
Engineering, Technology & Applied Science Research Vol. 14, No. 2, 2024, 13720-13725 13720

www.etasr.com Dhulavvagol & Totad: Performance Enhancement of a Distributed Processing System using the Novel …

Performance Enhancement of Distributed

Processing Systems using Novel Hybrid

Shard Selection Algorithm

Praveen M. Dhulavvagol

School of Computer Science and Engineering, KLE Technological University, India

praveen.md@kletech.ac.in (corresponding author)

Sashikumar G. Totad

School of Computer Science and Engineering, KLE Technological University, India
totad@kletech.ac.in

Received: 22 February 2022 | Revised: 7 March 2024 | Accepted: 12 March 2024

Licensed under a CC-BY 4.0 license | Copyright (c) by the authors | DOI: https://doi.org/10.48084/etasr.7128

ABSTRACT

Distributed processing systems play a crucial role in query search operations, where large-scale data are

partitioned across multiple nodes using shard selection algorithms. However, the existing shard selection
algorithms pose significant challenges, such as shard ranking, shard cut-off estimation, high latency, low

throughput, and high processing costs. These limitations become more pronounced as the data size

increases, affecting the efficiency and effectiveness of search operations. To address these challenges, the

novel Hybrid Shard Selection Algorithm (HSSA) is proposed as a solution in this paper, designed

specifically to enhance the effectiveness and efficiency of search operations within distributed processing

systems. HSSA employs an advanced sharding approach that adeptly navigates and targets pertinent

shards based on specific queries. This not only curtails search-related overhead but also enhances
operational efficiency. Through rigorous testing using the Gov2 dataset, the HSSA algorithm has proven

its merits. When set against well-established algorithms like CORI, Rank-S, and SHiRE, HSSA stands out,

registering remarkable gains in average throughput by 21%, 16%, and 12%, while also slashing latency by

14.2%, 9.4%, and 8.2%, respectively. The insights gained from this research underscore HSSA's capability

to effectively bridge the gaps inherent in traditional shard selection strategies. Furthermore, its exemplary

efficacy with datasets of varied sizes amplifies its relevance for practical integration within distributed
processing landscapes.

Keywords-sharding; cluster; indexing; partitioning; allocation

I. INTRODUCTION

The exponential growth of data across industries and
disciplines has prompted a paradigm shift in data processing,
storage, and retrieval methods. Distributed processing systems
have emerged as a dominant paradigm in the era of big data,
enabling the efficient processing and analysis of vast amounts
of information. The cornerstone of these systems lies in their
ability to divide data and tasks across multiple nodes, ensuring
parallelism, scalability, and fault tolerance [1]. A critical
component in optimizing the performance of such systems is
sharding, which entails partitioning databases into smaller,
more digestible pieces, termed as shards, which can be
processed concurrently. Shard selection essentially involves the
partitioning of a database or dataset into smaller, more
manageable segments, known as shards. Each shard can then
be processed independently and concurrently across various
nodes of the distributed system. This concurrent processing not
only accelerates data retrieval and computation, but also
ensures a balanced load distribution across the system,

preventing potential bottlenecks and system overloads.
Traditional sharding approaches have predominantly revolved
around either static or dynamic methodologies. Static sharding
involves dividing a database based on predetermined criteria,
which, while simple and predictable, may lead to inefficiencies
such as data skew or imbalance among nodes. On the other
hand, dynamic sharding techniques allow the system to
partition data on-the-fly based on various parameters, such as
data size or workload characteristics. While more flexible,
dynamic sharding can sometimes add overhead due to the
continuous monitoring and adjustment requirements.

Static shard selection algorithms, like the Lexical SHiRE
(Lex-S) and Connected SHiRE (Conn-S), are deterministic in
nature. Their modus operandi focuses on predefined criteria set
during data ingestion or index creation. For instance, Lex-S
relies on the lexical attributes of data for sharding, and once
formed, these shards remain unchanged irrespective of the
nature of queries they confront. Similarly, Conn-S capitalizes
on the intrinsic relationships or connected components within

Engineering, Technology & Applied Science Research Vol. 14, No. 2, 2024, 13720-13725 13721

www.etasr.com Dhulavvagol & Totad: Performance Enhancement of a Distributed Processing System using the Novel …

the data to form shards, retaining their structure throughout
their lifecycle [2].

In contrast, dynamic shard selection algorithms adjust and
evolve based on the incoming queries, offering a more adaptive
approach to shard selection. Algorithms such as Rank SHiRE
(Rank-S), Collection Retrieval Inference Network (CORI), and
Relevant Document Distribution Estimation (ReDDE)
epitomize this category. Rank-S, for instance, dynamically
ranks shards vis-à-vis their relevance to an incoming query.
CORI and ReDDE, on the other hand, estimate the significance
of shards based on varying parameters, like document statistics
or the relevance of terms in a query, respectively [3]. While
both static and dynamic sharding techniques come with their
own set of merits, neither is devoid of shortcomings. Static
algorithms might be compromised by unforeseen query
patterns, whereas dynamic ones may incur overheads due to
their adaptive nature [4]. In the wake of these challenges,
there's a growing need for an algorithmic solution that
seamlessly blends the predictability of static sharding with the
adaptability of dynamic sharding [5].

This paper proposes the Hybrid Shard Selection Algorithm
(HSSA), a novel approach designed to enhance the
performance of distributed processing systems. By intelligently
leveraging the strengths of both static and dynamic sharding
techniques, HSSA seeks to integrate the robustness of static
algorithms with the adaptability of the dynamic ones. By
initially leveraging the likes of Lex-S or Conn-S for shard
creation and subsequently resorting to dynamic algorithms like
Rank-S, CORI, or ReDDE for shard selection during queries,
HSSA aspires to strike a harmonious balance. Such an
approach promises to fuse the predictability of static sharding
with the nimbleness of dynamic sharding, paving the path for a
more refined, efficient, and performance-enhanced distributed
processing system. HSSA aims to ensure optimal data
distribution, minimize processing latency, and promote
balanced resource utilization across the system. The main
contributions of the proposed algorithm are:

 Hybrid Integration: HSSA uniquely combines both static
(Lex-S, Conn-S) and dynamic (Rank-S, CORI, ReDDE)
shard selection methodologies, optimizing efficiency and
adaptability in distributed systems.

 Balanced Efficiency: By leveraging static predictability
and dynamic real-time relevance, HSSA ensures swift data
retrieval and optimal resource utilization.

 Scalability and Adaptability: HSSA exhibits enhanced
scalability and fault tolerance, adjusting seamlessly to
diverse query patterns, and setting a benchmark for future
shard selection algorithms.

The primary contribution of HSSA lies in its innovative
approach of combining the benefits of both static and dynamic
shard selection methodologies to presents a holistic solution.
This hybrid methodology aims to ensure optimal data
distribution, reduce processing latency, and guarantee efficient
resource utilization across the distributed processing system. In
essence, the HSSA algorithm sets a new benchmark for shard
selection by harmoniously merging predictability with

flexibility, ultimately enhancing the overall performance of
distributed data processing systems.

II. RELATED WORK

Sharding is a horizontal data partitioning technique that
partitions data row-wise into n different shards. Authors in [6]
focus on enhancing the effectiveness of data reclamation and
processing in Elasticsearch through colorful shard selection
ways. The study delves into the complications of
Elasticsearch’s armature, emphasizing the pivotal part of
sharding in vertical scaling. The authors explore and compare
different shard selection strategies, similar to the range-
grounded, hash-grounded, and adaptive ways, assessing their
effectiveness in optimizing query prosecution and cargo
balancing. The optimization of data partitioning in a sharding
system employing harmonious mincing is presented in [2]. The
central focus lies in streamlining the process of dividing and
distributing data across shards to enhance system effectiveness.
The authors address the complications associated with
traditional data partitioning styles and propose a simplified
approach, using harmonious mincing as the underpinning
mechanism. The study delves into the complications of
harmonious mincing, emphasizing its part in maintaining cargo
balance and easing scalable data storehouses. Authors in [7]
report that, the basic CORI algorithm does not scale up with
large-size data and downgrades the performance of distributed
search engines. In [8], it was reported that selective search
could divide the data according to topic-based shards and
search could be conducted in only a few shards that contain the
relevant query. The experimental results showed that the
selective search is more effective than the (traditional)
exhaustive search method. Dividing the data according to the
topic-based motivates the cluster to search the data for the
query in a few shards which contain the relevant data [9]. If the
documents have similarities, then they can be grouped. In [1], a
novel query-biased partitioning strategy, aligning document
partitions with topics derived from query logs is presented. It
specifically addresses clustering initialization and document
similarity calculation.

A query-driven clustering initialization algorithm employs
topics from query logs, while a query-biased similarity metric
prioritizes terms important in query logs. Both methods
enhance retrieval effectiveness, diminish variance, and promote
a more balanced distribution of shard sizes. The SHARD
Triple-Store, a cutting-edge, high performance, and massively
scalable distributed system leveraging the MapReduce software
framework, is presented in [10]. This innovative approach
capitalizes on the inherent capabilities of MapReduce to handle
vast amounts of data in a parallel and distributed manner. The
triple-store architecture is specifically designed for efficient
and scalable storage and retrieval of RDF (Resource
Description Framework) triples, a crucial component in
semantic data processing. By utilizing the MapReduce
paradigm, the SHARD Triple-Store achieves exceptional
scalability, allowing it to seamlessly handle large-scale
datasets. MapReduce’s parallel processing capabilities are
harnessed to distribute the computational load across a
multitude of nodes, ensuring efficient data processing and
storage. This architecture excels in scenarios where traditional

Engineering, Technology & Applied Science Research Vol. 14, No. 2, 2024, 13720-13725 13722

www.etasr.com Dhulavvagol & Totad: Performance Enhancement of a Distributed Processing System using the Novel …

relational databases may struggle to cope with the sheer
volume and complexity of data. The SHARD Triple-Store
represents a notable advancement in the field of distributed
systems, offering a robust solution for organizations dealing
with massive and dynamic datasets in the realm of semantic
data processing.

Significant challenges in distributed processing are
performance enhancement, fault tolerance, and scalability [11,
12]. Different approaches and heuristic techniques have been
proposed to partition data and allocate shards at multiple nodes.
The existing data partitioning strategies encounter high
communication, low throughput, scalability, consistency, and
mining overhead. The proposed approach aims to overcome the
above limitations using a hybrid shard selection technique.

III. HSSA SYSTEM ARCHITECTURE

Figure 1 depicts the proposed HSSA system's architecture.
The architecture offers a sophisticated solution to the
challenges inherent in managing vast datasets in distributed
processing systems. Central to the architecture, is a distributed
framework anchored by the Master Node, a pivotal component
that supervises the data's initial processing. With the aid of
sharding techniques, the master node meticulously segments
the massive volume of data into strategically defined shards.
Each shard is intricately themed around specific topics,
ensuring that every fragment or shard is a coherent aggregation
of documents that share thematic resonance. As the
orchestrator, the master node oversees operations across the
distributed spectrum, managing queries and the critical dual
processes of data partitioning and shard selection. This pivotal
node's proactive role extends further; by controlling parallel
processing across shards, it ensures a dramatic reduction in
latency, simultaneously amplifying throughput and refining
search precision.

Fig. 1. HSSA system architecture.

Complementing the master node are the Data Nodes, the
repositories entrusted with housing the carefully curated shards.
Each data node plays steward to a shard—a self-sustaining
subset of the entire dataset, a thematic archive of documents
under its domain. With HSSA's architectural design, the
process is seamlessly streamlined into two core phases. First,
the data undergoe a rigorous partitioning process, ensuring it is
dissected into topic-centric, logical shards. Following this, the

algorithm pivots to the shard selection and ranking phase,
pinpointing the shards most relevant to a given query and
ranking them in order of relevance. This fusion of
methodological rigor and precision-driven selection gives
HSSA its distinctive edge, setting new benchmarks in
distributed data processing efficiency.

A. Hybrid Data Partitioning Approach in HSSA

Hybrid data partitioning, as encapsulated in HSSA, is an
innovative fusion of horizontal and vertical partitioning
strategies, offering a flexible and adaptive system for diverse
datasets. This approach emerges from the understanding that
the strengths of one partitioning type can compensate for the
shortcomings of the other, thus ensuring a holistic data
management system. The procedure initiates with a Preliminary
Data Analysis, where the data's structure, volume, and access
patterns are meticulously assessed. By probing into the unique
intricacies of the dataset, HSSA can tailor its partitioning
mechanisms to match the data's inherent needs.

The horizontal partitioning strategy then comes into play,
slicing data at the row level. Each shard, or partition, is
structured to represent a consistent portion of the overarching
dataset. This approach is instrumental when systems foresee
queries that span multiple columns but are concentrated on
specific rows. For example, in a dataset profiling users, one
might seek all data attributes (columns) for a specific user (a
particular row).

Vertical partitioning focuses on column-based data
segregation. By clustering columns that are frequently accessed
in tandem, this approach optimizes query responses for those
seeking specific data attributes across the board. For instance,
in an e-commerce database, queries might predominantly target
product names and prices, while seldom accessing their
detailed descriptions. In such scenarios, vertical partitioning
optimizes data fetch times by co-locating these commonly
accessed columns.

HSSA's approach is its dynamic melding of these two
strategies. The system constantly evaluates query demands and
data access patterns, fine-tuning the balance between horizontal
and vertical partitions. If a dataset witnesses evolving access
patterns, HSSA's dynamic adaptation mechanism adjusts the
partitioning mix, ensuring consistent and optimal performance.
Incorporated into this is a suite of implementation strategies
like range-based, list-based, and hash-based partitioning. Each
serves a unique purpose: from partitioning data based on
predefined categories to evenly distributing data using hash
values, ensuring there are no concentration hotspots.

B. Shard Selection and Ranking in HSSA

In distributed systems, data are spread across multiple
shards, making global understanding a herculean task. HSSA
alleviates this through the Central Sample Index (CSI). A
representative set of documents from every shard is carefully
sampled and indexed in the CSI. This curated index serves as a
microcosm of the entire dataset, providing a bird's eye view of
the information sprawl across all shards. By relying on this
subset, HSSA can rapidly ascertain the potential relevance of
vast amounts of data without trawling through every individual

Engineering, Technology & Applied Science Research Vol. 14, No. 2, 2024, 13720-13725 13723

www.etasr.com Dhulavvagol & Totad: Performance Enhancement of a Distributed Processing System using the Novel …

shard. The efficiency of the CSI comes to the forefront when a
query is dispatched. Rather than wandering aimlessly across
shards, the query is first mapped against the CSI. Given that the
CSI encapsulates samples from all shards, it is adept at offering
an initial assessment of which shards are likely to be most
relevant to the query in question. This preliminary direction
ensures that search operations are both swift and pinpointed.

After the identification of potential shards, HSSA takes an
additional step. It arranges these shards in a hierarchy, dictated
by their estimated relevance to the posed query. By directing its
computational prowess towards the highest-ranking shards
first, HSSA ensures optimal resource utilization, leading to
faster and more relevant search results. HSSA's architectural
brilliance doesn't just reside in its native capabilities but also in
its adaptability. While it carries a unique approach, it pays
homage to time-tested shard selection algorithms like CORI
and ReDDE. When scenarios demand it, HSSA can seamlessly
amalgamate these methods into its operations. This synergy not
only adds another layer of robustness to HSSA but also ensures
its relevance across a spectrum of use-cases, making it a truly
versatile tool in the domain of distributed data systems. CSI
stands as a monumental pillar in the HSSA's framework,
offering a streamlined approach to shard selection and
relevance estimation.

C. Integrating Static and Dynamic Approaches

To combine the static and dynamic shard selection
algorithms, we can use a linear combination of the algorithms.
A weighted approach allows for prioritizing the strengths of
each method based on their performance on the dataset.

HSSA(q,s) = α × (Lex(s,q) + Conn(s)) + β × (CoRI(q,s) +
ReDDE(s,q) + Rank − s(s,q)) (1)

where α and β are weights representing the importance of the
static and dynamic approaches, respectively.

The determination of α and β is vital. If, for example, static
approaches (Lex-S and Conn-S) provide consistently reliable
results in a particular dataset, α might be higher than β.
Alternatively, if real-time adaptability and responsiveness are
more crucial, then β might weigh more. To further fine-tune the
hybrid approach:

HSSA(q,s) = α1 × Lex(s,q) + α2 × Conn(s) + β1 ×
CoRI(q,s) + β2 × ReDDE(s,q) + β3 × Rank − s(s,q) (2)

In this expanded equation, each algorithm has its weight
(α1, α2, β1, β2, β3), allowing for granular control over the
integration of each method into the hybrid approach. These
weights can be optimized through several methods. In this
study, empirical analysis was opted by running the HSSA with
different weights on validation data and choosing the weights
that offer the best results.

Algorithm 1: Proposed HSSA Algorithm

Require: List of shards retrieved from

distributed storage systems.

Ensure: Selected shards which are relevant

to the user query.

function hybrid_shard_selection(query):

 relevant_shards = []

 static_selected_shards =

static_shard_selection(query)

 dynamic_selected_shards =

dynamic_shard_selection(query)

 combined_shards =

merge(static_selected_shards,

dynamic_selected_shards)

 relevant_shards =

rank_shards(combined_shards)

 return relevant_shards

function static_shard_selection(query):

 relevant_shards = []

 for shard in shards:

 if shard.meets_static_criteria(query):

 relevant_shards.append(shard)

 return relevant_shards

function dynamic_shard_selection(query):

 relevant_shards = []

 for shard in shards:

 if

shard.meets_dynamic_criteria(query):

 relevant_shards.append(shard)

 return relevant_shards

function merge(list1, list2):

// Combine two lists of shards while

removing duplicates

 merged_list = list1 + list2

 merged_list =

remove_duplicates(merged_list)

 return merged_list

function rank_shards(shards):

// Rank shards based on relevance score

 ranked_shards =

sort_shards_by_score(shards)

 return ranked_shards

IV. RESULTS AND DISCUSSION

The experiment was meticulously designed to ensure the
comprehensive evaluation of HSSA against prevalent shard
selection algorithms. The metrics chosen offered a holistic
view of the algorithm's efficiency, effectiveness, and potential
applicability in real-world scenarios.

A. Performance Analysis of HSSA Considering Latency

Figure 2 shows how different shard selection algorithms
behave in terms of latency (ms) as the maximum number of
shards (K) increases. The x-axis represents the maximum
number of shards, whereas the y-axis denotes latency. It is
evident that as K increases, latency generally tends to rise for
all algorithms. This is expected as a larger value of K implies
that more shards are considered, leading to higher computation
time. However, HSSA consistently outperforms the other
algorithms across all K values, achieving significantly lower
latency. At K = 80, HSSA registers a latency of 21 ms, whereas
the closest competitor, Rank-S, records a latency of 28 ms,
underlining a clear efficiency gain. In contrast, CORI and
Redde peak with latency values of 30 ms at 80 shards, with
Lex-S and Conn-S escalating by 25 ms and 26 ms respectively.

Engineering, Technology & Applied Science Research Vol. 14, No. 2, 2024, 13720-13725 13724

www.etasr.com Dhulavvagol & Totad: Performance Enhancement of a Distributed Processing System using the Novel …

Fig. 2. Latency vs. maximun number of shards.

B. Average Document Score

Figure 3 shows the performance of various shard selection
algorithms evaluated based on the average document score, a
critical metric that signifies the average relevance of documents
retrieved for specific queries. The proposed HSSA stands out
distinctly, consistently outperforming its counterparts across all
K values. For instance, at K = 80, HSSA achieves a score of
9.2, a testament to its efficacy. The underlying hybrid nature of
HSSA, which seamlessly merges the merits of both static and
dynamic shard selection methodologies, plays a pivotal role in
its superior performance. Lex-S, while initiating on a modest
note, exhibits a commendable growth, closely following HSSA
with a score of 8.1 at K = 80. Rank-S, although beginning at
1.2, steadily ascends to 7.8 for K = 80. On the other hand,
CORI and Redde display moderate growth trajectories,
achieving scores of 6 and 6.5, respectively at K = 80. Conn-S,
maintaining a consistent performance gradient, peaks at 7.5 for
K = 80. To encapsulate, while each algorithm presents its
unique advantages and growth trajectories, HSSA emerges as a
clear frontrunner, underscoring its potential to set new
standards in the domain of distributed processing systems.

Fig. 3. Average document score vs. maximum number of shards.

C. Comparative Study Analysis

Figure 4 shows the Mean Average Precision (MAP),
resource utilization cost and the latency for 60 queries on Gov2
dataset. We can observe that the MAP score of the proposed
hybrid shard selection is high whereas the cost and latency are
lower that those of the existing algorithms.

Fig. 4. MAP, total cost, and latency for the compared shard algorithms.

Table I shows the proposed algorithm's performance
analysis compared to existing shard selection methods. The
consistent precision at multiple cut-off points (P@10, P@30,
and P@60) across all assessed K-values of HSSA substantiates
its efficacy in discerning and retrieving relevant documents,
even as the allowable shards burgeon. Its robust hybrid nature,
amalgamating static and dynamic shard selection approaches,
underpins its superior performance by ensuring relevance and
minimized computational overhead.

TABLE I. PERFORMANCE ANALYSIS OF SHARD
SELECTION ALGORITHMS CONSIDERING PRECISION,

COST, AND LATENCY PARAMETERS

Shard

selection

algorithm

No. of

shards

Search cost

P@30 P@60 NDCG@100 MAP CTotal CLatency

Exhaustive

50 0.53 0.47 0.41 0.27 2.87 2.89

100 0.53 0.47 0.41 0.27 2.87 0.96

150 0.53 0.47 0.41 0.27 2.87 0.58

200 0.53 0.47 0.41 0.27 2.87 0.51

CORI

50 0.28 0.3 0.24 0.14 0.12 0.12

100 0.36 0.38 0.32 0.21 0.32 0.21

150 0.42 0.42 0.37 0.25 0.41 0.24

200 0.51 0.48 0.4 0.26 0.48 0.26

ReDDE

50 0.38 0.31 0.25 0.13 0.12 0.12

100 0.47 0.44 0.36 0.23 0.36 0.18

150 0.52 0.46 0.39 0.25 0.47 0.21

200 0.56 0.51 0.43 0.28 0.52 0.28

Rank-S

50 0.34 0.3 0.2 0.16 0.14 0.12

100 0.45 0.34 0.29 0.28 0.38 0.19

150 0.49 0.45 0.34 0.29 0.48 0.21

200 0.51 0.48 0.41 0.4 0.52 0.28

Modified

Rank-S

50 0.34 0.3 0.2 0.16 0.14 0.16

100 0.45 0.34 0.29 0.28 0.25 0.14

150 0.49 0.45 0.34 0.29 0.3 0.18

200 0.51 0.48 0.41 0.4 0.32 0.21

Proposed

HSSA

50 0.3 0.31 0.3 0.28 0.16 0.15

100 0.28 0.3 0.28 0.27 0.2 0.12

150 0.27 0.28 0.26 0.25 0.21 0.15

200 0.23 0.26 0.25 0.24 0.24 0.16

V. CONCLUSION

This paper presents a new approach to the distributed data
processing problem: the Hybrid Shard Selection Algorithm
(HSSA). The existing shard selection algorithms focus on
search efficiency without significantly reducing search
effectiveness. They may suffer from high query latency and
load imbalance when the size of the database is enormous. The
proposed hybrid shard selection approach partitions the

Engineering, Technology & Applied Science Research Vol. 14, No. 2, 2024, 13720-13725 13725

www.etasr.com Dhulavvagol & Totad: Performance Enhancement of a Distributed Processing System using the Novel …

documents into topic-wise shards and uses cluster-skipping
indexes inside each of the shards during the query processing
operation. Only those shards that have relevant documents
matching the user query are searched. This reduces the latency
and enhances the search effectiveness by reducing the resource
utilization cost. We tested the proposed algorithm on the Gov2
dataset partitioned into topic-based shards. The proposed
HSSA algorithm search accuracy and effectiveness are
significantly better than those of the baseline existing shard
selection algorithms. At the same time, the search cost of the
proposed algorithm is lower with optimized resource
utilization. It reduced the search cost by 20% for the Gov2
dataset. The proposed algorithm supports query-specific
minimal shard cut-off estimation, which can be used with
different shard ranking algorithms to satisfy early precision or
high recall goals of information retrieval applications.

REFERENCES

[1] N. Venkateswaran and S. Changder, "Simplified data partitioning in a
consistent hashing based sharding implementation," in TENCON 2017 -

2017 IEEE Region 10 Conference, Penang, Malaysia, Aug. 2017, pp.
895–900, https://doi.org/10.1109/TENCON.2017.8227985.

[2] A. Kulkarni, A. S. Tigelaar, D. Hiemstra, and J. Callan, "Shard ranking

and cutoff estimation for topically partitioned collections," in
Proceedings of the 21st ACM international conference on Information

and knowledge management, New York, NY, USA, Jul. 2012, pp. 555–
564, https://doi.org/10.1145/2396761.2396833.

[3] J. Kamal, M. Murshed, and R. Buyya, "Workload-aware incremental

repartitioning of shared-nothing distributed databases for scalable OLTP
applications," Future Generation Computer Systems, vol. 56, pp. 421–

435, Mar. 2016, https://doi.org/10.1016/j.future.2015.09.024.

[4] H. R. Mohammad, K. Xu, J. Callan, and J. S. Culpepper, "Dynamic
Shard Cutoff Prediction for Selective Search," in The 41st International

ACM SIGIR Conference on Research & Development in Information

Retrieval, New York, NY, USA, Mar. 2018, pp. 85–94,

https://doi.org/10.1145/3209978.3210005.

[5] P. M. Dhulavvagol, V. H. Bhajantri, and S. G. Totad, "Performance
Analysis of Distributed Processing System using Shard Selection

Techniques on Elasticsearch," Procedia Computer Science, vol. 167, pp.
1626–1635, Jan. 2020, https://doi.org/10.1016/j.procs.2020.03.373.

[6] Z. Dai, C. Xiong, and J. Callan, "Query-Biased Partitioning for Selective
Search," in Proceedings of the 25th ACM International on Conference

on Information and Knowledge Management, New York, NY, USA, Jul.
2016, pp. 1119–1128, https://doi.org/10.1145/2983323.2983706.

[7] A. Kulkarni and J. Callan, "Selective Search: Efficient and Effective

Search of Large Textual Collections," ACM Transactions on Information

Systems, vol. 33, no. 4, pp. 17:1-17:33, Dec. 2015, https://doi.org/10.

1145/2738035.

[8] P. M. Dhulavvagol, S. G. Totad, and S. Sourabh, "Performance Analysis
of Job Scheduling Algorithms on Hadoop Multi-cluster Environment,"

in Emerging Research in Electronics, Computer Science and

Technology, Singapore, 2019, pp. 457–470, https://doi.org/10.1007/978-

981-13-5802-9_42.

[9] N. C. Kundur, B. C. Anil, P. M. Dhulavvagol, R. Ganiger, and B.
Ramadoss, "Pneumonia Detection in Chest X-Rays using Transfer

Learning and TPUs," Engineering, Technology & Applied Science

Research, vol. 13, no. 5, pp. 11878–11883, Oct. 2023, https://doi.org/

10.48084/etasr.6335.

[10] E. Rodrigues and R. Morla, "Run Time Prediction for Big Data Iterative
ML Algorithms: a KMeans case study," Oct. 2017.

[11] M. Ali, N. Q. Soomro, H. Ali, A. Awan, and M. Kirmani, "Distributed

File Sharing and Retrieval Model for Cloud Virtual Environment,"
Engineering, Technology & Applied Science Research, vol. 9, no. 2, pp.

4062–4065, Apr. 2019, https://doi.org/10.48084/etasr.2662.

[12] N. Jayakumar and A. M. Kulkarni, "A Simple Measuring Model for

Evaluating the Performance of Small Block Size Accesses in Lustre File

System," Engineering, Technology & Applied Science Research, vol. 7,
no. 6, pp. 2313–2318, Dec. 2017, https://doi.org/10.48084/etasr.1557.

