
Engineering, Technology & Applied Science Research Vol. 14, No. 2, 2024, 13547-13553 13547

www.etasr.com Alhomoud et al.: Model-based Design of a High-Throughput Canny Edge Detection Accelerator on Zynq..

Model-based Design of a High-Throughput

Canny Edge Detection Accelerator on Zynq-

7000 FPGA

Ahmed Alhomoud

Department of Computer Sciences, Faculty of Computing and Information Technology, Northern Border

University, Saudi Arabia

aalhomoud@nbu.edu.sa

Refka Ghodhbani

Department of Computer Sciences, Faculty of Computing and information Technology, Northern Border

University, Saudi Arabia | Electronics and Micro-Electronics Laboratory, Faculty of Sciences, Monastir

University, Tunisia

refka.ghodhbani@nbu.edu.sa

Taoufik Saidani

Department of Computer Sciences, Faculty of Computing and information Technology, Northern Border

University, Saudi Arabia | Electronics and Micro-Electronics Laboratory, Faculty of Sciences, Monastir

University, Tunisia

taoufik.saidan@nbu.edu.sa (corresponding author)

Hafedh Mahmoud Zayani

Department of Electrical Engineering, College of Engineering, Northern Border University, Saudi Arabia

hafedh.zayani@nbu.edu.sa

Yahia Said

Department of Electrical Engineering, College of Engineering, Northern Border University, Saudi Arabia

yahia.said@nbu.edu.sa

Mohamed Ben Ammar

Department of Information Systems, Faculty of Computing and Information Technology, Northern

Border, Saudi Arabia

mohammed.ammar@nbu.edu.sa

Jihane Ben Slimane

Department of Computer Sciences, Faculty of Computing and Information Technology, Northern Border

University, Saudi Arabia

jehan.saleh@nbu.edu.sa

Received: 16 February 2024 | Revised: 24 February 2024 and 25 February 2024 | Accepted: 27 February 2024

Licensed under a CC-BY 4.0 license | Copyright (c) by the authors | DOI: https://doi.org/10.48084/etasr.7081

ABSTRACT

This paper presents a novel approach for fast FPGA prototyping of the Canny edge detection algorithm

using High-Level Synthesis (HLS) based on the HDL Coder. Traditional RTL-based design methodologies

for implementing image processing algorithms on FPGAs can be time-consuming and error-prone. HLS

offers a higher level of abstraction, enabling designers to focus on algorithmic functionality while the tool

automatically generates efficient hardware descriptions. This advantage was exploited by implementing

Engineering, Technology & Applied Science Research Vol. 14, No. 2, 2024, 13547-13553 13548

www.etasr.com Alhomoud et al.: Model-based Design of a High-Throughput Canny Edge Detection Accelerator on Zynq..

the Canny edge detection algorithm in MATLAB/Simulink and utilizing the HDL Coder to automatically

convert it into synthesizable VHDL code. This design flow significantly reduces development time and

complexity compared to the traditional RTL approach. The experimental results showed that the HLS-

based Canny edge detector achieved real-time performance on a Xilinx FPGA platform, showcasing the
effectiveness of the proposed approach for fast FPGA prototyping in image processing applications.

Keywords-FPGA; high-level synthesis; HDL coder; Canny edge detection; image processing; fast prototyping

I. INTRODUCTION

Canny edge detection is a fundamental image processing
technique widely used in computer vision applications. While
software implementations offer flexibility, FPGAs are
preferred for real-time and resource-constrained applications
due to their parallel processing capabilities. However,
traditional RTL-based design methodologies for FPGAs can be
time-consuming and require expertise in hardware description
languages and manual optimization techniques. To address this
challenge, High-Level Synthesis (HLS) has emerged as a
promising approach to accelerate FPGA design by enabling
algorithm implementation in familiar C/C++ or
MATLAB/Simulink environments [1-2].

In the realm of computer vision, where raw pixels
transform into meaningful insights, edge detection reigns as a
fundamental image processing technique [3-4]. It acts as a
cartographer, meticulously tracing the boundaries between
objects, shapes, and textures, revealing the very essence of a
scene. Within this domain, Canny edge detection stands as a
beacon of precision and efficiency, with its algorithm
meticulously crafting intricate edge maps with unparalleled
clarity [3-5]. However, harnessing the power of Canny edge
detection for real-time applications often presents a
conundrum. Although software implementations offer
flexibility, their computational demands can lag behind the
lightning-fast pace of real-time processing. FPGAs boast
parallel processing prowess, as their ability to crunch numbers
at blistering speeds, which makes them ideal candidates for
image processing tasks, particularly when latency matters [6].
Unlocking the full potential of FPGAs for Canny edge
detection can be a laborious endeavor. Traditional RTL-based
design methodologies, while offering fine-grained control,
demand expertise in hardware description languages and
meticulous hand-coding, often extending development
timelines and introducing the risk of human error [4].

High-Level Synthesis (HLS) is a revolutionary approach.
Bypassing the intricacies of RTL, HLS can express the Canny
edge detection algorithm in familiar environments, such as
MATLAB/Simulink, leveraging intuitive visual blocks and pre-
built image processing libraries. HDL Coder, the interpreter
within HLS, transforms this high-level description into
synthesizable VHDL or Verilog code, effortlessly bridging the
gap between algorithm and hardware [7]. This study showcases
the transformative power of HLS for fast FPGA prototyping of
Canny edge detection, by proposing a streamlined design flow,
charting a course from algorithm modeling in
MATLAB/Simulink to real-time edge detection on an FPGA
platform. This research aims to evaluate the advantages of real-
time performance, resource efficiency, and development time
of the proposed approach, contrasting it with the traditional

RTL paradigm [7]. More than just entailing technical
advancements, this investigation unlocks exciting possibilities
for the future of real-time image processing applications. From
autonomous vehicles to medical imaging systems that reveal
previously unseen details, the swift and precise edges identified
by the proposed implementation of HLS-powered Canny edge
detection hold the promise of transforming diverse fields with
their clarity and insight [4].

II. EMBEDDED IMAGE AND VIDEO SYSTEM
DESIGN BASED ON ZYNQ7000

The system used Zedboard, a Zynq-7000 development
board, an Avnet FMC-HDMI-CAM module, and a Python
1300-C camera [8]. FMC stands for FPGA Mezzanine Card, a
standardized interface that facilitates high-speed connections
between FPGAs and peripheral devices [9]. This function
enabled seamless integration of all cards equipped with the
particular interface. UART communication between the system
and a computer allowed for monitoring via the serial port, but
the system functioned autonomously, independently of a
computer connection. An integrated system consisting of a
camera and a display constitutes a comprehensive vision
system, facilitating the capture of video data. The system can
process the data in real-time, depending on the specific
application it is designed for. This study proposes an embedded
architecture for the acquisition of video and processing
modules in the design of a vision system, using a platform-
based design method. This enables the seamless transmission
of live video data from the sensor to the monitor using DDR3
memory and FPGA-based hardware processing. Figure 1
shows the design of the proposed system. The system consists
of a VITA-2000 image sensor, an FMC module [10], the Xilinx
ZedBoard platform, and an HDMI monitor to display the video
output. These boards facilitate the software and hardware
development of applications that are built on the Xilinx circuit
from the Zynq family. The circuit utilizes an All-
Programmable System-on-Chip (AP SoC) design, with a dual-
core ARM™ Cortex-A9™ processor coupled with a Xilinx
FPGA. This platform provides all the necessary resources to
design a multitude of high-efficiency applications in the
domains of video processing, motor control, software
acceleration, and even system creation using embedded Linux
[2]. The Zedboard has buttons and switches that allow the
developer to select the desired filter and other parameters.
Figure 1 displays the overall structure of the system. The heart
of the system used in this study is the Zedboard development
board, featuring a Zynq-7020 series SoC and various
peripherals [10]. High-speed Advanced Expandable Interface
(AXI) buses seamlessly bridge the gap between the CPU and
FPGA, enabling their synergistic cooperation for dedicated
tasks and defying their usual segregation.

Engineering, Technology & Applied Science Research Vol. 14, No. 2, 2024, 13547-13553 13549

www.etasr.com Alhomoud et al.: Model-based Design of a High-Throughput Canny Edge Detection Accelerator on Zynq..

Fig. 1. General schematic of the designed system.

A. Model Design Based on HDL Coder Methodology

Model-Based Design (MBD) has the power to virtually
build and test systems before constructing them in the real
world, a concept explored in this study, focusing on the
versatile HDL Coder from MathWorks. Although LabVIEW
from National Instruments offers another MBD option, it lacks
dedicated support for vendor-specific HLTs [11-12]. In contrast
to these specialized HLTs optimized for specific hardware,
such as filter chains through hardwired blocks, HDL Coder
takes a holistic approach by analyzing the entire design and
prioritizing functionality over platform limitations. From
MATLAB functions, Simulink models, and Stateflow charts, it
effortlessly generates portable and synthesizable Verilog and
VHDL code, unlocking a world of possibilities from FPGA
programming and ASIC prototyping to hardware/software co-
design on platforms such as Xilinx Zynq and Intel SoC
(complete with generated HDL and C code for embedded
CPUs) [1]. HDL Coder goes beyond mere code generation, as
its workflow advisor streamlines FPGA programming for
platforms such as Xilinx, Microsemi, and Intel. The designer
can gain granular control over the HDL architecture and
implementation, identifying critical paths and estimating
resource utilization. Furthermore, seamless traceability
between the Simulink model and the generated code enables
rigorous verification, even meeting the strict standards of DO-
254 and beyond [7].

Unlike vendor-specific tools that are burdened with a
plethora of detailed configurations, often requiring deep
hardware knowledge, HDL Coder takes a simpler approach. Its
streamlined interface drastically reduces design time and makes
it the go-to solution for rapid FPGA prototyping. Whether
designing intricate filter chains or complex SoC systems, HDL
Coder provides the ability to explore, refine, and deploy
designs with unprecedented efficiency and flexibility [2]. In
essence, HDL Coder is not just a tool but a design philosophy.
Mathworks offers two workflows for Zynq programming:
Embedded Coder Hardware Support Package and SoC
Blockset. Although both allow communication between Zynq's
FPGA and ARM processors, their model construction and
capabilities differ [7].

SoC Blockset uses separate Simulink models for each
component (FPGA/processor), qualifying fine-grained control.
A third model is required for communication, explicitly
defining interfaces. This approach allows advanced features,
such as direct memory access and interrupts, but can be
unreliable for tasks within tight timeframes (<100 μs).

Mathworks support confirms this limitation, making it less
ideal for power electronics prototyping [13-17]. The Embedded
Coder Hardware Support Package implements all code (FPGA
and processor) in a single Simulink model, simplifying model
management and communication. While basic communication
channels are available, the trade-off is less flexibility and
control.

Before building the physical components of the system, it is
recommended to create a prototype design that can capture
camera images [13, 15]. Following the correct acquisition of
the camera picture, the filters are created and simulated within
the Matlab/Simulink environment. The filters are then enclosed
as regular IP blocks with the HDL Coder utility [16]. To
incorporate IP blocks into the camera reference design, they
need to be integrated into the Vivado environment. The Xilinx
SDK environment was eventually used to write the system's
software. Subsequently, the required drivers were incorporated
into the system, culminating in its final configuration [11].
Building a robust system requires careful planning and
execution. Here is how the referenced work tackled it:

1. Reference design: Before stepping into hardware, a
blueprint was established, which is a reference design that
encompasses camera image recording capabilities [10].
This ensured that all components and functionalities were
clearly defined before physical construction.

2. Filter design and simulation: Capturing quality images is
crucial. Therefore, the next step involved designing and
simulating filters within the Matlab/Simulink environment.
These filters, which act as image-processing algorithms,
were fine-tuned to enhance the captured footage [5].

3. IP block encapsulation: To seamlessly integrate the
designed filters with the hardware, they were packaged as
reusable IP blocks using HDL Coder. This standardized
format facilitated easy incorporation into the camera
reference design within the Vivado environment [7].

4. Software development and integration: The system's
software was then developed using the Xilinx SDK.
Finally, essential drivers were added, finalizing the system's
configuration and making it ready for action [10].

5. Visualization: Although diagrams and figures were not
provided in the original text, incorporating visuals related to
specific stages of the workflow could further enhance the
reader's understanding. For example, an image depicting the
reference design or a block diagram illustrating the filter

Engineering, Technology & Applied Science Research Vol. 14, No. 2, 2024, 13547-13553 13550

www.etasr.com Alhomoud et al.: Model-based Design of a High-Throughput Canny Edge Detection Accelerator on Zynq..

development and integration process could be helpful
additions.

The overwhelming majority of contemporary chip systems
use integrated processors. When designing a chip with
numerous ICs, it is necessary to install additional software or
firmware to handle the concurrent operations of the
microprocessors, DSPs, memory, and personalized logic. With
the use of a common functional specification, automated HLS
allows architects and designers to explore different algorithmic
and implementation choices, and evaluate and enhance the
tradeoffs associated with space, power, and performance. The
implementation of commercial HLS technology is now a more
plausible prospect due to advancements in RTL synthesis
techniques. Prominent semiconductor design companies,
including IBM, Motorola, Philips, and Siemens, have presented
exclusive software tools. Leading Electronic Design
Automation (EDA) companies support a range of HLS
products. An instance of developing RTL implementations
using behavioral HDL code and linking to subsequent tools is
demonstrated by Synopsys's "Behavioral Compiler" tool, which
was introduced in 1995 [16]. Other comparable tools include
Mentor Graphics' Catapult HLS [4] and Cadence's Stratus High
Level Synthesis [18].

B. Development Workflow Setup

Development requires the appropriate configuration of
many tools and components. Figure 2 presents the general
configuration procedure. The following software is required to
transfer control algorithms built in Matlab/Simulink to Zynq-
based platforms:

 Simulink/HDL coder and embedded coder tools in
Matlab/Simulink.

 Xilinx Vivado, using the free Webpack if the selected board
is supported, else System Edition is advised.

This study employed Matlab R2018b and Vivado 2017.4
[7]. The System Generator tool is unable to officially support
the necessary version of Matlab for HDL Coder compatibility
when utilizing Vivado System Edition. Hence, it is imperative
to manually adjust the list of compatible versions to ensure its
compatibility with Matlab. As it will immediately establish a
connection to Xilinx tools, it is recommended that Matlab be
started using the System Generator tool when Vivado System
Edition is being utilized. On the other hand, the HDL
generation tool necessitates manual configuration every time
Matlab is initiated by using the command
hdlsetuptoolpath('ToolName', 'XilinxVivado', 'ToolPath',
'C:\Xilinx\Vivado\2017.4\bin\vivado.bat'). The following
Matlab Add-Ons must be installed from the Add-On Explorer:

 The HDL Coder Extension packages for the FPGA Zynq-
7000 Platform.

 Xilinx Zynq-7000 Platform Embedded Coder Support
package.

 A compatible compiler (MinGW-w64 is a recommended
option, available for direct installation from the Toolbox
Add-On Explorer).

Fig. 1. System design workflow setup.

III. DESIGN AND SIMULATION OF CANNY EDGE
DETECTION IN SIMULINK HDL CODER

A. Conventional Canny Edge Detection Algorithm

The Canny edge detection algorithm is highly popular for
its robust performance in detecting edges, particularly in the
presence of visual noise. Its demanding computing
requirements result in the need for high clock frequencies and
substantial power consumption on typical microprocessor
architectures, especially when real-time constraints must be
satisfied. Figure 3 illustrates the stages of the Canny edge
detector to identify the texture of edges. The Canny edge
detector uses a Gaussian blur mask to effectively smooth and
filter out noise. The next step involves convolving the picture
utilizing partial derivatives of a 2D Gaussian function, Gx and
Gy, to obtain the edge direction edge Angle matrix and the
strength matrix G. The G and edge Angle matrices are
employed in the nonmaxima suppression operation. The
determination of the local maximum involves a comparison of
the pixel with its neighboring pixels in the direction of the
gradient. The pixel is removed if it does not have a local
maximum gradient magnitude. Along the gradient's direction, a
comparison is performed between the real pixel and its
neighbors to eliminate any extraneous pixels that are not part of
the edge. Hysteresis thresholding is the final stage, which
employs a high and a low threshold. Edge pixels with
intensities exceeding the high threshold are classified as strong,
while edge pixels with intensities below the low threshold are
suppressed. Edge pixels falling between the two thresholds are
classified as weak. These actions will result in a subtle
boundary in the resulting image.

Canny devised a method to obtain an ideal edge detector for
handling step edges that are distorted by white Gaussian noise.
Figure 3 provides a concise overview of the initial Canny edge
detection algorithm [5] for an input image with dimensions
M×M and each pixel represented by n bits. The process consists
of the following stages:

1. Using gradient masks, convolve each pixel position to
determine the horizontal and vertical gradients Gx and Gy.

Engineering, Technology & Applied Science Research Vol. 14, No. 2, 2024, 13547-13553 13551

www.etasr.com Alhomoud et al.: Model-based Design of a High-Throughput Canny Edge Detection Accelerator on Zynq..

2. Calculate the magnitude G and the direction θG of the
gradient at every pixel position.

3. NMS: Restore crisp edges in an image with blurred edges
and eliminate minima while keeping local maxima in a
gradient image.

4. Threshold calculation involves determining potential edges
using both high and low thresholds. These thresholds are
derived based on the histogram of the gradient magnitude
of the entire image.

Hysteresis thresholding generates a smooth edge map by
comparing the gradient magnitude values of each pixel with
predefined low- and high-threshold values. This process
eliminates border pixels resulting from noise and fluctuations
in lighting conditions.

B. Simulink HDL Coder Design

This study applied filters within the HDL Coder
environment to design the video system. Each HDL Toolbox
block was designed individually. Initially, MATLAB was
transformed into a subsystem. After performing simulations,
the HDL work IP blocks that were compatible with the flux
advisor were transformed. Four unique filter designs, all of

which can be simultaneously activated in the system, were
consolidated into two IP blocks to achieve a size reduction. By
doing so, it is possible to simultaneously activate all filters
without adding any complication to the design [7].

C. Design Synthesis and Results

Once finished, each filter system was individually
transformed into HDL code using the Matlab/Simulink HDL
Coder and HDL Workflow Advisor add-on. The Matlab and
Simulink systems were transformed into HDL code and the
required settings were configured throughout the conversion
procedure. The system was transformed into an IP block within
the Vivado Suite Camera reference. This IP block was
connected to the design. Consequently, filter systems were built
sequentially on the Zedboard. In the future, the system will
have reduced on-chip components to optimize space utilization
and streamline software complexity. The IP blocks that were
first built were redesigned and integrated into Simulink [8].
The edge detection algorithm was integrated into a unified IP
block. The second IP block embedded sharpening and median
filters. The system was reassembled and all necessary
connections were made. Figure 4 portrays the schematic
representation of the fully implemented system, indicating the
created IP blocks.

Fig. 2. Block diagram of the Canny edge detection algorithm.

Fig. 3. HDL coder for Canny edge detector.

D. Simulation Results

The Vivado xSim tool was utilized to simulate the non-
synthesisable testbench employing the generated VHDL RTL
code. The reference and recommended approaches yield
identical pixel values. Additionally, it was discovered that they
were indistinguishable from the high-level simulation results
achieved using MATLAB on the optimal bit-width model. This
was demonstrated by performing a comparison of the resulting
photographs generated by both paths utilizing the identical
input image. Additionally, the quantization error that resulted
from selecting the narrowed "optimal" signal widths was
contrasted with that of the MATLAB-based double precision

model. This was achieved using the "FPGA in the Loop" co-
simulation feature of the MathWorks' HDL Verifier [7].

E. Synthesis Results

Table I presents the allocation of system resources. A
maximum of 12% of the available resources were utilized.
Furthermore, it is important to mention that no optimization
efforts were undertaken in this context. The system's primary
clock speed was set at 150 MHz, while the camera and image
processing blocks operated at a pixel clock speed of 110 MHz.
These findings demonstrate that the proposed image processing
system is capable of functioning at an image resolution of
1280×1024 with a refresh rate of 60 Hz, allowing it to process

Engineering, Technology & Applied Science Research Vol. 14, No. 2, 2024, 13547-13553 13552

www.etasr.com Alhomoud et al.: Model-based Design of a High-Throughput Canny Edge Detection Accelerator on Zynq..

60 images per second [11]. This shows that the system is
capable of satisfying the operational requirements in real-time.

1) Implementation of the System Software

Once the hardware design was completed, the required
software was developed in parallel with the hardware. The
design was executed in the C programming language using the
Vivado Suite SDK tool. The software prepares and runs the IP
blocks and modifies the filter and input-output unit parameters.

This technology allows for real-time adjustment of filters, and
numerous filters can be simultaneously active. The Zedboard's
system functions can be accessed via its built-in buttons and
switches. Moreover, the LEDs on the Zedboard can be engaged
to monitor the functioning status of the filters. Multiplexer
logic was put into service to configure the system to select the
appropriate filter depending on the Zedboard switches' states.
The system was programmed to automatically activate the
appropriate filter according to the condition of the keys.

TABLE I. PROPOSED CANNY EDGE DETECTION SYSTEM'S IMPLEMENTATION RESULTS

Bit

Depth

LUT-FF

Pairs

LUTs as

Logic

LUTs as

Memory

Slice

Registers
fmax FPS at 1920×1080

Number 3x8 4740 2380 1930 1920 190MHz 89

Fig. 4. RTL design of the proposed system based on Zynq 7000.

IV. CONCLUSION

This study uses a model-based real-time image processing
system running on the Zynq 7000 development board. This
study's hardware and software were developed applying the
Zynq 7000 architecture due to the high processing power
requirements. The Vivado Suite and related tools were
employed for the system's hardware and software design, while
Matlab/Simulink and Mathworks' HDL Coder and Vision HDL
Toolbox were utilized for the design of the image processing
systems. By adopting this approach, there is no requirement to
develop HDL code manually, resulting in a reduction in design
time. A Zedboard development board was used to design a
system capable of operating at a frequency of 60 Hz and a
resolution of 1280×1024 pixels. The system permits controlling
the Canny edge detection algorithm for video processing
through the input and output units on the card. This results in a
versatile system that can easily adjust the settings. The
designed system was capable of satisfying the requirements
and operating in real-time. Nevertheless, resource utilization is
believed to be rather low. The usage might be even more
reduced, though, if the necessary optimizations are
implemented in the HDL Coder tool. The proposed concept

was successfully implemented with full reusability. By
adopting this approach, it will be feasible to reuse IP pieces or
the entire system developed in subsequent research and across
diverse systems. This technology can be utilized as a
preprocessing unit to achieve more sophisticated real-time
object detection and tracking applications in future designs.
The implementation of hardware acceleration for corner edge
detection was carried out on the Xilinx Zynq-7000 SoC
hardware platform, specifically for image resolutions of
1920×1080. The simulation and synthesis were acquired
employing Vivado 2017.4.

ACKNOWLEDGMENT

The authors extend their appreciation to the Deanship of
Scientific Research at Northern Border University, Arar, KSA
for funding this research work through project number "NBU-
FFR-2024-2225-01".

REFERENCES

[1] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You Only Look
Once: Unified, Real-Time Object Detection," in 2016 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), Jun. 2016, pp.
779–788, https://doi.org/10.1109/CVPR.2016.91.

Engineering, Technology & Applied Science Research Vol. 14, No. 2, 2024, 13547-13553 13553

www.etasr.com Alhomoud et al.: Model-based Design of a High-Throughput Canny Edge Detection Accelerator on Zynq..

[2] R. Ghodhbani, T. Saidani, A. Alhomoud, A. Alshammari, and R.
Ahmed, "Real Time FPGA Implementation of an Efficient High Speed

Harris Corner Detection Algorithm Based on High-Level Synthesis,"
Engineering, Technology & Applied Science Research, vol. 13, no. 6,

pp. 12169–12174, Dec. 2023, https://doi.org/10.48084/etasr.6406.

[3] T. Saidani and R. Ghodhbani, "Hardware Acceleration of Video Edge
Detection with Hight Level Synthesis on the Xilinx Zynq Platform,"

Engineering, Technology & Applied Science Research, vol. 12, no. 1,
pp. 8007–8012, Feb. 2022, https://doi.org/10.48084/etasr.4615.

[4] T. Saidani, R. Ghodhbani, A. Alhomoud, A. Alshammari, H. Zayani,

and M. B. Ammar, "Hardware Acceleration for Object Detection using
YOLOv5 Deep Learning Algorithm on Xilinx Zynq FPGA Platform,"

Engineering, Technology & Applied Science Research, vol. 14, no. 1,
pp. 13066–13071, Feb. 2024, https://doi.org/10.48084/etasr.6761.

[5] CongJason et al., "FPGA HLS Today: Successes, Challenges, and
Opportunities," ACM Transactions on Reconfigurable Technology and

Systems (TRETS), Aug. 2022, https://doi.org/10.1145/3530775.

[6] Z. Tan and J. S. Smith, "Real-time Canny Edge Detection on FPGAs
using High-level Synthesis," in 2020 7th International Conference on

Information Science and Control Engineering (ICISCE), Sep. 2020, pp.
1068–1071, https://doi.org/10.1109/ICISCE50968.2020.00217.

[7] A. Fuentes-Alventosa, J. Gómez-Luna, and R. Medina-Carnicer, "GUD-

Canny: a real-time GPU-based unsupervised and distributed Canny edge
detector," Journal of Real-Time Image Processing, vol. 19, no. 3, pp.

591–605, Jun. 2022, https://doi.org/10.1007/s11554-022-01208-0.

[8] F. Siddiqui et al., "FPGA-Based Processor Acceleration for Image
Processing Applications," Journal of Imaging, vol. 5, no. 1, Jan. 2019,

Art. no. 16, https://doi.org/10.3390/jimaging5010016.

[9] P. Babu and E. Parthasarathy, "Hardware acceleration for object
detection using YOLOv4 algorithm on Xilinx Zynq platform," Journal

of Real-Time Image Processing, vol. 19, no. 5, pp. 931–940, Oct. 2022,
https://doi.org/10.1007/s11554-022-01234-y.

[10] F. N. Taher, M. Kishani, and B. C. Schafer, "Design and Optimization of

Reliable Hardware Accelerators: Leveraging the Advantages of High-
Level Synthesis," in 2018 IEEE 24th International Symposium on On-

Line Testing And Robust System Design (IOLTS), Platja d’Aro, Spain,
Jul. 2018, pp. 232–235, https://doi.org/10.1109/IOLTS.2018.8474222.

[11] “AXI4-Stream Video IP and System Design Guide,” Xilinx, UG934,
Oct. 2019.

[12] Stephen Neuendorffer, Thomas Li, and Devin Wang, "Accelerating

OpenCV Applications with Zynq-7000 All Programmable SoC using
Vivado HLS Video Libraries," Xilinx, Aug. 2013.

[13] K. Kintali and Y. Gu, "Model-Based Design with Simulink, HDL Coder,

and Xilinx System Generator for DSP," Mathworks, 2015.

[14] S. Liu et al., "Real-time implementation of harris corner detection
system based on FPGA," in 2017 IEEE International Conference on

Real-time Computing and Robotics (RCAR), Jul. 2017, pp. 339–343,
https://doi.org/10.1109/RCAR.2017.8311884.

[15] S. Chumpol, P. Solod, K. Thongnoo, and N. Jindapetch, "Model-Based

Design Optimization using CDFG for Image Processing on FPGA,"
ECTI Transactions on Computer and Information Technology (ECTI-

CIT), vol. 17, no. 4, pp. 479–487, Oct. 2023, https://doi.org/10.37936/
ecti-cit.2023174.252417.

[16] S. Titri, C. Larbes, and K. Y. Toumi, "Rapid prototyping of PVS into

FPGA: From model based design to FPGA/ASICs implementation," in
2014 9th International Design and Test Symposium (IDT), Algeries,

Algeria, Dec. 2014, pp. 162–167, https://doi.org/10.1109/IDT.2014.
7038606.

[17] I. El Hajjouji, S. Mars, Z. Asrih, and A. El Mourabit, "A novel FPGA
implementation of Hough Transform for straight lane detection,"

Engineering Science and Technology, an International Journal, vol. 23,
no. 2, pp. 274–280, Apr. 2020, https://doi.org/10.1016/j.jestch.2019.

05.008.

