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ABSTRACT 

Milk is a major food constituent. However, the existing discrepancy between milk demand and supply 

leads to adulteration, which can be dangerous since it causes detrimental effects on health implicating 

lethal diseases. Although classical methods for adulteration detection are very accurate, their 

implementation requires skilled technicians as well as expensive and sophisticated instruments. These 

reasons trigger the need for improved techniques in uncovering adulteration. Urea is a natural component 

in milk and accounts for a substantial share of adulteration in the non-protein content of milk. The current 

research proposes and employs a sensor system utilizing the Electrical Impedance Spectroscopy (EIS) 

method to determine the presence of urea. The classification system was developed using different machine 

learning algorithms. Three classifiers, Extreme Gradient Boosting (XGBoost), Extreme Learning 

Machines (ELM), and Deep Neural Networks (DNN) were considered for various levels of urea 

adulteration. Milk samples were assessed by deploying the developed EIS sensor assembly and the results 

derived were employed in the training of the machine learning algorithms. The estimated classifiers 

displayed promising outcomes, involving up to 98.33% classification accuracies, outshining frequently used 

existing learning approaches like logistic regression. 

Keywords-sensor system development; EIS sensor; milk adulteration; urea detection; deep neural networks; 

classification 

I. INTRODUCTION  

Milk is an essential element in the in dietary intake for both 
children and adults. It is the principal source of calcium and 
protein in individuals’ food. Globally, around 68% of the 
people consume milk on a regular or semi-regular basis. Milk 
adulteration has become a serious socio-economic challenge 
and a universal concern. It has a significant impact on public 
health causing gastrointestinal disorders, nausea, diarrhoea, 
allergies, and, in severe cases, even death [1-3]. Some of the 
commonly used chemical adulterants are high protein 
compounds, such as whey powder, bone meal, dried egg white, 
soy protein, and nitrogen-based chemicals, entailing urea, 
ammonium sulphate, melamine, and dicyandiamide

 
[4]. 

Adulterants, like detergents, sodium-bi-carbonate, sodium 
hydroxide, and salts are mostly reported in the developing 
countries

 
[5]. Preservatives added in the milk are potassium 

dichromate, hydrogen peroxide, salicylic acid, and benzoic 
acid. Vegetable oil is mixed with the milk to replace the fat 
content whereas starch is added to increase solid-non-fat (SNF) 

[6]. Chemicals like borax, boric acid, hydrated lime, formalin, 
sugar, and tertiary nitrogen compounds are adulterated in milk

 

[7].  

Urea is a natural milk constituent that signifies most of the 
non-proteinaceous nitrogen. The permitted level for urea is 
about 70 mg in 100 ml of milk [8]. Near infrared Raman 
spectroscopy, Liquid chromatography, Gas 
Chromatography/Isotope Dilution Mass Spectrometry 
(GC/IDMS), High Pressure Liquid Chromatography (HPLC) 
techniques can quantify the naturally occurring and deliberately 
added urea [9-12]. Kjeldhal and Dumas method, UV-visible 
spectrophotometry, Fourier Transform Infrared Spectroscopy 
(FTIR), and Surface-Enhanced Raman spectroscopy (SERS) 
are useful for protein analysis in the raw milk [13, 14]. These 
analytical techniques are highly sophisticated and have high 
sensitivity. Nevertheless, these tests are confined to 
laboratories, are time consuming, and are not suitable for large-
scale analysis

 
[14]. Many of these tests cannot differentiate 

between milk protein and extraneous added nitrogen contents
 

[13]. As an alternative approach, the fatty acid profile of milk 
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is used in Gas Chromatography through Flame Ionization 
Detection (GC-FID). Capillary zone Electrophoresis (CE) with 
ultraviolet (UV) identification has also been employed for 
classification

 
[15]. VIS (visible) and NIR (Near Infrared) 

spectroscopy can quantify the milk quality [16]. To deal with 
some of the limitations of these analytical methods, novel 
sensing methods are proposed. A capacitive sensor, sensitive to 
electrical properties, gives different dielectric loss angle values 
measured by immersing the sensor in the milk

 
[17]. Electrical 

Impedance Spectroscopy (EIS) deals with the electrical 
impedance of milk and characterizes the ultra-pasteurized milk 
[18]. The EIS technique is unmalicious, its multi-dimensional 
data can be analyzed with statistical or chemometric methods 
for screening of adulteration in milk [19]. Electrochemical 
biosensing is employed for urea detection in milk with three 
electrochemical methods like Cyclic Voltammetry (CV), 
chronoamperometry (CA), and Differential Pulse Voltammetry 
(DPV) [20]. These techniques deliver a rapid response and 
achieve a good Level of Detection (LoD) according to the Food 
Safety and Standard Authority of India (FSSAI) [21]. In recent 
years, many chemometric methods have been devised for 
supervised pattern recognition. Support Vector Machines 
(SVMs) and Artificial Neural Networks (ANNs) aid in the NIR 
spectroscopy analysis. In contrast to traditional analysis, NIR 
spectroscopy is combined by One Class Partial Least Squares 
(OCPLS) classifier employed in the rapid screening of the 
melamine in milk [22]. Chemometric tools with investigative 
analysis and pattern recognition, such as Principal Component 
Analysis (PCA), interpret the data of Partial Least Square 
Discriminant Analysis (PLSDA). All the mentioned techniques 
are applied in the classification of milk / milk powder 
adulteration [23]. Standardized analysis of milk adulteration is 
an expensive and laborious process. Recent techniques, such as 
electronic nose in conjunction with chemometrics are proven to 
be efficient tools regarding the classification of milk [24]. 
Machine Learning (ML) methods like ANNs have better 
performance than classical prediction methods in the dairy 
sector. Differential scanning calorimeter is used to predict the 
nutritional and physicochemical properties with the help of ML 
techniques, like Gradient boosting machine, Random Forest 
(RF), and Multilayer Perceptron (MLP) [25]. These techniques 
are beneficial in the detection of adulterants, such as starch, 
whey, formaldehyde, and urea in the milk [26]. Hyper spectral 
sensing and ML for identification of spectral signatures are 
applied for milk quality detection [27]. A synthesis of pH 
sensitive nanofibers incorporated in nylon-6 solution was 
electrically spun in the milk adulteration and the sensors were 
optimized with SVMs for classification of images captured by 
a smartphone camera [28]. FTIR spectral data for sample milk 
were explored with ML approaches like ANNs and Decision 
Trees (DTs) to characterise the features of contaminated milk 
[29]. EIS data were assessed by Multi-Dimensional Scaling 
(MDS) clustering and visualization algorithms in [30-32]. The 
training data provided to the model are a crucial factor that 
determines how the ML model performs. There are no publicly 
available datasets for milk adulterants. Collecting and curating 
large milk adulterant datasets for the ML algorithm 
development is typically difficult and resource intensive. The 
current paper elaborates the sensing assembly with the EIS 
technique for the generation of training and testing data. Three 

ML algorithms were compared regarding classification 
accuracy. This developed method is rapid and cost effective.  

II. MATERIALS AND METHODS 

A. Electrochemical Impedance Spectroscopy (EIS) Sensor 
Assembly 

Electrochemical cells with different numbers of electrodes 
of various materials can be used to analyze the electrochemical 
behavior of the electrode material and the electrolyte. In the 
simplest format, two electrodes of the same/different material 
are applied with a small alternating electrical signal and are 
dipped in electrolyte solution, which, in this case, is pure and 
urea adulterated cow milk. The output electrical response of the 
cell depends on the conducting properties of the electrodes, 
namely electron kinetics, transfer rate of electrons from the 
electrodes to the electrolyte, and the rate of redox reaction. The 
interaction resistance of the electrodes and electrolyte decides 
the rate of flow of ions and electrons. The impedance values 
are observed by applying AC voltage at different frequencies. 
The electrical impedance, which is a pseudo-linear response of 
the electrochemical cell, acts as an obstacle to the passage of 
the AC current. This response can be represented as: 

� = ��
��

= ��  �	
(�)
�� �	
(��∅) = ��

�	
(�)
�	
(�� ∅)  (1) 

where ��  is the magnitude and ∅  is the phase shift of the 
impedance signal, � and � are the AC potential and current at 
time �, �� and �� represent the maximum signal amplitude, and 
� denotes the radial frequency. The complex form of the same 
response can be written as: 

�(�) = �� ���(�Ø) = ��(��� Ø + � �� ∅) (2)  

There are two standard methods to plot the cell response. In 
a Nyquist plot, the real and imaginary parts of the response are 
ubiquitous. In the Bode plot, the impedance amplitude and 
phase shift are plotted against frequency on a logarithmic scale. 
Figure 1 displays the EIS sensor which forms the 
electrochemical cells. It consists of two parallel rods of SS-316, 
which are dipped in electrolyte, which is milk.  

 

 

Fig. 1.  EIS sensor details. 

AC voltage is applied to the sensor electrodes and the 
output parameter (either impedance or voltage proportional to 
impedance) is monitored. If complexities like the deposition on 
the electrodes, and the kinetics of redox reaction are ignored, 
the electrical equivalent of the sensor is a series-parallel 



Engineering, Technology & Applied Science Research Vol. 14, No. 3, 2024, 14319-14326 14321  
 

www.etasr.com Ghodinde & Chaskar: Detection and Classification of Urea Adulteration in Milk with Deep Neural … 

 

combination of capacitors and resistances. For the 
measurement of EIS sensor response two different methods are 
followed: 

 Impedance measurement with an LCR meter. 

 Phase measurement with a designed electronic assembly. 

B. Impedance Measurement with the LCR Meter 

The EIS sensor employed in the experiment has the 
dimensions mentioned in Figure 1. During measurement, two 
electrodes of the sensor are kept 10 mm apart and are immersed 
in milk by 20 mm [30]. As this is a food application, the sensor 
is not coated with any activating enzymes. The sensor 
impedance in the electrolyte is calculated with the help of 
Aplab to make 4910 LCR meter. Noting the resistance and 
capacitance using (3), impedance for different values of 
frequency can be calculated. This experimentation aids in 
plotting the EIS spectrum for resistance, capacitance, and 
impedance values for a varying frequency.  

C. Phase Measurement with Sensor Assembly 

Figure 2 manifests the experimental setup to solve the 
portability problem and avoid the use of costly instruments like 
LCR meters. Changes of the phase angle (i.e. changes in 
impedance) are converted into voltage signal with the proposed 
electronic circuit [5]. The phase angle and, so, the voltage 
produced, change due to alterations in the urea adulteration in 
milk. The phase shift measurement is the comparison of the 
input AC signal and the output AC signal phase angle. The 
1VAC is applied to the sensor from the function generator, 
Insek make model no. AFG 2225. The sensor output signal is 
connected to the limited gain amplifier circuit and then to the 
open loop gain amplifier. Similarly, the input AC signal of 
1Vpp is also connected in similar fashion. These two signals, 
which are square waves, are then fed to the XOR gate to 
generate voltage corresponding to phase shift after the R-C 
filter. The generated voltage is caused by a phase difference 
between the output and the input signals caused by changes in 
the composition of milk. Figure 3 exhibits a graph of different 
voltage values for various levels of urea adulteration.  

 

 

Fig. 2.  Block diagram of phase angle measurement procedure. 

 

Fig. 3.  Phase angle measurement: urea detection results. 

D. Adulteration Classification Methodology  

The experimental results reveal a typical pattern of the 
output values. This fact encouraged this study to develop an 
ML classification system. The algorithms selected are 
XGBoost, ELM (Extreme Learning Machines), and DNNs 
(Deep Neural Networks). These algorithms are applied for 
some food quality classification, but not for milk. These 
algorithms are employed for the classification of EIS data for 
the first time.  

1) XGBoost Classification Model  

XGBoost is a robust approach commonly used for 
classification and regression models. It mainly depends upon 
the gradient boosting structure [33]. This continuously adds 
novel DTs for fitting values with the remaining multiple 
iterations, enhancing the performance and efficiency of the 
learner. XGBoost is different from gradient boosting as it 
employs a Taylor extension for approximating the loss 
function. The algorithm contains a good trade-off between 
variance and bias, generally utilizing less DTs to attain a high 
precision [34]. Consider a sample set consisting of m features 
and n samples. It is formulated by ! = {(�# , %#)}(|!| =  , �# ∈
)* , %# ∈ )), whereas % denotes the true value and � represents 
the eigen value. The model sums the result of + trees as the last 
prediction values, as follows. 

%,# = ∑.
/01 2/(�#), 2/ ∈ 3    (3) 

where 3 represents the collection of DT models 

3 = 42(�) = 56(7)8(9: )* → <, 5 ∈ )=)        (4) 

where 56(7) represents the weight of the leaf node and 2(�) 

indicates a tree. < specifies the quantity of leaf nodes and 9 is 
the framework of all trees that map the samples to the 
respective leaf nodes. Thus, the prediction values of XGBoost 
are the amount of the values of the leaf node of all the trees 
[30]. The aim of the algorithm is to learn these >  trees, by 
minimizing the succeeding objective function: 

?() = ∑ @(%# , %,#)A
#01 + ∑ B(2/).

/01            (5) 

where @ represents the variation loss among the true value %#  
and the estimated values %,#, the general loss function includes 
the square, exponential, and logarithmic loss functions. B 
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normalization is utilized for setting the penalty of the DTs to 
avoid overfitting. B is formulated by: 

B(2) = C< + 1
D E‖�‖D                (6) 

In the constant term, γ  represents the hyperparameters 
which control the complication of the algorithm and T 
represents the leaf node amount. λ  indicates the penalty 
coefficients of leaf weight ω, which is generally constant. λ 
and ω  determine the complication of the algorithm and are 
generally provided empirically. At the time of training, novel 
trees are included for fitting the residual of the earlier rounds. 
Thus, once the algorithm contains � trees, it can be written in 
the form: 

%,#
() = %,#

(J1) + 2/(�#)                                  (7) 

Substituting (4) to the objective function (2), we get: 

?() = ∑ @ K%# , %,#
(J1) + 2(�#)L +A

#01 B(2/)     (8) 

XGBoost performs the Taylor extension of the objective 
function comprising three terms: 

?() ≈   
∑ N@O%# , %,(J1)P + Q#2(�#) + 1

D ℎ#2
D(�#)SA

#01 + B (9) 

where Q#  represents the initial derivatives and ℎ#  denotes the 
second derivative of the loss function. The residuals among the 

predictive scores %,(J1)  and %#  do not influence the objective 
function optimization, hence they are eliminated: 

?T() = ∑ [Q#2#(�#) + 1
D ℎ#2#

D(�#)]A
#01 + B(2/)  (10) 

The iterations of the tree algorithm are converted to the 
iterations of the leaf node, and the estimated optimum leaf node 

scores are: WX
D/(ZX + E). By replacing the optimum value with 

the objective function, the following last objective function is 
attained: 

[\� = 1
D ∑ ]^

_

`^�a +=
X01 C<                (11) 

Generally, XGBoost adds standardization to the normal 
function due to its low computational complexity.  

2) ELM Classification Model  

This subsection briefly discusses the typical ELM based 
classification model [35, 36]. ELM was initially developed for 
the SLFN model. For b random distinctive samples (�# , �#), let 

�# = [�#1, �#D, … , �#d]= ∈ )d  and �# = [�#1, �#D, … , �#*]= ∈ )* , 

the typical SLFNs using be  hidden nodes and activation 
function Q(�) are arithmetically modelled as follows: 

∑ f#QO�XPge
#01 = ∑ f#QO5# ⋅ �X + \#Pge

#01 = �X  (12) 

where � = 1, … , b , 5# = [5#1, 5#D, … , 5#g]=  represents weight 
vectors linking the ith

 hidden and input nodes, f# =
[f#1, f#D, … , f#*]=  denotes the weight vectors linking the ith

 
hidden and the output nodes, and \# signifies the thresholding 
of the ith

 hidden node. The SLFN using b hidden nodes with 
Q(�) activation function was able to estimate the b instances 

with zero error [35], implying that ∑ ‖�X − �X
ge
X01 ‖ = 0 , i.e., 

there are β	, 5# , \#  such that: 

∑ f#QO5# ⋅ �X + \#Pge
#01 = �X  , � = 1, … , b     (13) 

Zf = <                                                 (14) 

Let:   

Z = [ℎ(�1)  ⋮  ℎ(�g) ] = [Q(51 ∙ �1 + \1) ⋯  Q(5ge ⋅ �1 +
\ge) ⋮ ⋱ ⋮  Q(51 ∙ �g + \1) ⋯  Q(5ge ⋅ �g + \ge) ]g×ge  (15) 

f = rf1
=  ⋮  fge

=  sge×*t u < = [�1
=  ⋮  �g

=  ]g×*      (16) 

where Z is the SLFN hidden layer output matrix and the �vw 

column of Z  represents the �vw  output of the hidden node 
regarding the input �1, �D, … , �g . It is shown in [35] that once 
the activation function Q  is substantially distinguishable in 
some intervals, the hidden layer parameter is arbitrarily 
produced. Hence, (11) turns into a linear method and the f 
output weight is evaluated by: 

fx = ZyT                                            (18) 

Therefore, the ELM first arbitrarily produces the parameter 
hidden node and then systematically computes the output 
weight f and the hidden layer output matrix [37]. The former 
prevents some longer training process wherever the SLFN 
hidden layer needs to be adjusted. In comparison with the 
conventional ML models, the ELM achieves good 
generalization efficiency at a fast-learning speed with less 
human involvement. 

3) The DNN Classification Model  

An AE is a feedforward ANN which includes one output, 
one input, and one hidden layer. In the AE, the input and output 
dimensions are equal. The training of the AE takes place by 
embedding the input space to the code (feature) space where 
the dimensions are usually lesser. The AE tries to give a good 
demonstration of the input vectors by substituting them with a 
suitable code [38]. The M-dimension input vector is determined 

by �(1), �(D) … �({)  whereas the number of neurons in the 
hidden layer is b. T denotes the amount of input vectors. AE’s 
left side is known as the encoder, where the hidden layer is the 
output of the AE and the input is the input of the AE. The 
encoder converts a provided input vector to a code, aiming to 
an effective depiction of the input vector [38]. The relationship 
between the output and the input of the encoder is equated as 
� = Q�(|, \; �). Furthermore, it can be determined by: 

� = 2(\ + |=�)              (19) 

where 2  represents the activation function of the encoder 
neuron. The AE's right side is the decoder, where the output �, 
represents the output of the AE and the input is the output of 

the hidden layer (c). The decoder using the |�  weight matrix 

and the vector \�  converts the provided code vectors to the 
inventive input vectors. The encoder’s output and input 
relationships can be given by: 

�, = 2xO\� + |� =�P              (20) 
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where 2x  represents the activated R function of the decoder 
neuron. The relationship between the output and the input of 

the decoder can be represented as �, = Q�(|� , \�; �). The output 

of the AE is formulated as �, = Q��(|, \, |� , \�; �) . The 
objective function of the AE can be determined by: 

������� = �= + f ∑ +?(���,XPg
X01   (21) 

The above-mentioned cost function consists of two parts. 
The initial part �=  is determined below and is an objective 
function of an ANN [36], whereas f  represents the sparsity 
penalty weight seen in (18): 

�= = 1
= ∑ �/

D=
/01 + a

D O‖|‖ + ‖|� ‖P  (22) 

Let us consider E to be a standardization term utilized for 
preventing overfitting. The error vectors are the variation 
among the desirable and the original output: 

�/ = ‖�(/) − �,(/)‖               (23) 

whereas > = 1,2, … <. It is easier to observe that �= denotes an 

internal weight function of the AE like �= = ���(|, \, |� , \�). 
The next portion of (18), called Kullback‐Leibler divergence 

+?(�‖�,X), can be provided by: 

+?(�‖�,X) = �@�Q �
��^

+ (1 − �)@�Q 1J�
1J��^

  (24) 

�,X = 1
= ∑ 2XO�(#)P=

#01        (25) 

The common training process of DNN can be implemented 

with a dataset where {�(1), �(D), … , �(=)}  denote the input 

vector and {%(1), %(D), … , %(=)}  denote the target value 
demonstrating the class label related to the respective input 
vector. 

III. EXPERIMENTAL VALIDATION  

The proposed model’s performance is validated with the 
milk data and the results are investigated in terms of different 
measures, namely accuracy(����), precision(�)�g), recall 
()���), F-measure (3*������), kappa, Area Under the Curve 
(AUC), and ROC. In addition to this, a brief comparative 
analysis of the three proposed models with the existing ones 
takes place to highlight the improved performance of the 
proposed model. The simulation setup, dataset details and 
results are elaborated in the following sections. 

IV. IMPLEMENTATION DETAILS 

The proposed model is implemented on a PC i5-8600k, 
MSI Z370 A-Pro, GeForce 1050 Ti 4GB, 16 GB RAM, and 1 
TB HDD. This model is simulated in Python 3.6.5 with 
tensorflow-gpu 2.2.0, pandas, pyqt5, prettytable, tqdm, 
xgboost, scikit-elm, matplotlib, seaborn, scikit-learn, dask, 
dask[distributed], openpyxl, and numpy 1.19.5 packages. In 
addition, the recommended model was tested using a dataset 
that includes numerous instances under 6 class labels, namely 
No urea (Class 0), 4 mg urea (Class 1), 8 mg urea (Class 2), 12 
mg urea (Class 3), 16 mg urea (Class 4), and 20 mg urea (Class 
5). The dataset contains a set of 10 samples under each class. 
The attributes involved in the dataset are frequency, voltage, 
resistance, capacitance, reactance, and impedance. 

V. RESULTS 

A. Result Analysis of the XGBoost Model  

The confusion matrix of the XGBoost technique is shown 
in Figure 4. The XGBoost model has classified 9 samples into 
Class 0, 10 samples into Class 1, 10 samples into Class 2, 10 
samples into Class 3, 9 samples into Class 4, and 10 instances 
into Class 5. The ROC analysis of the XGBoost model on milk 
data classification is portrayed in Figure 5. The results show 
that the XGBoost model has obtained a high ROC of 0.99, 
1.00, 1.00, 1.00, 1.00, and 1.00 on sample classification. From 
these values, it is ensured that the XGBoost model has properly 
classified the dataset.  

 

  

Fig. 4.  Confusion matrix of the XGBoost model. 

 
Fig. 5.  ROC analysis of the XGBoost model on milk classification. 

B. Result Analysis of the ELM Model 

Figure 6 presents the confusion matrix produced by the 
ELM model.  

 

 

Fig. 6.  Confusion matrix of the ELM model. 
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Fig. 7.  ROC analysis of the ELM model on milk classification. 

It demonstrates that the ELM model has classified 10 
samples into Class 0, 9 samples into Class 1, 10 samples into 
Class 2, 10 samples into Class 3, 10 samples into Class 4, and 8 
samples into Class 5. The ELM model’s ROC analysis is 
presented in Figure 7 with values that are found to be 
considerably high. 

C. Result Analysis of the DNN Model 

The confusion matrix generated by the DNN model is 
depicted in Figure 8. The DNN model has proficiently 
categorized 10 samples into Class 0, 9 samples into Class 1, 10 
samples into Class 2, 10 samples into Class 3, 10 samples into 
Class 4, and 10 samples into Class 5. The ROC analysis of the 
DNN model is showcased in Figure 11. The results indicate 
that the DNN model has led to an increased ROC of 1.00, 1.00, 
1.00, 1.00, 1.00, and 1.00 on the classification of the samples. 
These ROC values ensure that the DNN model has 
accomplished higher ROC values than the XGBoost and ELM 
models. Figure 9 displays the accuracy graph of the DNN 
approach on the test milk classification data. It shows that 
DNN model’s training and validation accuracy increase when 
the epoch count increases. It should be also noted that the 
validation accuracy is found to be slightly higher than the 
training accuracy.  

The loss graph analysis of the DNN technique on the test 
milk dataset is portrayed in Figure 10. It points out that the 
DNN model has led to reduced training and validation loss, 
with the former being considerably lower than the latter. 

 

 

Fig. 8.  Confusion matrix of the DNN model. 

 

Fig. 9.  Accuracy graph analysis of the DNN model 

 

Fig. 10.  Loss graph analysis of the DNN model. 

 
Fig. 11.  ROC analysis of the DNN model on milk classification. 

VI. DISCUSSION 

A comparative study of the accuracy percentage of the 
developed models with some earlier used models (specialized 
in food applications) is provided in Table I. The accuracy 
analysis of the different models manifests that the RF and 
Logistic Regression (LR) models obtained lower performance 
over the other techniques with ����  of 81% and 72.80%. 
Besides this, the Adaboost technique has accomplished a 
slightly enhanced ����  of 92.60%. Moreover, the ELM and 
XGBoost techniques attained a moderately higher ����  of 
95% and 96.67% respectively. However, the DNN model has 
demonstrated the best outcome with the highest ����  of 
98.33%.  

The classification result analysis of the considered three 
classification models in terms of different metrics is offered in 
Table II. The results exhibited that the ELM model had 
showcased ineffective outcomes over the other techniques with 
minimal classification results. At the same time, the XGBoost 
model had displayed reasonably closer classification results 
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over the ELM model. However, the DNN model had surpassed 
the other two classifiers. 

TABLE I.  ACCURACY COMPARISON WITH EARIER USED 
MODELS OF THE PROPOSED MILK CLASSIFICATION  

Model Accuracy (%) 

DNN 98.33 

ELM 95.00 

XGBoost 96.67 

RF 72.80 

LR 81.00 

Adaboost 92.60 

TABLE II.  CLASSIFICATION RESULT ANALYSIS OF THE 
CONSIDERED MODELS   

Methods DNN (%) ELM (%) XGBoost (%) 

���� 98.33 95.00 96.67 

�)�g 98.48 96.15 96.97 

)��� 98.33 95.00 96.97 

Fmeasure 98.33 95.10 96.66 

KAPPA 98.00 94.00 96.00 

AUC 99.87 98.87 99.70 

 

From the values in Table II, it is evident that the DNN 
model has attained an enhanced outcome as compared to the 
ELM and XGBoost models. After studying the aforementioned 
results, it can be concluded that the DNN model has the ability 
to outperform the other methods on milk data classification due 
to its automated feature engineering process. Thus, the DNN 
model could be utilized as a proficient technique in 
determining milk quality in real world applications. 

VII. CONCLUSION 

The current paper presented a novel hardware and software 
approach in the detection of urea adulteration in cow milk. It 
uses Electrochemical Impedance Spectroscopy (EIS) and 
machine learning techniques for classification. The sensor 
setup contains an EIS sensor and a signal conditioning circuit, 
which converts the impedance of the sensor into voltage. The 
impedance variations that differ in the phase angle of the output 
signal of the sensor, aid in the identification of milk mixed with 
varying urea percentages. The frequency obtained in the 
detection process was confirmed and the transformation of the 
degree of adulteration onto resistance, impedance, and phase 
angle were examined by using the derived technique. In 
previous works, urea quantification in water was carried out by 
modeling the EIS sensor for its electrical circuit in the 
LEVMW software. Another research where similar sensors 
were deployed for detection of fat percentage [5] classified the 
milk with the help of the EIS analyzer software. The EIS sensor 
assembly with the signal conditioning circuit is a novel 
contribution on the hardware side. 

The utilized classification models (XGBoost, ELM, and 
DNN) have not been previously used in dairy or food 
applications. This paper compares these models with other 
known models like Adaboost and Random Forest, which have 
been utilized in earlier works and food applications. The 
implemented XGBoost, ELM, and DNN exhibited better 
accuracy values than the other models. Among the deployed 
models, DNN exhibited the best accuracy of 99%. Thus, a 
simple sensor system along with these classification models 

permits urea detection up to 70 mg per 100 ml of milk, 
accomplishing a Level of Detection (LOD) in accordance with 
the FSSAI standards. Finally, the portable system design has a 
simple electronic circuitry and promotes low cost. 
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