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ABSTRACT 

The recent surge in biosignal-based control signifies a profound paradigm shift in biomedical engineering. 
This innovative approach has injected new life into control theory, ushering in advancements in human-

body interaction and control. Surface Electromyography (sEMG) emerges as a pivotal biosignal, attracting 

considerable attention for its wide-ranging applications across medicine, science, and engineering, 

particularly in the domain of functional rehabilitation. This study delves into the use of sEMG signals for 

controlling a robotic arm, with the overarching aim of improving the quality of life for people with 

disabilities in Vietnam. Raw sEMG signals are acquired via appropriate sensors and subjected to a robust 

processing methodology involving analog-to-digital conversion, band-pass and low-pass filtering, and 
envelope detection. To demonstrate the efficacy of the processed sEMG signals, this study introduces a 

robotic arm model capable of mimicking intricate human finger movements. Employing a fuzzy logic 

control strategy, the robotic arm demonstrates successful operation in experimental trials, characterized 

by swift response times, thereby positioning it as a valuable assistive device for people with disabilities. 

This investigation not only validates the feasibility of sEMG-based control for robotic arms, but also 

underscores its potential to significantly improve the lives of individuals with disabilities, a demographic 
that represents a substantial portion (approximately 8%) of the Vietnamese population. 

Keywords-sEMG; digital signal processing; fuzzy logic control; robotic arm; rehabilitation 
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I. INTRODUCTION 

Surface Electromyography (sEMG) offers a window into 
the world of muscle function. It works by capturing the 
electrical signals generated by muscle cells when they contract. 
These tiny electrical bursts, known as action potentials, are 
summed up by sEMG from a collection of muscle fibers 
beneath the skin in a localized area. sEMG has proven to be a 
valuable tool across various fields. In the realm of medicine, it 
helps to diagnose muscle, nerve, and joint disorders. Scientific 
research utilizes sEMG to delve deeper into muscle function, 
motor control, and rehabilitation strategies. Additionally, 
sEMG plays a crucial role in assistive technology, enabling 
control of devices such as robotic arms for people with 
disabilities.  

The advantages of sEMG are undeniable. It is a non-
invasive technique, requiring only electrodes placed on the skin 
for signal recording. Furthermore, sEMG is a safe and painless 
procedure, making it suitable for various settings, clinical or 
even at home. However, sEMG is not without limitations. The 
recorded signals can be susceptible to "noise" caused by 
factors, such as electrode placement, skin condition, and the 
intensity of muscle contraction. While sEMG offers valuable 
insights, it cannot provide detailed information on individual 
muscle cell activity. Data analysis from sEMG can also be 
complex and time-consuming. EMG signals refer to biological 
signals acquired by measuring voltage associated with the 
electrical activity generated in a muscle during contraction, 
providing an understanding into muscle nerve activity [1-2]. 
Techniques for gathering EMG signals encompass both 
invasive and non-invasive methods. Invasive 
Electromyography (iEMG) involves inserting a needle into the 
skin for measurement, while non-invasive approaches, known 
as sEMG, entail placing electrodes on the skin to collect data 
[3]. sEMG is preferred over its invasive counterpart due to its 
safety and simplicity. Surface electrodes come in two varieties: 
wet and dry. Wet electrodes, typically containing Ag/AgCl 
ions, offer superior quality and lower electrode-skin impedance 
but may cause skin irritation and degrade in quality over time 
as the gel dries. On the contrary, dry electrodes, despite having 
higher electrode-skin impedance, can capture more robust 
sEMG signals and are easier to use, eliminating the need for 
surface preparation procedures such as wet electrodes. 
Consequently, most studies on EMG sensors have opted for dry 
electrodes [4]. 

Finger movement relies on two opposing muscle groups in 
the forearm: flexors and extensors. Flexors, located on the front 
of the forearm, curl the fingers and the wrist. Examples include 
the flexor digitorum profundus and superficialis muscles. 
Extensors, situated on the back of the forearm, straighten the 
fingers and the wrist. Key extensor muscles include the 
extensor digitorum and the extensor digiti minimi. These 
groups collaborate to produce complex hand movements. 
When flexors contract, extensors relax, and vice versa. To 
capture the strongest EMG signals for finger control, electrodes 
are ideally placed on both the flexor and extensor muscle 
groups, preferably in the center for optimal signal strength. 

II. BACKGROUND LITERATURE 

Robots, especially robotic arms, have been studied for years 
and have been applied for many purposes [5-7]. In recent times, 
advancements in semiconductor technology have led to 
numerous successful efforts in designing EMG sensors that are 
progressively smaller, consume less energy and offer increased 
precision [8-13]. For example, in [11], an sEMG signal 
acquisition system with high frequency and low power 
consumption was developed. The results showed that the EMG 
signal samples obtained from this system were correlated by up 
to 99.5% with those from commercial systems while reducing 
power consumption by up to 92.72% and extending battery life 
by up to 9,057 times. In [12], an integrated sEMG sensor with a 
signal reading circuit, MCU, and BLE was presented for 
human-machine interface applications, achieving accuracy and 
stability exceeding 95%. This flexible, durable, and lightweight 
sensor, constructed on a multi-layer polyimide-coated copper 
sheet, is suitable for various individuals and muscle groups. In 
[13], a high-stability capacitive EMG sensor was developed, 
specifically adapted to the Otto Bock standard prosthetic limb, 
offering comfort during wear and avoiding skin irritation. 

Furthermore, many studies have explored various 
algorithms for hand gesture classification using sEMG signals, 
with popular choices including Artificial Neural Networks 
(ANN), Linear Discriminant Analysis (LDA), and Support 
Vector Machine (SVM). Among these, ANN has garnered 
significant attention due to its ability to learn from examples, 
tolerance to noise, and generalization abilities in high-
dimensional input spaces [14-17]. In [15], a surface 
electromyography (sEMG) signal classification system was 
meticulously examined based on Deep Neural Networks 
(DNN). The results, focusing on eight gestures, demonstrated 
that the DNN-based system outperformed other classifiers 
(average accuracy of 98.88%), including SVM, kNN, Random 
Forest, and Decision Tree. In [16], Machine Learning (ML) 
was employed to process shoulder and upper limb muscle 
signals, enabling the recognition of motion patterns and real-
time control of an upper arm exoskeleton. The results 
demonstrated high accuracy, particularly with the SVM 
algorithm achieving 96 ± 3.8% accuracy offline and 90 ± 9.1% 
accuracy online, showcasing the reliability of ML in pattern 
recognition and exoskeleton motion control. In [18], a real-time 
hand gesture recognition model was presented, employing 
sEMG with a feedforward ANN, attaining an average 
recognition rate of 98.7% and an average response time of 
227.76 ms across 12 subjects, each performing five gestures. In 
[19], a complete artificial arm control system was proposed to 
employ EMG signals. This control system also utilized a 
CMOS fuzzy chip for pattern recognition to control the robotic 
arm. In [20], a robotic system was introduced to support remote 
wrist home rehabilitation as an IoT application. The proposed 
control solution employing EMG signals incorporated a 
cascade fuzzy-based decision system to indicate the patient's 
pain. In [21], a wearable exoskeleton arm was designed and 
controlled with different control methods to assist people with 
muscle disorders in their arms and support their treatment. In 
this work, the fuzzy logic algorithm was trained with the PID 
controller block using EMG control signals. An adaptive Fuzzy 
Sliding Mode Control approach for an Assist-as-Needed 



Engineering, Technology & Applied Science Research Vol. 14, No. 3, 2024, 14287-14294 14289  
 

www.etasr.com Nguyen et al.: An sEMG Signal-based Robotic Arm for Rehabilitation applying Fuzzy Logic 

 

(AAN) strategy to accomplish effective human-exoskeleton 
synergy was proposed in [22]. The results revealed that the 
state trajectory errors and input torque were bounded within 
±5×10

-2
 rad and ±5 Nm, respectively. An innovative approach 

to improve the efficiency and adaptability of upper limb 
exoskeleton robot-assisted rehabilitation was proposed in [23]. 
This approach involved the development of an Optimized 
Stimulation Control System (OSCS) in conjunction with fuzzy 
logic-based pain detection. In [24], an optimal fuzzy logic-
based control strategy was proposed for a lower limb 
exoskeleton application. The control parameters for the 
proposed control approach were obtained by a recently 
developed optimization technique, called the Dragon Fly 
Algorithm (DFA). In these studies, sEMG signals were used 
together with intelligent control strategies, such as fuzzy logic 
inference, for rehabilitation. Although some studies might not 
employ sEMG, intelligent controllers still achieved good 
control performances. This idea inspired this study to integrate 
sEMG signals and a fuzzy logic control strategy to design and 
control a robotic arm model for rehabilitation, especially for 
Vietnamese people with disabilities. 

III. PROCEDURE TO DESIGN AN SEMG SIGNAL-
BASED ROBOTIC ARM 

A. System Diagram 

Before designing a real robotic arm, it is necessary to 
provide a diagram that represents the entire system. Figure 1 
displays the main blocks of the proposed system. This system 
uses three sEMG sensors to collect the meaningful muscle 
activities to control the robotic arm. These sEMG sensors are 
classified into Gravity Analog EMG Sensors, developed in 
collaboration between DFRobot and OYMotion. They 
comprise two main elements: a module housing electrodes and 
another module integrating filtering and amplification circuits. 
Each of these sEMG sensors magnifies sEMG signals by 1000 
times and mitigates noise via a differential input and 
comparable filtering circuit. The amplified sEMG signals are 
then sampled deploying a 10-bit Analog-to-Digital Converter 
(ADC) through the MCU's analog input. The signals collected 
from three sEMG sensors are transmitted to a microcontroller, 
as portrayed in Figure 1. Such a microcontroller is an 
integrated circuit designed to govern a specific operation in an 
embedded system. This component is responsible for 
processing sEMG signals received from the sensor, 
transmitting processed signals to the computer, and 
concurrently accepting control signals from the computer to 
regulate finger gestures, aligning with the operation of five 
servo motors. The power sources of the whole control system 
are a 5V battery for sensors and microcontrollers and a 12V 
battery for these 5 servo motors. The whole system is observed 
and controlled by a supervisory component, typically a PC or a 
laptop. Figure 2 depicts a simplified process for acquiring and 
processing sEMG signals. Raw sEMG outputs require further 
processing before they become suitable control signals for the 
robotic arm. 

B. sEMG Signal Processing 

The surface EMG sensor operates much like a Gravity 
sensor but with a remarkable ability to amplify weak muscle 

signals by a factor of 1000 times. This is made possible through 
a clever setup involving a combination of a differential input 
and a filtering circuit. These components work together to 
significantly reduce background noise. The sensor then 
produces an analog voltage signal ranging from 0 to 3.0 V, 
indicating the strength of muscle contractions.  

 

 
Fig. 1.  A block diagram representing the whole control system. 

 

Fig. 2.  An illustration of the surface EMG signal collection. 

Figure 3 illustrates a step-by-step procedure to process the 
sEMG signals, which consists of the following stages: 

1. Collect raw sEMG signals from the three sensors. This is 
the first step and should be implemented as carefully as 
possible.  

2. Perform the Analog-to-Digital process. Analog signals 
collected from the sensors should be converted into digital 
counterparts to be easily used in signal processing. In this 
work, a digital format utilizing the microcontroller's 10-bit 
ADC, capturing data at a rapid rate of 1000 samples per 
second is employed. Once digitized, the signal undergoes 
further refinement through a high-pass filter, which 
effectively eliminates any additional unwanted noise. 

3. Perform the digital signal processing. This phase typically 
includes three substeps to obtain the meaningful sEMG 
signals that can be used for the control goal. An envelope 
detection algorithm is applied to distill the essential 
information from the signal. This process extracts the core 
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data, resulting in a final processed output, as observed in 
Figure 3. In simple terms, digital filters act as gatekeepers 
of electrical signals. They sift through the data, removing 
undesirable noise and highlighting the elements that are of 
this study’s interest. This is achieved through mathematical 
manipulations of the digital data. There are primarily two 
types of digital filters: Infinite Impulse Response (IIR) and 
Finite Impulse Response (FIR). The FIR filter is a 
fundamental tool in digital signal processing, renowned for 
its straightforward implementation and predictable 
behavior. Unlike its counterpart, the IIR filter, FIR operates 
by considering only past and present input data points, 
making it inherently stable and devoid of feedback loops. 
Its simplicity and stability make it particularly suitable for 
applications where precise control over frequency response 
and phase characteristics is paramount. By applying a finite 
number of coefficients to the input samples, the FIR filter 
effectively attenuates unwanted frequencies while 
preserving desired signal components. This versatility and 
reliability render FIR filters indispensable in a wide array of 
applications, from audio processing to telecommunications. 
The overarching mathematical formula of an FIR is 
expressed in: 

���� � ���	�
 � ���	�  1
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Fig. 3.  A typical flow chart for processing sEMG signals. 

In contrast to FIR filters, IIR filters exhibit a unique 
characteristic: feedback. This feedback mechanism allows IIR 
filters to consider both past and present input data, making 
them capable of achieving sharper roll-off characteristics and 
more compact filter designs compared to their FIR 
counterparts. However, this feedback also introduces 
challenges, such as potential instability due to the recursive 
nature of the filter. Despite this, IIR filters find extensive use in 
various applications, including audio equalization, biomedical 
signal processing, and control systems, where their efficiency 
and adaptability are valued. A typical expression of the IIR 
filter is given by: 

∑ � �� 	� �
�
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It is noted that a digital filter can take the form of either an 
IIR or an FIR filter. The key advantage of IIR filters over FIR 
filters lies in their ability to meet specific technical 
requirements using a considerably lower filter order compared 
to their FIR counterparts. Due to these benefits, this study used 
IIR filters to process EMG signals. One common approach to 
designing IIR filters involves initially designing an analogous 
filter and then converting it into a digital equivalent one. 
Various types of analogous low-pass filters, including 
Butterworth, Chebyshev, and Elliptic filters, offer differing 
intensity and phase responses. Extending this design to filters 
beyond low-pass involves frequency transformation techniques, 
yielding high-pass, band-pass, or band-stop filters 
corresponding to the prototype low-pass filter. Following this, 
the analogous IIR filter is transformed into a digital filter 
adopting methods, such as impulse invariant, backward 
difference, or bilinear z-transform. This study used a second-
order IIR Butterworth digital filter for EMG signal filtration. 
The low-cut frequency was set at 50Hz to eliminate low-
frequency noise, and the high-cut frequency at 150Hz to 
mitigate high-frequency noise. A sampling frequency of 1 KHz 
was chosen, based on [14, 15], which suggests that a frequency 
between 400 and 500Hz is adequate for an EMG signal 
measurement. The transfer function of the filter is: 
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The ultimate low-pass filter refines the output signal 
derived from the envelope detector algorithm, ensuring a 
smoother and more accurate representation of the underlying 
muscle activity. A specific digital low-pass filter was designed 
for this task. This first-order IIR filter operates with a cut-off 
frequency of 10 Hz and a sampling frequency of 1 KHz. It 
strategically attenuates high-frequency components beyond the 
cut-off threshold while preserving the essential characteristics 
of the EMG signal within the desired frequency range. 
Equation (4) elucidates the transfer function, which delineates 
the filter's behavior and its role in enhancing the fidelity of the 
processed EMG signal for subsequent analysis and 
interpretation. 
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The equation uses z to represent the input signal and Y[z] 
for the output. The filter is designed with two parameters: a and 
b. These are set to specific values to account for the delay 
caused by the filter. The values of a and b are determined based 
on the desired time constant (T) and the filter's cut-off 
frequency (fc) as given in (5) and (6): 
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This step-by-step process for processing sEMG signals 
makes them suitable for controlling a robotic arm, as long as a 
proper control strategy is implemented. This study employs 
fuzzy logic for this task. 
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C. Fuzzy Logic-Based Control Strategy 

Fuzzy logic is a powerful tool for handling ambiguity and 
uncertainty in data. In the context of sEMG signal 
classification, it can be used to identify muscle activity states 
based on features extracted from the EMG signal. This 
approach enables an accurate determination of muscle activity 
levels while also addressing the inherent uncertainty and 
variability of EMG data. The pre-processing of EMG signals is 
an essential step in signal analysis and evaluation, helping to 
extract important features and reduce noise. Several major 
indices should be put into service to evaluate the quality of the 
sEMG signals in the preprocessing, such as Root Mean Square 
(RMS), Average Value Rectified (AVR), Maximum value 
(MAX), Variance (VAR), and Entropy (E). Figure 4 showcases 
the fuzzy logic structure applying these parameters for sEMG 
signal preprocessing. It is noted that there are three processing 
flows applied to the fuzzy logic model corresponding to the 
three sEMG channels employed in this work. 

 

 
Fig. 4.  Three control flows for the fuzzy logic methodology 

TABLE I.  FUZZY LOGIC RULES USED FOR THE CONTROL 
SYSTEM OF THE ROBOTIC ARM 

No sEMG channel 1 sEMG channel 2 sEMG channel 3 Result 

1 BIG BIG BIG 
Grasping the 

hand 

2 MEDIUM MEDIUM MEDIUM 
Bend the 

middle finger 

3 BIG MEDIUM SMALL 
Bend the ring 

finger 

4 SMALL BIG MEDIUM 
Bend the 

index finger 

5 MEDIUM MEDIUM SMALL 
Bend the 

little finger 

6 SMALL MEDIUM BIG 
Bend the 

thumb 

7 SMALL SMALL SMALL Blur the hand 

 
In fuzzy logic-based EMG signal classification, fuzzy rules 

play a critical role in mapping EMG signal features to muscle 
activity states. These rules are constructed based on the 
expertise and experience of domain specialists in areas, such as 
kinesiology and biomechanics. Unlike traditional logic where 
variables are true or false, fuzzy logic allows for degrees of 
truth between 0 (completely false) and 1 (completely true). 
This flexibility is crucial when dealing with biological signals, 

like EMG, which exhibit inherent variability and uncertainty. 
The fuzzy rules capture imperfectly precise relationships 
between the extracted EMG features (e.g., amplitude, mean 
frequency) and the corresponding muscle activity states (e.g., 
rest, contraction, fatigue). These rules are typically expressed in 
an "if-then" format, namely "if the signal amplitude is high and 
the mean frequency is low, then the muscle activity is likely in 
a contraction state." Table I represents a specific set of fuzzy 
logic rules employed for this study, demonstrating how these 
rules translate the characteristics of the EMG signal into 
interpretable muscle activity states. 

IV. EXPERIMENTS AND RESULTS 

This study investigates the biomechanical characteristics of 
the human hand, involving bones and joints, to create a robot 
hand model. Simultaneously, some constraints of the robot 
hand are applied to simplify the motion model without 
significantly reducing its functionalities. The human hand 
comprises 27 bones, including 8 carpal bones, 5 metacarpal 
bones, and 14 phalangeal bones. The phalangeal bones (except 
for the thumb) consist of 3 phalanxes: proximal, middle, and 
distal. The thumb has only 2 phalanges: proximal and distal. 
These bones are connected through joints, allowing flexible 
movements from gripping to performing detailed activities. The 
distal phalanx and intermediate phalanx are connected by a DIP 
hinge joint (one degree of freedom). The intermediate phalanx 
is connected to the proximal phalanx by a PIP hinge joint (one 
degree of freedom). The proximal phalanx is connected to the 
metacarpal bone by an MCP ball joint (three degrees of 
freedom). The metacarpal bone is connected to the carpal bone 
by a CMC joint (six degrees of freedom). 

 

 
Fig. 5.  The design of a 3D – robotic arm (InMoov): A: Robot hand; B: 

Robot arm; C: Entire robotic arm  

In [25], some limitations of the human hand were 
presented. Specifically, each finger has a limited range of 
motion due to the mechanical constraints of hand anatomy. For 
example, the range of motion of the DIP joint is from 0 to 90°. 
In each finger, the DIP and the PIP joints always move 
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together. Therefore, to simplify the robot hand model, some 
joints in the robot hand design are modified compared to those 
in the human hand. The MCP joints in the index and little 
fingers for flexion-extension movements have a narrow range 
from -15° to 15°, and they are rarely involved in activities. 
Thus, these joints will be limited to one degree of freedom 
hinge joints. Figure 5 illustrates the mechanical model detail of 
the robot hand. With this design, each finger will have 3 hinge 
joints with rotation angles: θDIP, θPIP, and θMCP. θDIP is the 
rotation angle of the DIP joint, θPIP is the rotation angle of the 
PIP joint, and θMCP is the rotation angle of the MCP joint. Table 
II exhibits the rotation angle values of the robot hand joints. 

 

(a) 

 

(b) 

 

(c) 

 
Fig. 6.  The experimental results on the robotic arm model applied sEMG 

signals - thumb control: (a) Relax the hand, (b) Curl the thumb, and (c) 

waveform graphs. 

This study used the open-source design of the InMoov 
robotic hand. With its 3D-printed structure (Figure 5), this hand 
is not only aesthetically pleasing, but also capable of 
mimicking natural hand movements. InMoov is not just limited 
to being a sophisticated robot product, but is also an open-
source project, encouraging community involvement in its 
development and customization. The sEMG signal-controlled 

system makes it an excellent tool for learning and research in 
the field of assistive robotics. This study deploys three surface 
EMG sensors to record muscle activity in the arm. Sensor 1 
specifically targets the index finger's movement, sensor 2 
focuses on the combined activity of the middle and index 
fingers, and sensor 3 monitors thumb mobility. During periods 
of finger muscle relaxation, the raw sEMG signals acquired 
from the three sensors exhibit slight oscillations around the 
reference voltage threshold of 1.5 V. This oscillation frequency 
remains below the high-cut frequency of the digital high-pass 
filter, resulting in signal attenuation. Consequently, both the 
output signals from the bandpass filter and the envelope signals 
register zero values.  

TABLE II.  ANGLES OF MOVEMENT OF FINGER JOINTS 

 θDIP θPIP θMCP 

Thumb -30° ? 90°  0° ? 90°  10° ? 40°  

Index -30° ? 90° 0° ? 90° 10° ? 20° 

Middle -30° ? 90° 0° ? 90° 15° ? 15° 

Ring -30° ? 90° 0° ? 90° 20° ? 10° 

Little -10° ? 30° 0° ? 90° 10° ? 100° 
 

(a) 

 

(b) 

 

Fig. 7.  The experimental results on the robotic arm model applied sEMG 

signals - controlling the index and middle fingers: (a) curl the fingers and (b) 
waveform graphs. 

In contrast, when the fingers contract, the raw signals from 
the sEMG sensors display fluctuations with increased 
amplitude and frequency. The bandpass filter is employed to 
permit the passage of these signals. Through the application of 
an edge detection algorithm, an envelope signal is derived, 
reflecting the extent of muscle contraction, with its magnitude 
contingent on the level of contraction of the respective muscle. 
Figures 6-9 provide visual representations of the EMG signal 
activities captured during the execution of various basic motor 
tasks. The distinct patterns observed in these channels offer 
valuable insight into the muscle activation patterns associated 
with specific movements.  
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(a) 

 

(b) 

 

Fig. 8.  Experimental results on the robotic arm model applied sEMG 

signals - controlling the pinky and ring fingers: (a) curl the fingers and (b) 
waveform graphs. 

(a) 

 

(b) 

 

Fig. 9.  Experimental results on the robotic arm model applied sEMG 

signals - hand grasp control: (a) hold the hand and (b) waveform graphs. 

By analyzing these EMG signals, the effectiveness of the 
control strategy in translating human intention into 
corresponding robotic actions can be confirmed. The successful 
decoding of these signals empowers the robotic arm to mimic 
the user's movements with precision, paving the way for a more 
intuitive and natural human-machine interface. From this point 

of view, it is very meaningful for disabled people in 
rehabilitation. 

V. CONCLUSIONS AND FUTURE WORK 

This study meticulously focused on the efficient acquisition 
and processing of sEMG signals. These processed signals are 
then utilized to collaborate with a fuzzy logic model to control 
a sophisticated robotic arm model capable of replicating 
intricate human finger movements. The successful 
experimental results validate the stability and effectiveness of 
the model in translating human intention into precise robotic 
actions. Building upon this foundation, future endeavors will 
strive to enhance the robotic arm's functionalities. This includes 
incorporating wrist rotation, forearm flexion, and extension, 
allowing for a wider range of natural and coordinated 
movements. Furthermore, the research team plans to integrate 
advanced control algorithms in addition to the proposed fuzzy 
logic-based control strategy, such as ANNs. This will enable 
the robotic arm to seamlessly execute a diverse repertoire of 
movements, mimicking the dexterity and adaptability of the 
human hand. Notably, the modular design prioritizes future 
commercialization and widespread adoption. This focus is 
particularly relevant in emerging economies like that of 
Vietnam, where such advances can have a significant impact. 
By expanding the robotic arm's capabilities, the project 
contributes to a broader mission: fostering automation 
technologies and propelling economic development in regions 
poised to benefit greatly from these innovations. Ultimately, 
this study has the potential to not only improve the lives of 
people with disabilities, but also revolutionize various 
industries, paving the way for a more automated and efficient 
future. 

APPENDIX 

PARAMETERS OF THE MAIN COMPONENTS USED TO DESIGN 
THE EXPERIMENTAL ROBOT MODEL 

No Component  Specifications 

1 
Gravity Analog 

EMG 

Supply voltage: + 3.3 V ~ 5.5 V 

Supply current: >20 mA 

Operating voltage: +3.0 V 

Detection range: +/- 1.5 mV 

Output voltage: 0 ~ 3.0 V 

Reference voltage: +1.5 V 

Gain: ×1000 

Effective spectrum range: 20 ~ 500 Hz 

2 
MG996R Servo 

Motor 

Motor type: DC motor servo 

Operating range: 0-180° 

Operating voltage: 4.8 ~ 7.2 VDC 

Running current: 500 ~ 900 mA (6V) 

Stall current: 2.5 A (6V) 

Stall torque: 9.4 kgf·cm (4.8 V), 11 kgf· cm (6 V) 

Operating speed: 0.17 s/60º (4.8 V), 0.14 s/60º (6V) 

Dead band width: 5 µs 

Weight: 55 g 

Dimension: 40.7 × 19.7 × 42.9 mm approx 

Temperature range: 0 ~ 55°C 

3 
ATMEGA32U4-

MU 

CPU family: AVR RISC 

Core size: 8-bit 

Program memory Size: 32 KB 

RAM: 2560 B 

Data EEPROM: 1024 B 

Frequency: 8 MHz (2.7 V), 16 MHz (4.5 V) 

Number of Terminations: 44 
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Number of I/Os: 26  

Operating voltage (V): 5.5 (Max), 2.7 (Min) 

Supply current-max: 15 mA 

Max ADC Resolution: 10 bits 

Number of ADC channels: 12 

Number of PWM channels: 8 

Number of timers/counters: 5 

Number of USB channels: 1 

Interface: I2C, SPI, UART/USART, USB 

Temperature range: -40 ~ 85°C 

REFERENCES 

[1] M. B. I. Reaz, M. S. Hussain, and F. Mohd-Yasin, "Techniques of EMG 
signal analysis: detection, processing, classification and applications," 

Biological Procedures Online, vol. 8, no. 1, pp. 11–35, Dec. 2006, 
https://doi.org/10.1251/bpo115. 

[2] S. Kang, H. Kim, C. Park, Y. Sim, S. Lee, and Y. Jung, "sEMG-Based 

Hand Gesture Recognition Using Binarized Neural Network," Sensors, 
vol. 23, no. 3, Jan. 2023, Art. no. 1436, https://doi.org/10.3390/ 

s23031436. 

[3] A. Prakash, S. Sharma, and N. Sharma, "A compact-sized surface EMG 
sensor for myoelectric hand prosthesis," Biomedical Engineering 

Letters, vol. 9, no. 4, pp. 467–479, Nov. 2019, https://doi.org/10.1007/ 
s13534-019-00130-y. 

[4] D. Brunelli, A. M. Tadesse, B. Vodermayer, M. Nowak, and C. 

Castellini, "Low-cost wearable multichannel surface EMG acquisition 
for prosthetic hand control," in 2015 6th International Workshop on 

Advances in Sensors and Interfaces (IWASI), Gallipoli, Italy, 2015, pp. 
94–99, https://doi.org/10.1109/IWASI.2015.7184964. 

[5] L. Zouari, S. Chtourou, M. B. Ayed, and S. A. Alshaya, "A Comparative 

Study of Computer-Aided Engineering Techniques for Robot Arm 
Applications," Engineering, Technology & Applied Science Research, 

vol. 10, no. 6, pp. 6526–6532, Dec. 2020, https://doi.org/10.48084/ 
etasr.3885. 

[6] J. Iqbal, "Modern Control Laws for an Articulated Robotic Arm: 

Modeling and Simulation," Engineering, Technology & Applied Science 

Research, vol. 9, no. 2, pp. 4057–4061, Apr. 2019, https://doi.org/10. 

48084/etasr.2598. 

[7] S. Z. Ying, N. K. Al-Shammari, A. A. Faudzi, and Y. Sabzehmeidani, 

"Continuous Progressive Actuator Robot for Hand Rehabilitation," 
Engineering, Technology & Applied Science Research, vol. 10, no. 1, pp. 

5276–5280, Feb. 2020, https://doi.org/10.48084/etasr.3212. 

[8] S. Glowinski, S. Pecolt, A. Błażejewski, and B. Młyński, "Control of 
Brushless Direct-Current Motors Using Bioelectric EMG Signals," 

Sensors, vol. 22, no. 18, Jan. 2022, Art. no. 6829, https://doi.org/ 
10.3390/s22186829. 

[9] Y. D. Wu, S. J. Ruan, and Y. H. Lee, "An Ultra-Low Power Surface 

EMG Sensor for Wearable Biometric and Medical Applications," 
Biosensors, vol. 11, no. 11, Nov. 2021, Art. no. 411, https://doi.org/ 

10.3390/bios11110411. 

[10] M. S. Song, S. G. Kang, K. T. Lee, and J. Kim, "Wireless, Skin-
Mountable EMG Sensor for Human–Machine Interface Application," 

Micromachines, vol. 10, no. 12, Dec. 2019, Art. no. 879, https://doi.org/ 
10.3390/mi10120879. 

[11] T. Roland, K. Wimberger, S. Amsuess, M. F. Russold, and W. 

Baumgartner, "An Insulated Flexible Sensor for Stable 
Electromyography Detection: Application to Prosthesis Control," 

Sensors, vol. 19, no. 4, 2019, https://doi.org/10.3390/s19040961. 

[12] J. Yousefi and A. Hamilton-Wright, "Characterizing EMG data using 
machine-learning tools," Computers in Biology and Medicine, vol. 51, 

pp. 1–13, Aug. 2014, https://doi.org/10.1016/j.compbiomed.2014. 
04.018. 

[13] A. K. Mukhopadhyay and S. Samui, "An experimental study on upper 
limb position invariant EMG signal classification based on deep neural 

network," Biomedical Signal Processing and Control, vol. 55, Jan. 2020, 
Art. no. 101669, https://doi.org/10.1016/j.bspc.2019.101669. 

[14] Z. Zhang, K. Yang, J. Qian, and L. Zhang, "Real-Time Surface EMG 

Pattern Recognition for Hand Gestures Based on an Artificial Neural 

Network," Sensors, vol. 19, no. 14, Jan. 2019, Art. no. 3170, 
https://doi.org/10.3390/s19143170. 

[15] C. Larivière, A. Delisle, and A. Plamondon, "The effect of sampling 

frequency on EMG measures of occupational mechanical exposure," 
Journal of Electromyography and Kinesiology, vol. 15, no. 2, pp. 200–

209, Apr. 2005, https://doi.org/10.1016/j.jelekin.2004.08.009. 

[16] B. Chen et al., "Volitional control of upper-limb exoskeleton empowered 
by EMG sensors and machine learning computing," Array, vol. 17, Mar. 

2023, Art. no. 100277, https://doi.org/10.1016/j.array.2023.100277. 

[17] S. S. Bangaru, C. Wang, S. A. Busam, and F. Aghazadeh, "ANN-based 

automated scaffold builder activity recognition through wearable EMG 
and IMU sensors," Automation in Construction, vol. 126, Jun. 2021, Art. 

no. 103653, https://doi.org/10.1016/j.autcon.2021.103653. 

[18] G. Li, Y. Li, Z. Zhang, Y. Geng, and R. Zhou, "Selection of sampling 
rate for EMG pattern recognition based prosthesis control," in 2010 

Annual International Conference of the IEEE Engineering in Medicine 

and Biology, Buenos Aires, Argentina, Aug. 2010, pp. 5058–5061, 

https://doi.org/10.1109/IEMBS.2010.5626224. 

[19] M. Mokarram and A. Khoei, "Designing a fuzzy CMOS chip for 
controlling an artificial arm using electromyogram signals," 

Microelectronics Journal, vol. 112, Jun. 2021, Art. no. 105053, 
https://doi.org/10.1016/j.mejo.2021.105053. 

[20] Y. Bouteraa, I. B. Abdallah, A. Ibrahim, and T. A. Ahanger, "Fuzzy 

logic-based connected robot for home rehabilitation," Journal of 

Intelligent & Fuzzy Systems, vol. 40, no. 3, pp. 4835–4850, Jan. 2021, 

https://doi.org/10.3233/JIFS-201671. 

[21] Ç. Ersin and M. Yaz, "Implementation and Comparison of Wearable 
Exoskeleton Arm Design with Fuzzy Logic and Machine Learning 

Control," Journal of Sensors, vol. 2024, Apr. 2024, Art. no. e6808322, 
https://doi.org/10.1155/2024/6808322. 

[22] P. Delgado, N. Gonzalez, and Y. Yihun, "Integration of sEMG-Based 

Learning and Adaptive Fuzzy Sliding Mode Control for an Exoskeleton 
Assist-as-Needed Support System," Machines, vol. 11, no. 7, 2023, 

https://doi.org/10.3390/machines11070671. 

[23] I. B. Abdallah and Y. Bouteraa, "An Optimized Stimulation Control 

System for Upper Limb Exoskeleton Robot-Assisted Rehabilitation 
Using a Fuzzy Logic-Based Pain Detection Approach," Sensors, vol. 24, 

no. 4, 2024, https://doi.org/10.3390/s24041047. 

[24] R. Sharma, P. Gaur, S. Bhatt, and D. Joshi, "Optimal fuzzy logic-based 
control strategy for lower limb rehabilitation exoskeleton," Applied Soft 

Computing, vol. 105, Jul. 2021, Art. no. 107226, https://doi.org/10.1016/ 
j.asoc.2021.107226. 

[25] J. Lin, Y. Wu, and T. S. Huang, "Modeling the constraints of human 

hand motion," in Proceedings Workshop on Human Motion, Dec. 2000, 
pp. 121–126, https://doi.org/10.1109/HUMO.2000.897381. 


