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ABSTRACT 

Coastal defense structures are of paramount importance in protecting coastal communities from the 

adverse impacts of severe weather events and flooding. This study uses machine learning techniques, 

specifically Decision Tree (DT), Gradient Boosted Tree (GBT), and Support Vector Machine (SVM) 

models, to estimate wave overtopping discharge at coastal structures with combined slopes employing the 

recently built EurOtop database. The models were evaluated by deploying statistical metrics and Taylor 

diagram visualization. The GBT model demonstrated a high level of accuracy in predicting wave-

overtopping discharge. Compared to the other models, the scatter index of GBT (0.392) was lower than 

that of DT (0.512) and SVM (0.823). In terms of the R-index, GBT (0.991) was superior to DT (0.977) and 

SVM (0.943). The GBT results were also compared with those of previous works. The findings showed that 

the GBT model significantly decreased the overall error and provided accurate estimations of the wave-

overtopping discharge. 

Keywords-coastal defense; wave overtopping; prediction; gradient boosted trees; decision trees; support vector 

machines; safety 

I. INTRODUCTION  

In recent decades, there has been a gradual development of 
coastal zones, which have substantial economic importance for 
countries around the world [1]. Coastal protection 
infrastructures are designed to mitigate the risks associated 
with wave-induced overtopping and safeguard people and 
assets located behind these protective barriers. However, the 
strain on crucial coastal defenses is expected to escalate due to 
the confluence of rising sea levels and the projected increase in 
both frequency and intensity of severe storm surges, all of 
which are consequences of global climate change [2]. 
Numerous investigations have examined flood protection 
strategies aimed at managing future coastal flood risks. 
However, it is imperative to diligently evaluate the potential 
wave overtopping of coastal defenses, considering the inherent 
uncertainties associated with such assessments. Accurate 
prediction of the propagation of wave overtopping in the inland 
is essential for the development of coastal defense structures 
[3]. 

Wave overtopping is governed by a multitude of 
parameters. Using analytical methods that rely on simplified 
representations of the underlying processes may not 
consistently yield precise predictions due to the intricate and 
stochastic nature of the overtopping phenomena. Wave 
overtopping has been extensively investigated in several 

studies and certain initiatives have been taken, primarily 
through the adoption of experimental approaches [4]. These 
investigations have led to the formulation of various empirical 
prediction equations and the utilization of Artificial Neural 
Networks (ANNs) [5]. Numerous methods are used to forecast 
wave overtopping, namely empirical formulas, Machine 
Learning (ML) techniques, and numerical models. Empirical 
formulas offer a convenient and straightforward method to 
obtain an initial approximation of the average wave 
overtopping discharge. The utilization of numerical modeling 
often requires significant processing resources that may be 
cost-prohibitive, thus it is important to acknowledge their 
limitations. In contrast, ML techniques can provide predictions 
with minimal delay, while simultaneously achieving a 
favorable trade-off between precision and efficiency. 
Additionally, these models facilitate the incorporation of a 
multitude of control parameters. The utilization of ML 
techniques is prevalent within the domain of coastal 
engineering due to their efficacy in knowledge processing, 
prediction, and forecasting. ML techniques encompass several 
approaches  such as ANNs, tree-based methods, and Support 
Vector Machines (SVM). 

In [6], a unique ANN tool was developed to estimate the 
wave reflection coefficient (Kr) and the wave transmission 
coefficients (Kt). The respective studies focused on the 
estimation of Kr, Kt, and the additional parameter q. In [7], an 
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improved ANN model was presented to analyze different types 
of coastal structures. This model, published in EurOtop (2018), 
incorporated input parameters obtained from an expanded 
database grounded primarily on the CLASH database. In [8], 
gradient-boosting decision trees were used to predict average 
wave-overtopping discharges. These models were trained 
implementing the CLASH database, which contains data on 
wave overtopping. In [9], XGBoost was put into service to 
forecast the mean wave overtopping discharge. The specific 
model was evaluated by being compared to four new physical 
model datasets. A comprehensive quantitative comparison was 
conducted, juxtaposing the XGBoost with both previous ML 
approaches and empirical overtopping equations. The XGBoost 
model showed a reduction in errors on all the data utilized by a 
magnitude of up to 5 compared to current overtopping 
prediction approaches. 

In [10], the accuracy of soft computing techniques was 
assessed using a Multilayer Perceptron Neural Network 
(MLPNN) and Random Forest Decision Tree (RFDT) for 
wave-overtopping discharge prediction of vertical coastal 
structures. The effectiveness of each method was reviewed 
through the employment of graphs and accuracy measures. The 
results demonstrated that the RFDT model provided more 
accurate predictions than MLPNN. In [11], ANN methods were 
followed, including MPNN, Generalized Regression Neural 
Network (GRNN), and SVM, to estimate the wave overtopping 
discharge in rubble mound structures characterized by a 
straight slope. The results disclosed that GRNN exhibited a 
high level of prediction accuracy. In [12], a Convolutional 
Neural Network (CNN) model was presented, applying deep 
learning techniques to predict wave overtopping in coastal 
constructions. The validation results displayed that this CNN 
model was exceptionally precise in calculating wave 
overtopping discharge based on hydraulic and structural 
characteristics. The evaluation of the overtopping predictions 
using a prototype dataset demonstrated that the proposed CNN 
model exceeded the performance of previous ML models. In 
[13], a variety of ML methods, such as MPNN, Cascade 
Correlation Neural Networks (CCNN), GRNN, and SVMs, 
were deployed to predict wave-overtopping discharge in 
coastal structures with a linear slope. The results indicated that 
the GRNN had a notable degree of precision. 

This study implements Taylor diagram visualization and 
multiple evaluation metrics to evaluate the accuracy of several 
techniques, namely Decision Tree (DT), Gradient Boosted 
Trees (GBT), and SVM, in estimating wave overtopping of 
combined-slope coastal structures. The current study aims to 
develop a comprehensive and precise prediction model that can 
effectively estimate wave-overtopping discharges for a wide 
range and types of coastal structures under various wave 
conditions. This model aims to assist coastal designers in their 
decision-making processes. Furthermore, the results of this 
investigation can be exploited for the computation of wave 
overtopping risk and wave overtopping prediction so that 
warnings will be issued and emergency evacuations will be 
facilitated in the face of severe wave events. Also, the 
aforementioned findings may assist in risk mitigation, and the 
economic evaluation of coastal protection initiatives. 

II. METHODS 

A. Data 

This study used the recently developed EurOtop database, 
which encompasses a comprehensive collection of 17,942 tests. 
The original CLASH database contained around 13,500 
systematically organized global tests on wave overtopping 
discharge (q) [4]. A total of 4,737 tests were employed to 
investigate rubble mound structures that were devoid of a berm 
and featured a combined slope. Figure 1 portrays a schematic 
representation of the rubble mound structure, without a berm, 
with combined slopes. Table I and Figure 2 present statistical 
data for the essential parameters. 

 

 

Fig. 1.  Cross section with application parameters for ML techniques. 

TABLE I.  STATISTICAL SUMMARY FOR THE DIMENSIONAL BASIC PARAMETERS OF THE USED DATASET 

Parameter Definition Number Units Minimum Maximum Mean SD 

Spreading Spreading 4737 [-] 0 10 0.3462 1.3999 

β Angle of wave attack 4737 [°] 0 80 3.7205 11.4993 

h Water depth at the structure toe 4737 [m] 0.029 5.01 0.4617 0.3987 

Hm0 toe Significant wave height at the structure toe  4737 [m] 0.017 1.48 0.1271 0.0771 

ht Toe submergence 4737 [m] 0.029 5.01 0.4398 0.4035 

Bt Toe width 4737 [m] 0 2.031 0.0527 0.1330 

γf Roughness factor 4737 [-] 0 1 0.6265 0.3615 

D Average size of the structure elements 4737 [m] 0 1 0.1136 0.2269 

cotαd  4737 [-] 0 7 2.3072 1.1931 

cotαincl  4737 [-] 0 7 2.3394 1.2029 

Rc Crest height with respect to SWL 4737 [m] 0 2.5 0.1699 0.1519 

Ac (Armor) crest freeboard without crown wall 4737 [m] 0 2.5 0.1614 0.1532 

Gc Crest width or promenade width 4737 [m] 0 1 0.1185 0.1588 

q Wave overtopping discharge 4737 [m3/s per m] 0.000001 0.0256 0.0008 0.0022 
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Fig. 2.  Parameter spectrum of the assembled database. 

B. Methods 

ML is widely utilized across a diverse range of applications 
and disciplines due to their ability to make informed decisions 
and predictions using recently acquired data [14-17]. ML 
algorithms undergo repeated training iterations to adapt and 
identify patterns. Enhanced algorithms frequently yield greater 
precision in decision-making and predictive results. There are 
several factors to consider when selecting an algorithm, 
including the scale of the training data, the precision and 
interpretability of the output, the duration of the training 
process, and the number of features involved. ML can be 
classified into three distinct groups: supervised ML, 
unsupervised ML, and reinforcement and semi-supervised 
learning [16]. This study deployed supervised ML due to its 
ability to accurately predict continuous variables, often known 
as regression. Specifically, this study assessed the performance 
of GBT, DT, and SVM. 

The SVM technique was initially introduced as a solution 
for pattern recognition tasks. Over time, it has been further 
developed to handle non-linear regression issues by 
incorporating the ε-insensitive loss function [17]. SVMs are 
well recognized as robust instruments that operate on the 
notion of structural risk reduction, aiming at lowering the 
upper-bound risk functionally associated with generalization 
performance. By employing a non-linear mapping function, the 
SVM transforms the initial input data into a feature space of 
larger dimensionality, subsequently applying a basic linear 
function to it. 

DT is a supervised ML model that is commonly used for 
classification tasks. It has a tree structure with branches that 
signify potential values associated with each node and nodes 
that represent characteristics of a categorized group [16]. The 
tree structure is easily comprehensible and provides a lucid 
framework to facilitate decision-making. However, there are 
various drawbacks connected to the former, including the 
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issues of overfitting and errors resulting from bias and 
variation. An effective strategy to mitigate overfitting is to 
employ pre-pruning on the decision tree, whereby the growth 
of the tree is constrained to prevent it from reaching its 
maximum size [18]. 

The GBT algorithm combines many DTs to create a 
powerful predictive model. GBT refers to a collection of 
regression or classification tree models. This technique engages 
a collection of prediction models with low individual predictive 
power, often incorporating a DT algorithm, to generate a more 
robust and accurate prediction model. GBT operates by 
sequentially constructing each subsequent tree and taking 
advantage of the errors made by the previous tree for learning 
purposes. The iterative procedure of detecting and revising the 
pattern is subsequently performed until no further pattern can 
be discerned, the cumulative discrepancy between the observed 
and predicted values converges to zero, and the projected 
values converge to the actual values [19]. 

III. PREPARE RESULTS AND DISCUSSION 

The careful consideration of input and output variables is a 
fundamental part of the development of an ML model. A subset 
of 13 parameters from the EurOtop database was chosen to 
develop ML-based models to predict wave overtopping. These 
selected parameters provide a succinct representation of the 
overtopping discharge test. Therefore, the fundamental data 
need to be dimensionless to mitigate significant fluctuations in 
the raw parameter values, thus improving the precision and 
dependability of ML models. All factors that define the heights 
of structures, specifically the vertical measurements of the toe 
and crest, are dimensionless with respect to the Hm0 toe. The 
dimensions of structure widths, namely the horizontal measures 
of the toe and crest, are all expressed in a dimensionless 
manner relative to the wavelength. The wavelength (Lm1,0t) 
can be calculated by using: 

��1,0� = 1.56 ��1,0�
   (1) 

The non-dimensional wave overtopping rate Sq is given by: 

�� = �
�� ��� ��� �        (2) 

The final input and output dimensionless parameters 
utilized in developing machine learning models are: Spreading, 
β, h/Lm1,0t, Hm0 toe/Lm1,0t, ht/Hm0 toe, Bt/Lm1,0t, Cotα, 
cotαincl, γf, D/Hm0 toe, Rc/ Hm0 toe, Ac/ Hm0 toe, Gc/Lm1,0t, Sq. 
The ML-based models were evaluated using Mean Square 
Error (MSE), Mean Absolute Error (MAE), Root Mean Square 
Error (RMSE), correlation coefficient (R), and Scatter Index 
(SI). These statistical indicators are provided as follows:  

��� = �
� ∑ ����� ! − ��#$�%�
�&'�   (3)  

�(� = �
� ∑ ����� ! − ��#$�%��&'�   (4) 

)��� = *�
� ∑ ����� ! − ��#$�%�
�&'�   (5) 

�+ = ,-./
.�0123      (6) 

) = ∑ (.�01235.�0123)(.�78195.�7819):;<=
*∑ (.�01235.�0123)>:;<= ∑ (.�78195.�7819)>:;<=

 (7) 

where ���� ! and ��#$�%  are the dimensionless measured and 

predicted values, n is the number of observations, and ���� ! 

and ��#$�% are respectively the average of ���� ! and ��#$�%. 

The results of the ML models were derived utilizing hold-
out validation based on the average results obtained for each set 
of test data. Using DT, the predicted wave overtopping results 
had MSE = 0.00001, MAE = 0.0013, RMSE = 0.0027, SI = 
0.512, and R = 0.977. Figure 3 illustrates the correlation 
between the observed and estimated wave overtopping values 
employing the DT, GBT, and SVM models. When engaging 
the GBT model, the predicated wave overtopping results 
yielded MSE = 0.00001, MAE = 0.0011, RMSE = 0.002, SI = 
0.392, and R = 0.991. These metrics show that the predicted 
values were relatively close to the corresponding measured 
values. The SVM model yielded MSE = 0.00002, MAE = 
0.0017, RMSE = 0.0043,  
SI = 0.823, and R = 0.943. 

 

(a) 

 

(b) 

 

(c) 

 

Fig. 3.  Comparison between measured and predicted dimensionless 

overtopping discharge by DT (a), GBT (b), and SVM (c) models. 
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A. Comparison between DT, GBT, and SVM 

Figure 3 displays the correlation between the observed and 
predicted wave-overtopping values deploying different ML-
based models. In general, the predictive accuracy or 
effectiveness of a wave overtaking model is improved when the 
discrete points are situated in closer proximity to the trend line. 
The discrete data points for the GBT model exhibited a notable 
proximity to the trend line. In contrast, the discrete data points 
for the DT and SVM models were ranked as the second and 
third closest to the trend line, respectively. 

Taylor diagrams are used to assess the appropriateness of 
various models, considering their performance in terms of R, 
RMSE, and standard deviation. Figure 4 depicts a Taylor 
diagram of the methods followed in this study. The Taylor 
diagram allows for the comparison and evaluation of 
anticipated and observed values based on their level of 
agreement. The horizontal and vertical axes demonstrate the 
standard deviation, the radial lines denote the R score, and the 
distance from the reference signifies the RMSE value. The 
evaluation of a model's accuracy is determined by the degree of 
proximity between each model and the corresponding actual 
value (reference). The reliability of a prediction model 
increases as its proximity to actual data increases. The GBT 
model manifested superior performance in terms of R score and 
standard deviation compared to the DT and SVM models. 
Furthermore, it demonstrated a lower RMSE. This suggests 
that the GBT model is more accurate in predicting real values. 
This observation is visually shown in Figure 4. 

 

 
Fig. 4.  Taylor diagram visualization of GBT, DT, and SVM models 

performance. 

The GBT model had better predictive performance in terms 
of MSE, MAE, RMSE, SI, and R values, whereas the SVM 
model ranked second in terms of performance. The findings 
indicate that the GBT model outperformed the other models in 
terms of forecasting wave-overtopping discharge. Furthermore, 
these findings reveal that the GBT model significantly reduced 
overall error and effectively predicted wave-overtopping 
discharge. 

B. Comparison of GBT with Previous Models 

To further evaluate the GBT model, its performance was 
compared to the ANN models proposed in [20] and [6], and the 
results showed that the GBT model exhibited superior 
performance, as shown in Figure 5. 

 

 

Fig. 5.  Comparison between GBT, and models in [20] and [6]. 

IV. CONCLUSION 

This study attempted to test the applicability of DT, GBT, 
and SVM models in predicting wave-overtopping discharge. 
These ML models were trained on 4,737 data points from the 
EurOtop database using 13 predictors out of the 31 parameters 
that are included in the database. The predicted performances 
of the models were assessed through the utilization of a Taylor 
diagram and six statistical indices. GBT demonstrated a high 
level of accuracy in estimating the discharge of wave-
overtopping. The SI value of the GBT model (0.392) was 
found to be lower than that of DT (0.512) and SVM (0.823). 
Furthermore, the R-index value of the GBT model (0.991) was 
higher compared to that of DT (0.977) and SVM (0.943). 
Juxtaposed with the ANNs presented in [6] and [20], the GBT 
model significantly reduced prediction errors and had better 
prediction accuracy. These findings indicate that the GBT 
model significantly decreased the overall error and provided 
accurate estimations of the wave-overtopping discharge.  
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