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ABSTRACT 

The issue of parametric estimation in time delay models is the main topic of this research article. Multiple-

Input Single-Output (MISO) Continuous-Time (CT) systems with numerous unknown time delays 

characterize these models. Two different recursive parametric estimate techniques are explored in this 

paper, the strategic application of Sequential Nonlinear Least Squares (SNLS) to attain global convergence 

and the Recursive Least Squares (RLS) technique in conjunction with the Gauss-Newton algorithm with 

the goal of achieving local optimization. Both approaches contribute to the comprehensive understanding 

of the parametric estimation landscape for time delay models. In a pivotal stride towards enhancing 

convergence, the research proposes a hybridization of the two methods. This synergistic approach is 

designed to leverage the strengths of both SNLS and the RLS-Gauss-Newton combination, fostering 

improved overall convergence properties. To substantiate the credibility and effectiveness of the proposed 

methodologies, the conducted research provides comprehensive simulation results. These simulations offer 

concrete examples of the efficacy and practicality of the suggested techniques in real-world situations, and 

they make significant contributions to the field of parametric estimation for time delay models. 

Keywords-continuous-time system; online identification; multiple-input single-output system; multiple 

unknown time delays; RLS; Gauss-Newton algorithm; Sequential Nonlinear Least Square (SNLS) algorithm; 

hybrid method 

I. INTRODUCTION  

By providing concrete examples of the effectiveness and 
suitability of the suggested techniques in practical settings, 
simulations significantly contribute to the field of parametric 
estimation for time delay models. The ability to precisely 
characterize and predict the behavior of such systems is 
fundamental for optimizing performance, ensuring stability, 
and enhancing overall efficiency. As technological 
advancements continue to drive innovation across various 
industries, the importance of accurate time delay system 

identification becomes increasingly pronounced. From critical 
applications in process control to telecommunications and 
beyond, the ability to capture and understand temporal delays is 
integral to the design, analysis, and optimization of complex 
systems. Several studies focus on time-delay systems and their 
relevance in modeling and controlling diverse systems. 
Relevant studies have been conducted in the fields of biology, 
chemistry, economics, mechanics, viscoelasticity, physics, 
physiology, population dynamics, and engineering sciences [1-
8]. Moreover, time delays are commonly introduced by 
components like actuators, sensors, field networks, and 
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wireless communications within feedback loops. These delays 
entail implications relevant to the overall performance and 
stability of systems across various disciplines. In the expansive 
landscape of system identification involving time delays, many 
techniques have been proposed [9-18]. These approaches have 
evolved to cater to the complexities associated with temporal 
dependencies, addressing the intricacies of processes where 
delays play a pivotal role. In essence, these techniques 
represent a continuum of exploration and innovation in the 
field of time delay system identification. This dynamic area of 
research continues to progress, driven by the need to enhance 
people’s understanding of temporal dependencies and develop 
robust methodologies applicable across diverse domains.  

Even if the aforementioned advancements take place, 
problems still exist, particularly with the Multiple-Input Single-
Output (MISO) time delay system identification. The 
interaction of numerous inputs poses a unique set of challenges, 
necessitating the emergence of innovative approaches. In 
addition, the study of the considered MISO process serves as a 
foundation for developing robust system identification 
techniques. Successfully identifying the parameters of this 
complex system can have broad applications in fields, such as 
control engineering, signal processing, and dynamic modeling. 
In this context, the goal of the current research is to investigate 
the online identification of MISO CT models with multiple 
unknown time delays.  

II. SYSTEM DESCRIPTION AND IDENTIFICATION 
MODEL 

The envisioned MISO process with numerous time delays 
is delineated through the following representation:    

11
1

( ) ( )
( ) ( ) ... ( )

( ) ( )
rd s d sr

r

G s G s
x t e u t e u t

F s F s
     (1) 

with: 

( ) ( )jd s

j j je u t u t d
       (2)

 
where  j =1…..r  responds to the time delay. 

The significance of studying the MISO process: 

 Realistic Modeling: Many real-world systems exhibit MISO 
configurations, where multiple factors endow a single 
observed outcome. Understanding and accurately modeling 
such systems are essential attributes for the performance of 
effective control, analysis, and prediction. 

 Challenges of Time Delays: The inclusion of unknown time 
delays reflects real-world scenarios where systems often 
exhibit temporal delays in responding to inputs. 
Investigating the aforesaid delays is crucial for capturing 
the true dynamics of the system. 

 System Identification Implications: The study of the 
considered MISO process serves as a foundation for 
developing robust system identification techniques. 
Successfully identifying the parameters of this complex 
system can have broad applications in fields, like control 
engineering, signal processing, and dynamic modeling. E 

Equation (1) could be rewritten as:  
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Equation (1) is summarized as: 
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A low-pass filter is used in order to allow signals with a 
frequency lower than a certain cutoff frequency to pass 
through, while attenuating or blocking signals with frequencies 
higher than the cutoff. This frequency point determines the 
boundary between the frequencies that pass through the filter 
with minimal attenuation and those that are significantly 
attenuated. In this research work, the following filter is 
implemented to filter input/output data:  
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      (7) 

The low-pass filter described in (7) ensures that the signals 
of interest are effectively transmitted or processed while 
suppressing unwanted high-frequency components. The first 
side of system (6) is now multiplied by the K(s) defined in (7). 
The employment of the bilinear transformation permits the 
acquisition of a DT estimation model: 
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The bilinear transformation is a mathematical technique 
commonly deployed in the field of signal processing and 
control system design. It acts as a method for converting 
continuous-time systems or filters into discrete-time 
equivalents. This transformation is particularly useful when 
working with analog systems and aiming to implement them in 
a digital environment. In this research work, the primary 
purpose of the bilinear transformation is to map the frequency 
domain characteristics of a continuous-time system to a 
discrete-time system. This is essential when transitioning from 
analog to digital signal processing. The bilinear transformation 
is defined by:    

1
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q
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which leads to:  

1 2

2

sT
q

sT
 



     (14) 

The j-th time delay jdɶ  is given by:
 

/ /j j j jd d T l T   ɶ    (15)
 

where 0 j T    and 
jl  is a non-negative integer.   

III. IDENTIFICATION APPROACH BY USING THE 
SEQUENTIAL NONLINEAR LEAST SQUARES METHOD 

The identification approach employing the Sequential 
Nonlinear Least Squares (SNLS) method is a powerful and 
widely utilized technique in the field of system identification. 
This method is particularly valuable when dealing with 
complex systems characterized by nonlinearities and unknown 
time delays. The SNLS method provides an effective means to 
iteratively estimate the parameters of a dynamic system, 
optimizing the fit between the model and observed data. 

The key components of the SNLS method are: 

 Sequential Estimation: The SNLS method operates in a 
sequential manner, meaning that it either processes one 
sample of data at a time or that it processes the latter in 
small batches. This sequential approach allows for real-time 
parameter updates as new data become available, making it 
suitable for dynamic systems with changing characteristics. 

 Nonlinear Least Squares Optimization: At the core of the 
SNLS method lies the optimization of parameters using the 
nonlinear least squares criterion. This involves minimizing 
the sum of the squares of the differences between the 
observed and the predicted values. The iterative nature of 
the SNLS method refines parameter estimates to converge 
towards an optimal solution. 

 Simultaneous Parameter Estimation: SNLS is capable of 
simultaneously estimating multiple parameters of a system. 
This is especially advantageous in scenarios where 
parameters are interdependent or when multiple aspects of 
the system need to be concurrently identified. 

The proposed method includes the simultaneous estimation 
of both time delays and the parameters defined as follows: 

1
ˆˆ ˆ ˆ[ , ,..., ]T T T

rf g g      (16) 

with: 

1
ˆ ˆ ˆ[ ,..., ]pf f f     (17) 

1
ˆ ˆ ˆ[ ,..., ]

j

T
j j j qg g g     (18) 

1
ˆ ˆ ˆ[ ,..., ]T

rd d d     (19) 

The generalized vector in the context of the SNLS method 
plays a pivotal role in the formulation and optimization process 
for system identification. This vector encapsulates the 
estimated parameters and the associated time delays within the 
dynamic system under consideration. The representation of the 
generalized vector is instrumental in expressing the 
mathematical model and in iteratively refining the parameter 
estimates to achieve convergence. 

The generalized vector is: 

,
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The prediction error is: 

0
ˆ( ) ( ) ( )e k y k y k      (25) 

The prediction error, represented in (25), is a critical 
concept in the context of system identification and predictive 
modeling. It represents the disparity between the predicted 
output of a model and the actual observed output at a sampling 
period T. The prediction error serves as a key metric in 
assessing the accuracy and performance of a model, providing 
insights into how well the model captures the underlying 
dynamics of the system. A prediction error of zero signifies 
perfect agreement between the model's predictions and the 
actual observations. 

The generalized observation vector is:   
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where 
( )
ˆ

j

e k

d




and ˆ( , )k   are described in [13]. 

The following criterion is considered:          
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The SNLS algorithm is summarized as: 

( ) ( 1) ( ) ( , ) ( , )k k P k k k          (28) 

During the SNLS optimization process, the generalized 
vector (28) is iteratively adjusted to minimize the discrepancy 
between the predicted and observed values in the least squares 
sense. The optimization aims to find the values of the 
generalized vector that result in the best fit between the model 
and the real-world data. The formulation of the generalized 
vector is integral to the objective function that is minimized 
during each iteration of the SNLS algorithm. The algorithm 
systematically refines the components of the vector, updating 
the parameter estimates and time delays to improve the 
accuracy of the model. 

( ) ( , )
( )

( ) ( , ) ( ) ( , )T

P k k
L k

k k P k k
 


   

  (29) 

 1
( ) ( 1) ( 1) ( , ) ( 1)

( )
TP k P k L k k P k

k
        (30) 

The flow chart of the SNLS method is shown in Figure 1. 

 

 
Fig. 1.  Flow chart of the SNLS method. 

IV. RECURSIVE LEAST-SQUARES METHOD (RLS) 

RLS is a recursive estimation algorithm commonly 
employed for updating parameter estimates sequentially as new 
data become available. It is particularly well-suited for real-
time applications and scenarios where the system's 
characteristics may evolve over time. RLS efficiently handles 
parameter variations by continuously adapting to changing 
conditions. 

The following criterion is considered:  
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The prediction error is: 

0
ˆ ˆ( ) ( ) ( , )Te k y k k d      (32) 

The parametric model of the plant (8) is described by the 
following regression form: 
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where ( , )T k d  is the new observation vector defined as: 
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are defined in (23) and (24). 

The developed approach is based on the identification of 
the linear parameters with the RLS algorithm. Then, the time 
delays in the nonlinear part are estimated by the Gauss-Newton 
algorithm. This clearly means that: 

,
, arg min ( , ).

T
T

d
d J d


        (35) 

The flow chart of the GN-RLS method is depicted in Figure 2. 

 

 

Fig. 2.  Flow chart of the GN-RLS method. 
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V. THE PROPOSED HYBRID METHOD  

The proposed hybrid method, which combines the strengths 
of the Gauss-Newton Recursive Least Square (GN-RLS) 
method with the Sequential Nonlinear Least Square (SNLS) 
method, represents an advanced and versatile approach to 
system identification. This fusion of techniques harnesses the 
complementary features of GN-RLS and SNLS, aiming to 
enhance the accuracy, efficiency, and adaptability of parameter 
estimation in dynamic systems. The flow chart of the hybrid 
method is portrayed in Figure 3. 

 

 

Fig. 3.  Flow chart of the proposed hybrid method. 

In summary, the hybrid GN-RLS-SNLS method stands as a 
sophisticated approach to system identification, leveraging the 
combined strengths of the GN-RLS and the SNLS techniques 
for enhanced performance and adaptability. 

VI. SIMULATION RESULTS 

For the GN-RLS method, the forgetting factor is given as β 
= 0.882, p0 = 106, and the GN-RLS is the same as in the SNLS 
method (SNR = 5 dB).  The obtained results are illustrated in 
Table I.  

Table I provides an obvious indication that the estimated 
parameters acquired through the GN-RLS method closely align 
with the target values, suggesting a high degree of accuracy 
and precision in the parameter estimations and highlighting the 
efficacy of the GN-RLS method in capturing the underlying 
characteristics of the data. To fully appreciate the significance 
of this observation, it is essential to scrutinize the details 
presented in Table I. This level of clarity is valuable in 
scientific and research contexts, where the accuracy of 
parameter estimates is crucial for drawing meaningful 
conclusions or making informed decisions. Researchers and 
analysts can leverage this information to assert the robustness 
of the GN-RLS method in accurately reproducing the target 
parameters. The proximity of the estimated values to the target 
values in Table I may serve as a foundation for building 
confidence in the method's capability to model and predict the 
underlying dynamics of the system or phenomenon under 
investigation.  

TABLE I.  PARAMETER ESTIMATES 

 True Initial 
Estimates with 

GN-RLS 

Estimates with the 

proposed hybrid 

method 

f1
 

3 0 3.0310±0.0310 3.0094±0.0094 
f1

 
2 0 2.0112±0.0112 1.9819±0.0181 

g11
 

1 0 1.0747±0.0747 0.9933±0.0067 
g12

 
2 0 1.9911±0.0089 1.9585±0.0415 

g21
 

2 0 2.0330±0.0330 1.9935±0.0065 
g22

 
2 0 2.0136±0.0136 2.0140±0.0140 

d1
 

8.84 9 8.8690±0.029 8.8455±0.0055 
d2

 
1.87 2 1.8763±0.0063 1.8760±0.006 

 

In summary, the evident accuracy of the GN-RLS method 
in reproducing target parameter values, as demonstrated by the 
data in Table I, should be emphasized. The high degree of 
concordance between the estimated and the target values is 
underscored, affirming the method's suitability for the specific 
analysis or modeling task at hand. 

In this simulation case, the noise magnitude is adjusted to 
get the same SNR as in the GN-RLS and the SNLS methods. 
The outcomes of the numerical simulation conducted using the 
hybrid method presented in this study surpass the performance 
of both the SNLS and the GN-RLS methods, suggesting that 
the hybrid approach yields more satisfactory results, indicating 
a superior capability in capturing the intricacies of the 
simulated system or phenomenon. Exploring factors, like error 
metrics, convergence rates, or any other relevant performance 
indicators can provide a more thorough understanding of the 
excellence of the proposed hybrid method. Additionally, 
awareness of the simulated system traits, such as nonlinearity 
or complexity, can contribute to a more comprehensive 
interpretation of the comparative performance.
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VII. CONCLUSION 

In this research study, three distinct methodologies were 
employed for the identification of parameters in Multiple-Input 
Single-Output (MISO) Continuous-Time (CT) systems 
characterized by multiple unknown time delays, using sampled 
input-output data. The initial approach involves the 
simultaneous identification of the system, deploying the 
Sequential Nonlinear Least Squares (SNLS) algorithm. The 
second technique integrates the Recursive Least Squares (RLS) 
method with the Gauss-Newton (GN) algorithm. Subsequently, 
a hybrid method was devised by combining the SNLS and GN-
RLS techniques, with the aim of enhancing overall accuracy. 
The SNLS algorithm, implemented for simultaneous 
identification, offers a sequential and iterative optimization 
process to refine parameter estimates. The second technique, 
GN-RLS, synergizes the recursive adaptability of RLS with the 
optimization power of the GN algorithm to achieve more 
robust parameter updates.  
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