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ABSTRACT 

In an era marked by growing concerns about data security and privacy, the need for robust encryption 

techniques has become a matter of paramount importance. The primary goal of this study is to protect 

sensitive information during transmission while ensuring efficient and reliable decryption at the receiver's 

side. To generate robust and unique cryptographic keys, the proposed approach trains an autoencoder 

neural network based on hashing and optionally generated prime numbers in the MNIST dataset. The key 

serves as the foundation for secure communication. An additional security layer to the cryptographic 

algorithm passing through the first ciphertext, was employed utilizing the XORed and Blum-Blum-Shub 
(BBS) generators to make the system resistant to various types of attacks. This approach offers a robust 

and innovative solution for secure data transmission, combining the strengths of autoencoder-based key 

generation and cryptographic encryption. Its effectiveness is demonstrated through testing and 

simulations. 
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I. INTRODUCTION  

In an increasingly interconnected world, the transmission of 
sensitive information has become an integral part of 
indivinduals’ daily life. Whether it involves personal 
messaging, confidential documents, or financial transactions, 
promising data security and privacy during its journey from the 
sender to the receiver has become an essential concern [1]. As 
digital communication continues to grow, so do malicious 
threats' methods, which aim to compromise the confidentiality 
and integrity of data [2-3]. To address these obstinate security 
challenges, this study presents an innovative approach that 
integrates neural networks and cryptographic algorithms [4]. 
By utilizing the input, hidden, and output layers of the network 
structure, this technique ensures secure data transfer over 
unreliable channels, enhancing the overall system resilience. 

The foundation of the proposed method is the use of 
autoencoder neural network models, which are renowned for 
their ability to learn compact representations of complex data. 
Although traditional encryption methods often rely on 
manually generated cryptographic keys, this study introduces a 
novel method in which the cryptographic keys are 
autonomously generated by an autoencoder, an artificial neural 
network designed for data compression and reconstruction, 
thus introducing an additional security layer to the encryption 
process. The training of the autoencoder model is accomplished 

implementing the MNIST dataset, a well-known collection of 
handwritten digital images. By exploiting the autoencoder's 
ability, a unique cryptographic key for symmetric and 
asymmetric algorithms is generated. This key, shaped by the 
properties learned from the neural network, serves as the 
foundation for secure data transmission. The proposed 
encryption process consists of two crucial stages. The plaintext 
undergoes bitwise XOR operation and subsequent encryption 
deploying symmetric cryptographic algorithms, such as 
Advanced Encryption Standard (AES) [5] and Data Encryption 
Standard (DES) [6], and asymmetric cryptographic algorithms, 
such as Rivest-Shamir-Adleman (RSA) [7] and ElGamal [8]. 
This two-layer strategy ensures that the data are kept extremely 
secure. 

This groundbreaking approach to secure data transmission 
incorporates autoencoder-based key generation with traditional 
symmetric or asymmetric encryption methods, striking a 
balance between enhanced data security and minimization of 
key interception risks. The merger of XOR-based 
preprocessing with a cryptographic algorithm promises robust 
protection against unauthorized access, thus offering a versatile 
solution for secure communication across various domains, 
from secure messaging platforms to confidential file-sharing 
networks. This study aims to contribute to the constantly 
changing field of data security at a time when protecting user 
privacy is of the utmost importance. 
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II. RELATED WORKS 

In [9], an autoencoder neural network model was used in 
the proposed cryptographic approach. The sender creates a 
training set that consists of a binary representation of 
alphanumeric characters and special symbols, including 
padding and a shared secret key. This dataset is securely sent to 
the receiver, who also utilizes it to train their autoencoder 
neural network model. In the encryption process, the plaintext 
is transformed, including converted to ASCII and binary forms, 
and encrypted employing the trained autoencoder with the 
secret key. The resulting ciphertext is transmitted to the 
receiver and the whole process is reversed in the decryption 
phase, where the ciphertext is passed to the decoder of the 
autoencoder with the same secret key to generate the original 
plaintext. In [10], a method was proposed to secure the 
encryption of color images, addressing the issues of encryption 
speed and bandwidth usage. The encryption scheme was a 
combination of a convolutional autoencoder, DNA, and chaos 
theory. For key generation, the color image was converted into 
a grayscale image and passed to the SHA-256 hash function to 
obtain the key. This scheme proposed a dimensional 
conversion module that reduced the dimension of the input 
color image engaging the convolution autoencoder while 
maintaining image fidelity. Furthermore, this study deployed 
DNA and multiple chaotic sequences along with the 
substitution box of the encryption algorithm. 

In [11], an approach based on Ant Colony Optimization 
(ACO) with Encryption Curve Cryptography (ECC)-based 
steganography was presented with a specific focus on 
improving the security of medical image management, 
particularly concentrating on a diabetic retinopathy dataset. The 
proposed method combined two main techniques, encryption 
with ECC by maximizing the Peak Signal-to-Noise Ratio 
(PSNR) to maintain image quality during transmission, and key 
generation with ACO, where the encryption key is created by 
finding the best coefficients to hide information in the integer 
wavelet transform of the source image. This strategy aims to 
secure complex regions of the image while applying LSB 
steganography efficiently. ACO-based key generation 
effectively creates a secure key stream for binary image 
encryption by coordinating ant agents to produce pheromones. 
In [12], a 3D cube algorithm was introduced, which employed 
deep neural network learning to facilitate the creation of 
symmetric keys without sharing the pre-shared key between 
systems. The 3D cube algorithm hashed and XORed patterns 
related to shuffle operations in an initially arranged 3D cube to 
create a 256-bit secret key, providing an impressive level of 
security. This approach used AES-256-based symmetric key 
encryption and the DeepCube AI technique for shuffled pattern 
resolution. The former achieved the highest recognition rate 
with four shuffles and three hidden layers in the DNN model. 
In [13], a bioinspired cryptography system that used hybrid key 
generation methods was presented. This system utilized DNA 
encoding, translation, and transcription processes for 
encryption and decryption based on the Central Dogma of 
Molecular Biology (CDMB) and the Central Molecular 
Biology (CMB) principle. The Whale Optimization Algorithm 
(WOA) was applied to optimize the weight vectors to achieve 
an effective encryption and decryption process. Additionally, a 

Bidirectional Associative Memory Neural Network (BAMNN) 
was put into service for key generation and storage during the 
encryption and decryption processes. In [14], a private key was 
generated using the features of color images. The frequencies 
of RGB coolers in the image were calculated, and the 
maximum frequencies of each color were multiplied by the 
number of frequencies for each of their colors. The result 
represented the key, which was converted into binary form. 
The generated key remains unchanged even after hiding a text 
in the image.  

In [15], the BAMNN model, which saves memory space by 
remembering and recreating sets of keys repeatedly in a 
recurrent manner, was implemented for key generation. A 
bioinspired cryptosystem based on CDMB was proposed for 
encryption and decryption. The encryption process involves 
converting binary input into DNA bases, simulating the genetic 
coding process, followed by transcription and translation to 
generate protein-based ciphertext. The decryption procedure 
involved the reverse of the encryption process. In [16], two 
distinct disciplines, machine learning and DNA-based 
encryption, were combined. A modified Hebbian neural 
network was used for message encryption, and a ciphering 
neural network was employed to encode plaintext utilizing 
LNN-generated keys and DNA techniques to enhance data 
confusion and compression. The cipher neural network 
transformed the plaintext into ASCII code and engaged 
ciphered LNN keys as weights. 

ALGORITHM 1: PROPOSED METHOD 

#Key Generation 

Generate-Key (): 

  Random-Integer = Autoencoder (MNIST-Dataset) 

  Hash-Integer = SHA512 (Random-Integer, size) 

  If (Required Prime Number): 

    prime-integer = Convert-prime (Hash-Integer) 

    return (prime-integer) 

  else: 

    key = Hash-Integer 

    return key 

 

#Encryption 

Encryption (plaintext): 

  Key = Generate-Key () 

  Tweak-value = BBS-Generator ( ) 

  #Obtain first cipher text 

  Hash-key = SHA_512 (Tweak-value, size) 

  Cipher_text_1= XOR (plaintext, Hash-key) 

  # Pass through Symmetric/ Asymmetric      

  Cryptographic Algorithm (e.g. AES, DES, RSA, 

    ElGamal) 

  Cipher_text_2 =  

    Cryptographic-Algorithm (Cipher_text_1, Key) 

  Return (Cipher_text_2, Tweak-value, Key) 

 

#Decryption 

Decryption (Cipher_text_2, Tweak-value, Key): 

  # Pass through Symmetric/ Asymmetric 

      Cryptographic Algorithm  

  Decrypted_Cipher_text_1 = Cryptographic-Algorithm 

    (Cipher_text_2, Key) 

  #Obtain Final Plain text 

  Hash-key = SHA_512 (Tweak-value, size) 

  Original Plain Text =  

    XOR(Decrypted_Cipher_text_1, Hash-key) 

  return (Original Plain Text) 



Engineering, Technology & Applied Science Research Vol. 14, No. 3, 2024, 14148-14154 14150  
 

www.etasr.com Saini & Sehrawat: Enhancing Data Security through Machine Learning-based Key Generation … 

 

III. THE PROPOSED METHOD 

This study introduces a novel approach to secure data 
transmission by integrating cryptographic algorithms with the 
strength of machine learning through an autoencoder model. 
The MNIST dataset is implemented for secure key generation, 
and the entire approach encompasses several distinct phases, as 
shown in Figure 1 and the above pseudocode. 

 

 
Fig. 1.  Flowchart of the proposed method. 

A. Key Generation 

The main objective of this approach lies in the generation 
of a highly secure cryptography key. This approach generates a 
distinctive and reliable cryptographic key using the wide range 
of patterns and digits in the MNIST dataset. This phase deals 
with the key distribution, as well as with ensuring the 
confidentiality of the key. The following processes are 
deployed to create a key: 

 An appropriate autoencoder architecture [17-18] is designed 
and implemented. The model is trained on the MNIST 
dataset to obtain a high dimensional integer representation 
based on the learned representations, ensuring their 
uniqueness and security, as illustrated in Figure 2. 

 

 
Fig. 2.  Proposed Autoencoder Model. 

 SHA-512, a secure and robust hashing algorithm [19], is 
applied to the integer representation to produce a hash value 
between 8 and 512 bits, per user requirements, that can be 
computed as: 

Initialize: 

�����_��	
� � �
�_8����_����  (1) 

Hashing: 

ℎ��ℎ_��� � �������_��	
��   (2) 

����_��� � ℎ��ℎ_����: ���_���� /  8�  (3) 

Conversion: 

��� � �����_��_� ��!�������_����  (4) 

where key_str is an integer received from the autoencoder, 
bytes_value contains the converted byte value of key_str, H(x) 
represents the SHA-512 hash function, and key_size is defined 
by the user. Up to a 512-bit long key can be generated, which is 
stored in Byte_key in bytes form, and the Key stores the 
converted integer value of Byte_key. Users have the option to 
convert the hash value into a prime number. The following 
pseudocode gives the next prime of the given hash value. 

ALGORITHM 2: NEXT PRIME CALCULATION 

next prime (n): 

  if n < 2: 

    return 2 

  if n == 2: 

    return 3 

  if n % 2 == 0 

    n = n + 1  

  else  

    n + 2 

  while True: 

    if is prime (n): 

      return n 

    n += 2 

 
If the user needs a key for symmetric cryptography then the 

generated hash value will go as the key. In addition, if the user 
wants prime numbers for asymmetric cryptography, then the 
next prime number of the hash value will be passed. 

B. Encryption 

This study adopts the properties of the tweakable block 
cipher model [20] to strengthen the security and versatility of 
the proposed cryptographic framework. A BBS generator [21-
22] is employed to produce a 32- or 64-bit number using the 
following procedure. 

ALGORITHM 3: BBS GENERATOR 

n = p*q 

where p & q is a large prime number such that  

  p ≡ q ≡ 3 mod 4 

Select random seed value S0 such that gcd(S0, n) = 1 

X0 = (S0)
2
 mod n 

for i =1 to ∞ 

 Xi = (Xi-1)
2
 mod n 

 Append Xi to the list L 

Where Xi is the pseudo random number 

 
This produces a list of multiple random numbers, while a 

random number is taken from the list as tweak T, which is 
passed to the hash function SHA-512 H(T). The plaintext data 
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P undergoes a bitwise XOR operation with H(T) to obtain the 
first cipher text C1, represented as: 

"# � ��
� ⊕ %    (5) 

The first ciphertext C1 is passed to the cryptographic 
algorithm to create the final ciphertext C2. In the case of 
symmetric cryptography, this algorithm uses the generated key 
from the key generation model. For asymmetric cryptography, 
the algorithm deploys the generated prime numbers from the 
key generation model to produce the final key. The cipher text 
C2 will be: 

"& � '��, "#�    (6) 

where E represents the encryption. The sender transmits the 
cipher text C2 along with the key K and the tweak value T. 

C. Decryption 

To retrieve the original plaintext data from the encrypted 
cipher text, the recipient will perform inverse operations, 
including symmetric or asymmetric decryption, as well as XOR 
decryption. At first, the recipient will determine which type of 
encryption algorithm was applied and then perform the 
decryption operation to calculate the recovered text RT: 

)
 � *��, "&�    (7) 

To get the original text, tweak T is passed to the SHA-512 hash 
function, i.e. H(T). The recovered text RT is bitwise XORed 
with H(T) to obtain the original plain text P: 

% � ��
�  ⊕ )
    (8) 

IV. RESULTS & DISCUSSION 

The proposed method was implemented in Python on a 
machine equipped with an Intel Core i3-2328M processor 
running at 2.20 GHz, 4 GB of RAM, and 256 GB SSD. An 
autoencoder neural network model was trained on the MNIST 
dataset to generate keys, with an input dimension of 784 and an 
encoding dimension of 32, consisting of two dense layers, one 
for encoding and one for decoding. The MNIST dataset was 
loaded and preprocessed, transforming the pixel values to the 
[0, 1] range. The training process utilizes the Adam optimizer 
and binary cross-entropy loss over 10 epochs, indicating its 
effective data reconstruction capabilities. The model achieved a 
final training loss of 0.0974 and a validation loss of 0.0953. As 
displayed in Figure 3, these values emphasize the capability of 
the model, exhibiting a minimal reconstruction error. In the 
end, the model produced approximately a 7554-digit long 
integer key, which passed through the compression function. 

A. Keyspace Analysis  

Keyspace analysis is a crucial aspect in addressing the 
security and effectiveness of a cryptographic system. Keyspace 
refers to the total number of possible keys that can be utilized 
in a cryptographic algorithm and determines the size and 
complexity of the key, providing information about the security 
and usability of the encryption scheme. For example, a 512-bit 
key is capable of producing a total of 2512 distinct keys, which 
is a huge key space and so it is difficult to search the full key 
space thoroughly with a brute-force attack. Suppose that an 
attacker can test one trillion (10

12
) keys per second. Then, it 

would take an impractical amount of time, such as 4.23254 × 
10141 years to search the entire 512-bit key space. The proposed 
neural network model produces up to 512-bit dynamic keys and 
provides an exceptional level of security, making it 
significantly more difficult for adversaries to predict the key, 
which is highly suitable for safeguarding sensitive data in 
various applications. 

 

 
Fig. 3.  Model loss. 

B. Binary Entropy Analysis 

In information theory, a higher entropy value shows better 
randomness. Binary entropy is a measure of the amount of 
uncertainty or randomness in a binary system. It is also known 
as binary information entropy. For a binary key with 
probability P being state 1 and probability (1 - P) being state 0, 
binary entropy H(P) can be calculated using: 

��%� � +�% ∗ 	�!&�%� - �1 + %� ∗ 	�!&�1 + %�� (9) 

A binary entropy of approximately 1.00 bits indicates that 
the binary key is essentially a random sequence, which means a 
high level of information content in the key [22-23]. This study 
evaluated the entropy of different key lengths, ranging from 16- 
to 512-bit dynamic binary keys, and the resulting entropy of 
different key lengths is nearly 1.00, as observed in Figure 4, 
representing maximum unpredictability and a truly random 
sequence. These results highlight the significance of key length 
in cryptographic applications and the inherent connection 
between the key length and the degree of randomness, with a 
512-bit key providing the maximum level of unpredictability.  

 

 
Fig. 4.  Entropy analysis of cryptographic keys. 
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C. NIST Test 

The NIST randomness tests are designed to evaluate the 
quality of random sequences, including 15 different statistical 
tests, each designed to detect specific patterns or biases in a 
sequence of binary data. The latter are important in various 
fields, such as cryptography applications, secure 
communications, and random number generation. Eleven (11) 
NIST tests were performed on 128, 256, and 512-bit long 
binary keys. As portrayed in Table I, the p-value of the tests 
was greater than 0.01. This indicates that the generated keys are 
random. Figure 5, provides information on the performance of 
various key lengths and demonstrates the distribution of p-
values for each key size. Certain NIST tests, like the binary 
rank test, the overlapping template, the universal statistical test, 
and  the linear complexity test, were not performed, as they 
require longer sizes of binary digits up to 10

6
 to satisfy the 

randomness requirements [24]. 

TABLE I.  NIST TEST RESULTS 

Tests 

p-value 

Conclusion 128-bit 

sequence 

256-bit 

sequence 

512-bit 

sequence 

Frequency test 0.59588 0.61707 0.72367 Random 

Frequency test within a 

block 
0.59588 0.53526 0.36536 Random 

Runs test 0.83985 0.79032 0.99559 Random 

Longest run 0.65552 0.93063 0.94052 Random 

Discrete Fourier 

transform (spectral) test 
0.33039 0.81854 0.93535 Random 

Non-overlapping 

template matching test 
0.9999 0.99998 0.50922 Random 

Serial test (p-value-1) 0.49896 0.84134 0.69077 Random 

Serial Test (p-value-2) 0.49853 0.75967 0.85568 Random 

Approximate entropy 

test 
1.0 1.0 1.0 Random 

Cumulative sums test 

(forward) 
0.89202 0.74584 0.81876 Random 

Cumulative sums test 

(backward) 
0.65476 0.97420 0.92314 Random 

Random excursions test 

(average) 
0.885645 0.703873 0.447325 Random 

Random excursions 

variant test (average) 
0.524083 0.173436 0.370241 Random 

 

 
Fig. 5.  Relationship between distinct keys and p-value. 

D. Avalanche Effect 

An algorithm's performance and security are often 
evaluated by its ability to exhibit a robust avalanche effect, 

certifying that small changes in the plaintext or encryption key 
result in significant variations in the ciphertext. Change in 
ciphertext should be at least 50% [25]. Table II reveals that the 
proposed cryptosystem with the existing algorithms modified 
the ciphertext by 50% on average after changing one bit in the 
plaintext and key, indicating that the proposed cryptosystem 
has stronger unpredictability than that of the existing 
algorithms. 

TABLE II.  AVALANCHE EFFECT 

Algorithm 

Original plaintext: WELCOME! (64-BIT) 

Plaintext sensitivity 

(Change in plaintext) 

Key Sensitivity 

(Change in key) 

Proposed 

cryptosystem 

with existing 

algorithm 

Existing 

algorithm 
Proposed Existing Proposed Existing 

DES 57.81% 45.16% 53.13% 0 

AES 50.0% 44.44% 53.25% 50.79% 

RSA 50.53% 7.63% 52.24% 55.93% 

ElGamal 50.88% 48.11% 50.96% 50.04% 

 

E. Execution Speed Analysis 

The execution time of each algorithm revealed the 
efficiency, indicating how well the algorithm works. Table III 
compares the average encryption and decryption times of the 
proposed cryptosystem with the existing ones. Figures 6 and 7 
disclose that the proposed cryptosystem is comparably 
excellent. 

 

 
Fig. 6.  Encryption performance comparison of the proposed and existing 

cryptosystems. 

 
Fig. 7.  Decryption performance comparison of the proposed and existing 

cryptosystems. 
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TABLE III.  ENCRYPTION AND DECRYPTION TIMES OF 
PROPOSED AND EXISTING CRYPTOSYSTEMS 

Algorithm 

Original Plaintext: WELCOME! (64-

BIT) 

Encryption Time Decryption Time 

Proposed 

cryptosystem with 

existing algorithm 

Existing 

algorithm 
Proposed Existing Proposed Existing 

DES 2.95249 13.01797 0.03697 0.00799 

AES 0.03098 0.00099 0.02898 0.00499 

RSA 0.15490 0.13592 0.82445 0.20371 

ElGamal 0.04397 0.00399 0.03297 0.000998 

 

V. CONCLUSION 

In an era defined by the ubiquitous exchange of digital 
information, the need to protect sensitive data during 
transmission has never been more pressing. This study presents 
an innovative and scalable solution for information security 
that uses modern technology to increase data protection. The 
proposed method combines the strength of modern 
cryptographic practices with the feature extraction capabilities 
of the autoencoder model implementing the MNIST dataset to 
transform it into a key generation source. Utilizing SHA-512 
for hashing and applying both symmetric (AES and DES) and 
asymmetric (RSA and ElGamal) encryption with tweakable 
block cipher characteristics, this dual-layered encryption 
system guarantees robust data security and exhibits superior 
performance compared to existing systems, namely AES, DES, 
RSA, and ElGamal. The addition of a BBS-based random 
number generator makes it a promising solution for data 
security in various applications. The system demonstrated 
resistance to interception and tampering and encompassed key 
aspects of cryptosystem performance. The binary entropy 
analysis manifested a high level of unpredictability, with an 
average value of 0.96. Keyspace analysis revealed a well-
distributed key space, such as the 512-bit key size boasting a 
total key space of 2

512
, ensuring robust defense against brute-

force attacks. The avalanche effect test for both plaintext and 
key sensitivity averaged 52% compared to the existing 
algorithms. For plaintext sensitivity, the proposed cryptosystem 
with RSA showed 50.53%, while the existing RSA algorithm 
showed 7%, indicating a significant improvement. Similarly, 
for DES, the key sensitivity analysis is 0%, while the proposed 
cryptosystem with DES produced 53.13%, indicating increased 
security. The encryption and decryption times of the proposed 
cryptosystem are lower than those of the existing 
cryptosystems, except for the encryption time of the DES 
algorithm. However, it is important to note that the decryption 
time performance of the existing cryptosystems is 
approximately 80% higher compared to that of the proposed 
cryptosystem, which demonstrates excellent performance. 
Additionally, the proposed cryptosystem passed the NIST tests 
with key sizes of 128, 256, and 512 bits, highlighting its 
applicability for various security uses and its efficacy in 
safeguarding confidential information during transmission. 
Finally, the performance bar graph emphasized the system's 
efficiency in terms of encryption and decryption speed. 
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