to predict the key,
which is highly suitable for safeguarding sensitive data in
various applications.

Fig. 3. Model loss.

B. Binary Entropy Analysis

In information theory, a higher entropy value shows better
randomness. Binary entropy is a measure of the amount of
uncertainty or randomness in a binary system. It is also known
as binary information entropy. For a binary key with
probability P being state 1 and probability (1 - P) being state 0,
binary entropy H(P) can be calculated using:

��%� � +�% ∗ 	�!&�%� - �1 + %� ∗ 	�!&�1 + %�� (9)

A binary entropy of approximately 1.00 bits indicates that
the binary key is essentially a random sequence, which means a
high level of information content in the key [22-23]. This study
evaluated the entropy of different key lengths, ranging from 16-
to 512-bit dynamic binary keys, and the resulting entropy of
different key lengths is nearly 1.00, as observed in Figure 4,
representing maximum unpredictability and a truly random
sequence. These results highlight the significance of key length
in cryptographic applications and the inherent connection
between the key length and the degree of randomness, with a
512-bit key providing the maximum level of unpredictability.

Fig. 4. Entropy analysis of cryptographic keys.

Engineering, Technology & Applied Science Research Vol. 14, No. 3, 2024, 14148-14154 14152

www.etasr.com Saini & Sehrawat: Enhancing Data Security through Machine Learning-based Key Generation …

C. NIST Test

The NIST randomness tests are designed to evaluate the
quality of random sequences, including 15 different statistical
tests, each designed to detect specific patterns or biases in a
sequence of binary data. The latter are important in various
fields, such as cryptography applications, secure
communications, and random number generation. Eleven (11)
NIST tests were performed on 128, 256, and 512-bit long
binary keys. As portrayed in Table I, the p-value of the tests
was greater than 0.01. This indicates that the generated keys are
random. Figure 5, provides information on the performance of
various key lengths and demonstrates the distribution of p-
values for each key size. Certain NIST tests, like the binary
rank test, the overlapping template, the universal statistical test,
and the linear complexity test, were not performed, as they
require longer sizes of binary digits up to 10

6
 to satisfy the

randomness requirements [24].

TABLE I. NIST TEST RESULTS

Tests

p-value

Conclusion 128-bit

sequence

256-bit

sequence

512-bit

sequence

Frequency test 0.59588 0.61707 0.72367 Random

Frequency test within a

block
0.59588 0.53526 0.36536 Random

Runs test 0.83985 0.79032 0.99559 Random

Longest run 0.65552 0.93063 0.94052 Random

Discrete Fourier

transform (spectral) test
0.33039 0.81854 0.93535 Random

Non-overlapping

template matching test
0.9999 0.99998 0.50922 Random

Serial test (p-value-1) 0.49896 0.84134 0.69077 Random

Serial Test (p-value-2) 0.49853 0.75967 0.85568 Random

Approximate entropy

test
1.0 1.0 1.0 Random

Cumulative sums test

(forward)
0.89202 0.74584 0.81876 Random

Cumulative sums test

(backward)
0.65476 0.97420 0.92314 Random

Random excursions test

(average)
0.885645 0.703873 0.447325 Random

Random excursions

variant test (average)
0.524083 0.173436 0.370241 Random

Fig. 5. Relationship between distinct keys and p-value.

D. Avalanche Effect

An algorithm's performance and security are often
evaluated by its ability to exhibit a robust avalanche effect,

certifying that small changes in the plaintext or encryption key
result in significant variations in the ciphertext. Change in
ciphertext should be at least 50% [25]. Table II reveals that the
proposed cryptosystem with the existing algorithms modified
the ciphertext by 50% on average after changing one bit in the
plaintext and key, indicating that the proposed cryptosystem
has stronger unpredictability than that of the existing
algorithms.

TABLE II. AVALANCHE EFFECT

Algorithm

Original plaintext: WELCOME! (64-BIT)

Plaintext sensitivity

(Change in plaintext)

Key Sensitivity

(Change in key)

Proposed

cryptosystem

with existing

algorithm

Existing

algorithm
Proposed Existing Proposed Existing

DES 57.81% 45.16% 53.13% 0

AES 50.0% 44.44% 53.25% 50.79%

RSA 50.53% 7.63% 52.24% 55.93%

ElGamal 50.88% 48.11% 50.96% 50.04%

E. Execution Speed Analysis

The execution time of each algorithm revealed the
efficiency, indicating how well the algorithm works. Table III
compares the average encryption and decryption times of the
proposed cryptosystem with the existing ones. Figures 6 and 7
disclose that the proposed cryptosystem is comparably
excellent.

Fig. 6. Encryption performance comparison of the proposed and existing

cryptosystems.

Fig. 7. Decryption performance comparison of the proposed and existing

cryptosystems.

Engineering, Technology & Applied Science Research Vol. 14, No. 3, 2024, 14148-14154 14153

www.etasr.com Saini & Sehrawat: Enhancing Data Security through Machine Learning-based Key Generation …

TABLE III. ENCRYPTION AND DECRYPTION TIMES OF
PROPOSED AND EXISTING CRYPTOSYSTEMS

Algorithm

Original Plaintext: WELCOME! (64-

BIT)

Encryption Time Decryption Time

Proposed

cryptosystem with

existing algorithm

Existing

algorithm
Proposed Existing Proposed Existing

DES 2.95249 13.01797 0.03697 0.00799

AES 0.03098 0.00099 0.02898 0.00499

RSA 0.15490 0.13592 0.82445 0.20371

ElGamal 0.04397 0.00399 0.03297 0.000998

V. CONCLUSION

In an era defined by the ubiquitous exchange of digital
information, the need to protect sensitive data during
transmission has never been more pressing. This study presents
an innovative and scalable solution for information security
that uses modern technology to increase data protection. The
proposed method combines the strength of modern
cryptographic practices with the feature extraction capabilities
of the autoencoder model implementing the MNIST dataset to
transform it into a key generation source. Utilizing SHA-512
for hashing and applying both symmetric (AES and DES) and
asymmetric (RSA and ElGamal) encryption with tweakable
block cipher characteristics, this dual-layered encryption
system guarantees robust data security and exhibits superior
performance compared to existing systems, namely AES, DES,
RSA, and ElGamal. The addition of a BBS-based random
number generator makes it a promising solution for data
security in various applications. The system demonstrated
resistance to interception and tampering and encompassed key
aspects of cryptosystem performance. The binary entropy
analysis manifested a high level of unpredictability, with an
average value of 0.96. Keyspace analysis revealed a well-
distributed key space, such as the 512-bit key size boasting a
total key space of 2

512
, ensuring robust defense against brute-

force attacks. The avalanche effect test for both plaintext and
key sensitivity averaged 52% compared to the existing
algorithms. For plaintext sensitivity, the proposed cryptosystem
with RSA showed 50.53%, while the existing RSA algorithm
showed 7%, indicating a significant improvement. Similarly,
for DES, the key sensitivity analysis is 0%, while the proposed
cryptosystem with DES produced 53.13%, indicating increased
security. The encryption and decryption times of the proposed
cryptosystem are lower than those of the existing
cryptosystems, except for the encryption time of the DES
algorithm. However, it is important to note that the decryption
time performance of the existing cryptosystems is
approximately 80% higher compared to that of the proposed
cryptosystem, which demonstrates excellent performance.
Additionally, the proposed cryptosystem passed the NIST tests
with key sizes of 128, 256, and 512 bits, highlighting its
applicability for various security uses and its efficacy in
safeguarding confidential information during transmission.
Finally, the performance bar graph emphasized the system's
efficiency in terms of encryption and decryption speed.

ACKNOWLEDGMENT

The authors express their gratitude for the IPRF award
granted by Guru Gobind Singh Indraprastha University, New
Delhi, India.

REFERENCES

[1] R. J. Rasras, Z. A. AlQadi, and M. R. A. Sara, "A Methodology Based
on Steganography and Cryptography to Protect Highly Secure

Messages," Engineering, Technology & Applied Science Research, vol.
9, no. 1, pp. 3681–3684, Feb. 2019, https://doi.org/10.48084/etasr.2380.

[2] A. H. Al-Omari, "Lightweight Dynamic Crypto Algorithm for Next

Internet Generation," Engineering, Technology & Applied Science

Research, vol. 9, no. 3, pp. 4203–4208, Jun. 2019, https://doi.org/

10.48084/etasr.2743.

[3] A. S. Alshammari, "Comparison of a Chaotic Cryptosystem with Other
Cryptography Systems," Engineering, Technology & Applied Science

Research, vol. 10, no. 5, pp. 6187–6190, Oct. 2020, https://doi.org/
10.48084/etasr.3745.

[4] S. Haykin, Neural Networks and Learning Machines, 3rd ed. New York,
NY, USA: Pearson, 2008.

[5] A. M. Abdullah, "Advanced encryption standard (AES) algorithm to

encrypt and decrypt data," Cryptography and Network Security, vol. 16,
no. 1, 2017.

[6] D. Coppersmith, "The Data Encryption Standard (DES) and its strength

against attacks," IBM Journal of Research and Development, vol. 38, no.
3, pp. 243–250, May 1994, https://doi.org/10.1147/rd.383.0243.

[7] R. L. Rivest, A. Shamir, and L. Adleman, "A method for obtaining

digital signatures and public-key cryptosystems," Communications of the

ACM, vol. 21, no. 2, pp. 120–126, Oct. 1978, https://doi.org/10.1145/

359340.359342.

[8] T. Elgamal, "A public key cryptosystem and a signature scheme based
on discrete logarithms," IEEE Transactions on Information Theory, vol.

31, no. 4, pp. 469–472, Jul. 1985, https://doi.org/10.1109/
TIT.1985.1057074.

[9] V. Sagar and K. Kumar, "Autoencoder Artificial Neural Network Public

Key Cryptography in Unsecure Public channel Communication,"
International Journal of Innovative Technology and Exploring

Engineering, vol. 8, no. 11, pp. 4023–4032, Sep. 2019,
https://doi.org/10.35940/ijitee.K1456.0981119.

[10] F. Ahmed et al., "A DNA Based Colour Image Encryption Scheme
Using A Convolutional Autoencoder," ACM Transactions on

Multimedia Computing, Communications, and Applications, vol. 19, no.
3s, Oct. 2023, https://doi.org/10.1145/3570165.

[11] S. Karthikeyini, R. Sagayaraj, N. Rajkumar, and P. K. Pillai, "Security in

Medical Image Management Using Ant Colony Optimization,"
Information Technology and Control, vol. 52, no. 2, pp. 276–287, Jul.

2023, https://doi.org/10.5755/j01.itc.52.2.32532.

[12] J. Jin and K. Kim, "3D CUBE Algorithm for the Key Generation
Method: Applying Deep Neural Network Learning-Based," IEEE

Access, vol. 8, pp. 33689–33702, 2020, https://doi.org/10.1109/
ACCESS.2020.2973695.

[13] M. Indrasena Reddy, A. P. Siva Kumar, and K. Subba Reddy, "A

secured cryptographic system based on DNA and a hybrid key
generation approach," Biosystems, vol. 197, Nov. 2020, Art. no. 104207,

https://doi.org/10.1016/j.biosystems.2020.104207.

[14] W. A. Shukur, "A Proposed Method for Generating a Private Key Using
Digital Color Image Features," International Journal of Applied

Engineering Research, vol. 12, no. 16, pp. 6235–6240, 2017.

[15] S. Basu, M. Karuppiah, M. Nasipuri, A. K. Halder, and N.
Radhakrishnan, "Bio-inspired cryptosystem with DNA cryptography and

neural networks," Journal of Systems Architecture, vol. 94, pp. 24–31,
Mar. 2019, https://doi.org/10.1016/j.sysarc.2019.02.005.

[16] S. A. Kadum, A. Y. Al-Sultan, and N. A. Hadie, "Data protection based
neural cryptography and deoxyribonucleic acid," International Journal

of Electrical and Computer Engineering (IJECE), vol. 12, no. 3, pp.
2756-2764, Jun. 2022, https://doi.org/10.11591/ijece.v12i3.pp2756-

2764.

Engineering, Technology & Applied Science Research Vol. 14, No. 3, 2024, 14148-14154 14154

www.etasr.com Saini & Sehrawat: Enhancing Data Security through Machine Learning-based Key Generation …

[17] U. Michelucci, "An Introduction to Autoencoders." arXiv, Jan. 11, 2022,
https://doi.org/10.48550/arXiv.2201.03898.

[18] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,

MA, USA: The MIT Press, 2016.

[19] C. Dobraunig, M. Eichlseder, and F. Mendel, "Analysis of SHA-512/224
and SHA-512/256," in Advances in Cryptology – ASIACRYPT 2015,

Berlin, Heidelberg, 2015, pp. 612–630, https://doi.org/10.1007/978-3-
662-48800-3_25.

[20] M. Liskov, R. L. Rivest, and D. Wagner, "Tweakable Block Ciphers," in
Advances in Cryptology — CRYPTO 2002, Santa Barbara, CA, USA,

2002, pp. 31–46, https://doi.org/10.1007/3-540-45708-9_3.

[21] L. Blum, M. Blum, and M. Shub, "A Simple Unpredictable Pseudo-
Random Number Generator," SIAM Journal on Computing, vol. 15, no.

2, pp. 364–383, May 1986, https://doi.org/10.1137/0215025.

[22] W. Stallings, Cryptography and Network Security: Principles and
Practice, Global Ed, 8th edition. Harlow, UK: Pearson, 2022.

[23] M. Imdad, S. N. Ramli, and H. Mahdin, "Increasing Randomization of

Ciphertext in DNA Cryptography," International Journal of Advanced

Computer Science and Applications, vol. 12, no. 10, pp. 423–429, 2021,

https://doi.org/10.14569/IJACSA.2021.0121047.

[24] L. E. Bassham et al., "A Statistical Test Suite for Random and
Pseudorandom Number Generators for Cryptographic Applications,"

National Institute of Standards and Technology, Sep. 2010. [Online].
Available: https://www.nist.gov/publications/statistical-test-suite-

random-and-pseudorandom-number-generators-cryptographic.

[25] B. Banerjee, "Avalanche effect: A judgement parameter of strength in
symmetric key block ciphers," International Journal of Engineering

Development and Research, vol. 7, no. 2, pp. 116–121, 2019.

