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ABSTRACT 

Distributed processing systems play a crucial role in query search operations, where large-scale data are 

partitioned across multiple nodes using shard selection algorithms. However, the existing shard selection 
algorithms pose significant challenges, such as shard ranking, shard cut-off estimation, high latency, low 

throughput, and high processing costs. These limitations become more pronounced as the data size 

increases, affecting the efficiency and effectiveness of search operations. To address these challenges, the 

novel Hybrid Shard Selection Algorithm (HSSA) is proposed as a solution in this paper, designed 

specifically to enhance the effectiveness and efficiency of search operations within distributed processing 

systems. HSSA employs an advanced sharding approach that adeptly navigates and targets pertinent 

shards based on specific queries. This not only curtails search-related overhead but also enhances 
operational efficiency. Through rigorous testing using the Gov2 dataset, the HSSA algorithm has proven 

its merits. When set against well-established algorithms like CORI, Rank-S, and SHiRE, HSSA stands out, 

registering remarkable gains in average throughput by 21%, 16%, and 12%, while also slashing latency by 

14.2%, 9.4%, and 8.2%, respectively. The insights gained from this research underscore HSSA's capability 

to effectively bridge the gaps inherent in traditional shard selection strategies. Furthermore, its exemplary 

efficacy with datasets of varied sizes amplifies its relevance for practical integration within distributed 
processing landscapes. 
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I. INTRODUCTION  

The exponential growth of data across industries and 
disciplines has prompted a paradigm shift in data processing, 
storage, and retrieval methods. Distributed processing systems 
have emerged as a dominant paradigm in the era of big data, 
enabling the efficient processing and analysis of vast amounts 
of information. The cornerstone of these systems lies in their 
ability to divide data and tasks across multiple nodes, ensuring 
parallelism, scalability, and fault tolerance [1]. A critical 
component in optimizing the performance of such systems is 
sharding, which entails partitioning databases into smaller, 
more digestible pieces, termed as shards, which can be 
processed concurrently. Shard selection essentially involves the 
partitioning of a database or dataset into smaller, more 
manageable segments, known as shards. Each shard can then 
be processed independently and concurrently across various 
nodes of the distributed system. This concurrent processing not 
only accelerates data retrieval and computation, but also 
ensures a balanced load distribution across the system, 

preventing potential bottlenecks and system overloads. 
Traditional sharding approaches have predominantly revolved 
around either static or dynamic methodologies. Static sharding 
involves dividing a database based on predetermined criteria, 
which, while simple and predictable, may lead to inefficiencies 
such as data skew or imbalance among nodes. On the other 
hand, dynamic sharding techniques allow the system to 
partition data on-the-fly based on various parameters, such as 
data size or workload characteristics. While more flexible, 
dynamic sharding can sometimes add overhead due to the 
continuous monitoring and adjustment requirements. 

Static shard selection algorithms, like the Lexical SHiRE 
(Lex-S) and Connected SHiRE (Conn-S), are deterministic in 
nature. Their modus operandi focuses on predefined criteria set 
during data ingestion or index creation. For instance, Lex-S 
relies on the lexical attributes of data for sharding, and once 
formed, these shards remain unchanged irrespective of the 
nature of queries they confront. Similarly, Conn-S capitalizes 
on the intrinsic relationships or connected components within 
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the data to form shards, retaining their structure throughout 
their lifecycle [2]. 

In contrast, dynamic shard selection algorithms adjust and 
evolve based on the incoming queries, offering a more adaptive 
approach to shard selection. Algorithms such as Rank SHiRE 
(Rank-S), Collection Retrieval Inference Network (CORI), and 
Relevant Document Distribution Estimation (ReDDE) 
epitomize this category. Rank-S, for instance, dynamically 
ranks shards vis-à-vis their relevance to an incoming query. 
CORI and ReDDE, on the other hand, estimate the significance 
of shards based on varying parameters, like document statistics 
or the relevance of terms in a query, respectively [3]. While 
both static and dynamic sharding techniques come with their 
own set of merits, neither is devoid of shortcomings. Static 
algorithms might be compromised by unforeseen query 
patterns, whereas dynamic ones may incur overheads due to 
their adaptive nature [4]. In the wake of these challenges, 
there's a growing need for an algorithmic solution that 
seamlessly blends the predictability of static sharding with the 
adaptability of dynamic sharding [5]. 

This paper proposes the Hybrid Shard Selection Algorithm 
(HSSA), a novel approach designed to enhance the 
performance of distributed processing systems. By intelligently 
leveraging the strengths of both static and dynamic sharding 
techniques, HSSA seeks to integrate the robustness of static 
algorithms with the adaptability of the dynamic ones. By 
initially leveraging the likes of Lex-S or Conn-S for shard 
creation and subsequently resorting to dynamic algorithms like 
Rank-S, CORI, or ReDDE for shard selection during queries, 
HSSA aspires to strike a harmonious balance. Such an 
approach promises to fuse the predictability of static sharding 
with the nimbleness of dynamic sharding, paving the path for a 
more refined, efficient, and performance-enhanced distributed 
processing system. HSSA aims to ensure optimal data 
distribution, minimize processing latency, and promote 
balanced resource utilization across the system. The main 
contributions of the proposed algorithm are: 

 Hybrid Integration: HSSA uniquely combines both static 
(Lex-S, Conn-S) and dynamic (Rank-S, CORI, ReDDE) 
shard selection methodologies, optimizing efficiency and 
adaptability in distributed systems. 

 Balanced Efficiency: By leveraging static predictability 
and dynamic real-time relevance, HSSA ensures swift data 
retrieval and optimal resource utilization. 

 Scalability and Adaptability: HSSA exhibits enhanced 
scalability and fault tolerance, adjusting seamlessly to 
diverse query patterns, and setting a benchmark for future 
shard selection algorithms. 

The primary contribution of HSSA lies in its innovative 
approach of combining the benefits of both static and dynamic 
shard selection methodologies to presents a holistic solution. 
This hybrid methodology aims to ensure optimal data 
distribution, reduce processing latency, and guarantee efficient 
resource utilization across the distributed processing system. In 
essence, the HSSA algorithm sets a new benchmark for shard 
selection by harmoniously merging predictability with 

flexibility, ultimately enhancing the overall performance of 
distributed data processing systems. 

II. RELATED WORK 

Sharding is a horizontal data partitioning technique that 
partitions data row-wise into n different shards. Authors in [6] 
focus on enhancing the effectiveness of data reclamation and 
processing in Elasticsearch through colorful shard selection 
ways. The study delves into the complications of 
Elasticsearch’s armature, emphasizing the pivotal part of 
sharding in vertical scaling. The authors explore and compare 
different shard selection strategies, similar to the range-
grounded, hash-grounded, and adaptive ways, assessing their 
effectiveness in optimizing query prosecution and cargo 
balancing. The optimization of data partitioning in a sharding 
system employing harmonious mincing is presented in [2]. The 
central focus lies in streamlining the process of dividing and 
distributing data across shards to enhance system effectiveness. 
The authors address the complications associated with 
traditional data partitioning styles and propose a simplified 
approach, using harmonious mincing as the underpinning 
mechanism. The study delves into the complications of 
harmonious mincing, emphasizing its part in maintaining cargo 
balance and easing scalable data storehouses. Authors in [7] 
report that, the basic CORI algorithm does not scale up with 
large-size data and downgrades the performance of distributed 
search engines. In [8], it was reported that selective search 
could divide the data according to topic-based shards and 
search could be conducted in only a few shards that contain the 
relevant query. The experimental results showed that the 
selective search is more effective than the (traditional) 
exhaustive search method. Dividing the data according to the 
topic-based motivates the cluster to search the data for the 
query in a few shards which contain the relevant data [9]. If the 
documents have similarities, then they can be grouped. In [1], a 
novel query-biased partitioning strategy, aligning document 
partitions with topics derived from query logs is presented. It 
specifically addresses clustering initialization and document 
similarity calculation. 

A query-driven clustering initialization algorithm employs 
topics from query logs, while a query-biased similarity metric 
prioritizes terms important in query logs. Both methods 
enhance retrieval effectiveness, diminish variance, and promote 
a more balanced distribution of shard sizes. The SHARD 
Triple-Store, a cutting-edge, high performance, and massively 
scalable distributed system leveraging the MapReduce software 
framework, is presented in [10]. This innovative approach 
capitalizes on the inherent capabilities of MapReduce to handle 
vast amounts of data in a parallel and distributed manner. The 
triple-store architecture is specifically designed for efficient 
and scalable storage and retrieval of RDF (Resource 
Description Framework) triples, a crucial component in 
semantic data processing. By utilizing the MapReduce 
paradigm, the SHARD Triple-Store achieves exceptional 
scalability, allowing it to seamlessly handle large-scale 
datasets. MapReduce’s parallel processing capabilities are 
harnessed to distribute the computational load across a 
multitude of nodes, ensuring efficient data processing and 
storage. This architecture excels in scenarios where traditional 
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relational databases may struggle to cope with the sheer 
volume and complexity of data. The SHARD Triple-Store 
represents a notable advancement in the field of distributed 
systems, offering a robust solution for organizations dealing 
with massive and dynamic datasets in the realm of semantic 
data processing.  

Significant challenges in distributed processing are 
performance enhancement, fault tolerance, and scalability [11, 
12]. Different approaches and heuristic techniques have been 
proposed to partition data and allocate shards at multiple nodes. 
The existing data partitioning strategies encounter high 
communication, low throughput, scalability, consistency, and 
mining overhead. The proposed approach aims to overcome the 
above limitations using a hybrid shard selection technique.  

III. HSSA SYSTEM ARCHITECTURE 

Figure 1 depicts the proposed HSSA system's architecture. 
The architecture offers a sophisticated solution to the 
challenges inherent in managing vast datasets in distributed 
processing systems. Central to the architecture, is a distributed 
framework anchored by the Master Node, a pivotal component 
that supervises the data's initial processing. With the aid of 
sharding techniques, the master node meticulously segments 
the massive volume of data into strategically defined shards. 
Each shard is intricately themed around specific topics, 
ensuring that every fragment or shard is a coherent aggregation 
of documents that share thematic resonance. As the 
orchestrator, the master node oversees operations across the 
distributed spectrum, managing queries and the critical dual 
processes of data partitioning and shard selection. This pivotal 
node's proactive role extends further; by controlling parallel 
processing across shards, it ensures a dramatic reduction in 
latency, simultaneously amplifying throughput and refining 
search precision.  

 

 
Fig. 1.  HSSA system architecture. 

Complementing the master node are the Data Nodes, the 
repositories entrusted with housing the carefully curated shards. 
Each data node plays steward to a shard—a self-sustaining 
subset of the entire dataset, a thematic archive of documents 
under its domain. With HSSA's architectural design, the 
process is seamlessly streamlined into two core phases. First, 
the data undergoe a rigorous partitioning process, ensuring it is 
dissected into topic-centric, logical shards. Following this, the 

algorithm pivots to the shard selection and ranking phase, 
pinpointing the shards most relevant to a given query and 
ranking them in order of relevance. This fusion of 
methodological rigor and precision-driven selection gives 
HSSA its distinctive edge, setting new benchmarks in 
distributed data processing efficiency. 

A. Hybrid Data Partitioning Approach in HSSA 

Hybrid data partitioning, as encapsulated in HSSA, is an 
innovative fusion of horizontal and vertical partitioning 
strategies, offering a flexible and adaptive system for diverse 
datasets. This approach emerges from the understanding that 
the strengths of one partitioning type can compensate for the 
shortcomings of the other, thus ensuring a holistic data 
management system. The procedure initiates with a Preliminary 
Data Analysis, where the data's structure, volume, and access 
patterns are meticulously assessed. By probing into the unique 
intricacies of the dataset, HSSA can tailor its partitioning 
mechanisms to match the data's inherent needs. 

The horizontal partitioning strategy then comes into play, 
slicing data at the row level. Each shard, or partition, is 
structured to represent a consistent portion of the overarching 
dataset. This approach is instrumental when systems foresee 
queries that span multiple columns but are concentrated on 
specific rows. For example, in a dataset profiling users, one 
might seek all data attributes (columns) for a specific user (a 
particular row). 

Vertical partitioning focuses on column-based data 
segregation. By clustering columns that are frequently accessed 
in tandem, this approach optimizes query responses for those 
seeking specific data attributes across the board. For instance, 
in an e-commerce database, queries might predominantly target 
product names and prices, while seldom accessing their 
detailed descriptions. In such scenarios, vertical partitioning 
optimizes data fetch times by co-locating these commonly 
accessed columns. 

HSSA's approach is its dynamic melding of these two 
strategies. The system constantly evaluates query demands and 
data access patterns, fine-tuning the balance between horizontal 
and vertical partitions. If a dataset witnesses evolving access 
patterns, HSSA's dynamic adaptation mechanism adjusts the 
partitioning mix, ensuring consistent and optimal performance. 
Incorporated into this is a suite of implementation strategies 
like range-based, list-based, and hash-based partitioning. Each 
serves a unique purpose: from partitioning data based on 
predefined categories to evenly distributing data using hash 
values, ensuring there are no concentration hotspots. 

B. Shard Selection and Ranking in HSSA 

In distributed systems, data are spread across multiple 
shards, making global understanding a herculean task. HSSA 
alleviates this through the Central Sample Index (CSI). A 
representative set of documents from every shard is carefully 
sampled and indexed in the CSI. This curated index serves as a 
microcosm of the entire dataset, providing a bird's eye view of 
the information sprawl across all shards. By relying on this 
subset, HSSA can rapidly ascertain the potential relevance of 
vast amounts of data without trawling through every individual 
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shard. The efficiency of the CSI comes to the forefront when a 
query is dispatched. Rather than wandering aimlessly across 
shards, the query is first mapped against the CSI. Given that the 
CSI encapsulates samples from all shards, it is adept at offering 
an initial assessment of which shards are likely to be most 
relevant to the query in question. This preliminary direction 
ensures that search operations are both swift and pinpointed. 

After the identification of potential shards, HSSA takes an 
additional step. It arranges these shards in a hierarchy, dictated 
by their estimated relevance to the posed query. By directing its 
computational prowess towards the highest-ranking shards 
first, HSSA ensures optimal resource utilization, leading to 
faster and more relevant search results. HSSA's architectural 
brilliance doesn't just reside in its native capabilities but also in 
its adaptability. While it carries a unique approach, it pays 
homage to time-tested shard selection algorithms like CORI 
and ReDDE. When scenarios demand it, HSSA can seamlessly 
amalgamate these methods into its operations. This synergy not 
only adds another layer of robustness to HSSA but also ensures 
its relevance across a spectrum of use-cases, making it a truly 
versatile tool in the domain of distributed data systems. CSI 
stands as a monumental pillar in the HSSA's framework, 
offering a streamlined approach to shard selection and 
relevance estimation.  

C. Integrating Static and Dynamic Approaches 

To combine the static and dynamic shard selection 
algorithms, we can use a linear combination of the algorithms. 
A weighted approach allows for prioritizing the strengths of 
each method based on their performance on the dataset. 

HSSA(q,s) = α × (Lex(s,q) + Conn(s)) + β × (CoRI(q,s) + 
ReDDE(s,q) + Rank − s(s,q))   (1) 

where α and β are weights representing the importance of the 
static and dynamic approaches, respectively. 

The determination of α and β is vital. If, for example, static 
approaches (Lex-S and Conn-S) provide consistently reliable 
results in a particular dataset, α might be higher than β. 
Alternatively, if real-time adaptability and responsiveness are 
more crucial, then β might weigh more. To further fine-tune the 
hybrid approach: 

HSSA(q,s) = α1 × Lex(s,q) + α2 × Conn(s) + β1 × 
CoRI(q,s) + β2 × ReDDE(s,q) + β3 × Rank − s(s,q) (2) 

In this expanded equation, each algorithm has its weight 
(α1, α2, β1, β2, β3), allowing for granular control over the 
integration of each method into the hybrid approach. These 
weights can be optimized through several methods. In this 
study, empirical analysis was opted by running the HSSA with 
different weights on validation data and choosing the weights 
that offer the best results. 

Algorithm 1: Proposed HSSA Algorithm 

Require: List of shards retrieved from 

distributed storage systems. 

Ensure: Selected shards which are relevant 

to the user query. 

function hybrid_shard_selection(query): 

    relevant_shards = [ ] 

    static_selected_shards = 

static_shard_selection(query) 

    dynamic_selected_shards = 

dynamic_shard_selection(query) 

    combined_shards = 

merge(static_selected_shards, 

dynamic_selected_shards) 

    relevant_shards = 

rank_shards(combined_shards) 

    return relevant_shards 

function static_shard_selection(query): 

    relevant_shards = [ ] 

    for shard in shards: 

    if shard.meets_static_criteria(query): 

    relevant_shards.append(shard) 

    return relevant_shards 

function dynamic_shard_selection(query): 

    relevant_shards = [ ] 

    for shard in shards: 

    if 

shard.meets_dynamic_criteria(query): 

    relevant_shards.append(shard) 

    return relevant_shards 

function merge(list1, list2): 

// Combine two lists of shards while 

removing duplicates 

    merged_list = list1 + list2 

    merged_list = 

remove_duplicates(merged_list) 

    return merged_list 

function rank_shards(shards): 

// Rank shards based on relevance score 

    ranked_shards = 

sort_shards_by_score(shards) 

    return ranked_shards 

IV. RESULTS AND DISCUSSION 

The experiment was meticulously designed to ensure the 
comprehensive evaluation of HSSA against prevalent shard 
selection algorithms. The metrics chosen offered a holistic 
view of the algorithm's efficiency, effectiveness, and potential 
applicability in real-world scenarios. 

A. Performance Analysis of HSSA Considering Latency 

Figure 2 shows how different shard selection algorithms 
behave in terms of latency (ms) as the maximum number of 
shards (K) increases. The x-axis represents the maximum 
number of shards, whereas the y-axis denotes latency. It is 
evident that as K increases, latency generally tends to rise for 
all algorithms. This is expected as a larger value of K implies 
that more shards are considered, leading to higher computation 
time. However, HSSA consistently outperforms the other 
algorithms across all K values, achieving significantly lower 
latency. At K = 80, HSSA registers a latency of 21 ms, whereas 
the closest competitor, Rank-S, records a latency of 28 ms, 
underlining a clear efficiency gain. In contrast, CORI and 
Redde peak with latency values of 30 ms at 80 shards, with 
Lex-S and Conn-S escalating by 25 ms and 26 ms respectively.  
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Fig. 2.  Latency vs. maximun number of shards. 

B. Average Document Score  

Figure 3 shows the performance of various shard selection 
algorithms evaluated based on the average document score, a 
critical metric that signifies the average relevance of documents 
retrieved for specific queries. The proposed HSSA stands out 
distinctly, consistently outperforming its counterparts across all 
K values. For instance, at K = 80, HSSA achieves a score of 
9.2, a testament to its efficacy. The underlying hybrid nature of 
HSSA, which seamlessly merges the merits of both static and 
dynamic shard selection methodologies, plays a pivotal role in 
its superior performance. Lex-S, while initiating on a modest 
note, exhibits a commendable growth, closely following HSSA 
with a score of 8.1 at K = 80. Rank-S, although beginning at 
1.2, steadily ascends to 7.8 for K = 80. On the other hand, 
CORI and Redde display moderate growth trajectories, 
achieving scores of 6 and 6.5, respectively at K = 80. Conn-S, 
maintaining a consistent performance gradient, peaks at 7.5 for 
K = 80. To encapsulate, while each algorithm presents its 
unique advantages and growth trajectories, HSSA emerges as a 
clear frontrunner, underscoring its potential to set new 
standards in the domain of distributed processing systems. 

 

 
Fig. 3.  Average document score vs. maximum number of shards. 

C. Comparative Study Analysis 

Figure 4 shows the Mean Average Precision (MAP), 
resource utilization cost and the latency for 60 queries on Gov2 
dataset. We can observe that the MAP score of the proposed 
hybrid shard selection is high whereas the cost and latency are 
lower that those of the existing algorithms. 

 
Fig. 4.  MAP, total cost, and latency for the compared shard algorithms. 

Table I shows the proposed algorithm's performance 
analysis compared to existing shard selection methods. The 
consistent precision at multiple cut-off points (P@10, P@30, 
and P@60) across all assessed K-values of HSSA substantiates 
its efficacy in discerning and retrieving relevant documents, 
even as the allowable shards burgeon. Its robust hybrid nature, 
amalgamating static and dynamic shard selection approaches, 
underpins its superior performance by ensuring relevance and 
minimized computational overhead.  

TABLE I.  PERFORMANCE ANALYSIS OF SHARD 
SELECTION ALGORITHMS CONSIDERING PRECISION, 

COST, AND LATENCY PARAMETERS 

Shard 

selection 

algorithm 

No. of 

shards 

Search cost 

P@30 P@60 NDCG@100 MAP CTotal CLatency 

Exhaustive 

50 0.53 0.47 0.41 0.27 2.87 2.89 

100 0.53 0.47 0.41 0.27 2.87 0.96 

150 0.53 0.47 0.41 0.27 2.87 0.58 

200 0.53 0.47 0.41 0.27 2.87 0.51 

CORI 

50 0.28 0.3 0.24 0.14 0.12 0.12 

100 0.36 0.38 0.32 0.21 0.32 0.21 

150 0.42 0.42 0.37 0.25 0.41 0.24 

200 0.51 0.48 0.4 0.26 0.48 0.26 

ReDDE 

50 0.38 0.31 0.25 0.13 0.12 0.12 

100 0.47 0.44 0.36 0.23 0.36 0.18 

150 0.52 0.46 0.39 0.25 0.47 0.21 

200 0.56 0.51 0.43 0.28 0.52 0.28 

Rank-S 

50 0.34 0.3 0.2 0.16 0.14 0.12 

100 0.45 0.34 0.29 0.28 0.38 0.19 

150 0.49 0.45 0.34 0.29 0.48 0.21 

200 0.51 0.48 0.41 0.4 0.52 0.28 

Modified 

Rank-S 

50 0.34 0.3 0.2 0.16 0.14 0.16 

100 0.45 0.34 0.29 0.28 0.25 0.14 

150 0.49 0.45 0.34 0.29 0.3 0.18 

200 0.51 0.48 0.41 0.4 0.32 0.21 

Proposed 

HSSA 

50 0.3 0.31 0.3 0.28 0.16 0.15 

100 0.28 0.3 0.28 0.27 0.2 0.12 

150 0.27 0.28 0.26 0.25 0.21 0.15 

200 0.23 0.26 0.25 0.24 0.24 0.16 

 

V. CONCLUSION 

This paper presents a new approach to the distributed data 
processing problem: the Hybrid Shard Selection Algorithm 
(HSSA). The existing shard selection algorithms focus on 
search efficiency without significantly reducing search 
effectiveness. They may suffer from high query latency and 
load imbalance when the size of the database is enormous. The 
proposed hybrid shard selection approach partitions the 
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documents into topic-wise shards and uses cluster-skipping 
indexes inside each of the shards during the query processing 
operation. Only those shards that have relevant documents 
matching the user query are searched. This reduces the latency 
and enhances the search effectiveness by reducing the resource 
utilization cost. We tested the proposed algorithm on the Gov2 
dataset partitioned into topic-based shards. The proposed 
HSSA algorithm search accuracy and effectiveness are 
significantly better than those of the baseline existing shard 
selection algorithms. At the same time, the search cost of the 
proposed algorithm is lower with optimized resource 
utilization. It reduced the search cost by 20% for the Gov2 
dataset. The proposed algorithm supports query-specific 
minimal shard cut-off estimation, which can be used with 
different shard ranking algorithms to satisfy early precision or 
high recall goals of information retrieval applications.  
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