
Engineering, Technology & Applied Science Research Vol. 14, No. 2, 2024, 13463-13469 13463

www.etasr.com Horrigue et al.: Efficient Hardware Accelerator and Implementation of JPEG 2000 MQ Decoder …

Efficient Hardware Accelerator and

Implementation of JPEG 2000 MQ Decoder

Architecture

Layla Horrigue

Electronics and Micro-Electronics Laboratory, Faculty of Sciences, Monastir University, Tunisia

layla.k-12@hotmail.com

Refka Ghodhbani

Department of Computer Sciences, Faculty of Computing and Information Technology, Northern Border

University, Saudi Arabia

refka.ghodhbani@nbu.edu.sa (corresponding author)

Albia Maqbool

Department of Computer Sciences, Faculty of Computing and Information Technology, Northern Border

University, Saudi Arabia

albia.alam@nbu.edu.sa

Eman H. Abd-Elkawy

Department of Computer Sciences, Faculty of Computing and Information Technology, Northern Border

University, Saudi Arabia | Department of Mathematics and Computer Science, Faculty of Science, Beni-

Suef University, Egypt

eman.hassan@nbu.edu.sa

Jihane Ben Slimane

Department of Computer Sciences, Faculty of Computing and Information Technology, Northern Border

University, Saudi Arabia

jehan.saleh@nbu.edu.sa

Taoufik Saidani

Department of Computer Sciences, Faculty of Computing and Information Technology, Northern Border

University, Saudi Arabia

taoufik.saidan@nbu.edu.sa

Faheed A. F. Alrslani

Department of Information Technology, Faculty of Computing and Information Technology, Northern

Border University, Saudi Arabia

f.alrslani@nbu.edu.sa

Amjad A Alsuwaylimi

Department of Information Technology, College of Computing and Information Technology, Northern
Border University, Saudi Arabia

amjad.alsuwaylimi@nbu.edu.sa

Engineering, Technology & Applied Science Research Vol. 14, No. 2, 2024, 13463-13469 13464

www.etasr.com Horrigue et al.: Efficient Hardware Accelerator and Implementation of JPEG 2000 MQ Decoder …

Marouan Kouki

Department of Information Systems, Faculty of Computing and Information Technology, Northern
Border University, Saudi Arabia

marouan.kouki@nbu.edu.sa

Amani Kachoukh

Department of Information Systems Faculty of Computing and Information Technology, Northern

Border University, Saudi Arabia

amani.khasookh@nbu.edu.sa

Received: 13 February 2024 | Revised: 23 February 2024 | Accepted: 24 February 2024

Licensed under a CC-BY 4.0 license | Copyright (c) by the authors | DOI: https://doi.org/10.48084/etasr.7065

ABSTRACT

Due to the extensive use of multimedia technologies, there is a pressing need for advancements and

enhanced efficiency in picture compression. JPEG 2000 standard aims to meet the needs for encoding still

pictures. JPEG 2000 is an internationally recognized standard for compressing still images. It provides a

wide range of features and offers superior compression ratios and interesting possibilities when compared

to traditional JPEG approaches. Nevertheless, the MQ decoder in the JPEG 2000 standard presents a

substantial obstacle for real-time applications. In order to fulfill the demands of real-time processing, it is
imperative to meticulously devise a high-speed MQ decoder architecture. This work presents a novel MQ

decoder architecture that is both high-speed and area-efficient, making it comparable to previous designs

and well-suited for chip implementation. The design is implemented using the VHDL hardware description

language and is synthesized with Xilinx ISE 14.7 and Vivado 2015.1. The implementation findings show

that the design functions at a frequency of 438.5 MHz on Virtex-6 and 757.5 MHz on Zync7000. For these

particular frequencies, the calculated frame rate is 63.1 frames per second.

Keywords-JPEG2000; MQ decoder; FPGA; EBCOT; implementation

I. INTRODUCTION

The International Standard Organization/International
Electrotechnical Commission (ISO/IEC) and the Joint
Photographic Experts Group introduced the JPEG 2000
standard, which is a complex and high-performance digital
image coding standard [1-4]. Positioned as the leading image
compression standard, its goal is to surpass widely adopted
standards such as JPEG. Numerous capabilities are included in
JPEG 2000, including compressed domain processing, error
resilience, continuous tone and bi-level compression, lossy and
lossless compression, region of interest coding, and progressive
transmission with pixel precision and resolution [2, 3]. The
incorporation of these characteristics improves the efficiency of
systems utilizing JPEG 2000 for picture compression.
Although JPEG 2000 outperforms JPEG in terms of features
and efficiency, it is notable for its considerably greater
processing complexity. The improved functionality is
accompanied by higher computational complexity and memory
demands, mainly due to the utilization of the Embedded Block
Coding with Optimized Truncation (EBCOT) technique, which
is a fundamental component of JPEG2000 [5]. Multiple studies
examining the JPEG2000 decoder algorithm [5, 6] have
consistently found that entropy decoding is the operation that
requires the most memory and processing time. Thus, the
entropy decoder is the optimal choice for hardware
acceleration. While the MQ decoding process inherently
follows a sequential approach, achieving acceleration for this
module is extremely difficult. Prior studies [7-12] have
demonstrated that MQ decoder designs can achieve a one-
clock-cycle decision, hence enhancing their efficiency.

Nevertheless, these architectures exhibit sluggish performance
and need a substantial amount of silicon space. As a result, the
throughput of these MQ decoders is lower than anticipated.

This study presents a cost-effective and efficient
architecture for a high-speed MQ decoder, implemented using
the VHDL hardware description language. The outcomes of the
proposed design are compared with those of multiple FPGA
implementations.

II. JPEG2000 STANDARD

A. Block Diagram – Algorithmic Chain

Six distinct units are involved in the JPEG 2000 decoding
process (Figure 1): a bitstream parser, an EBCOT, a
dequantization unit, an Inverse Discrete Wavelet Transform
(IDWT) unit, a color transform unit, and a tile combiner. The
Tier 2 bitstream parser unit is specifically accountable for
obtaining the compressed bitstream for every code block and
transmitting it to the entropy block decoder by extracting
pertinent data from image headers. Subsequently, the code
stream is decoded into the wavelet domain by the EBCOT
(Tier 1). The image is then arranged in raster order [3, 13] by
the dequantization unit, which additionally increases the bit
count of every coefficient [14]. The wavelet coefficients are
then transformed into pixels using the IDWT, and these pixels
are subsequently shifted from the YCbCr color system to the
RGB color space using the color transform. Finally, to
assemble the image in raster order, the tile combiner aligns the
rows of every tile [3].

Engineering, Technology & Applied Science Research Vol. 14, No. 2, 2024, 13463-13469 13465

www.etasr.com Horrigue et al.: Efficient Hardware Accelerator and Implementation of JPEG 2000 MQ Decoder …

Fig. 1. Block diagram of the JPEG 2000 compression algorithm.

B. Entropy Block Decoder Overview

A simplified functional diagram of the entropy block
decoder is illustrated in Figure 2. Two processing units
comprise Tier 1: the decoding passes and the MQ decoder.

Fig. 2. The entropy block decoder.

a) Figure Labels

The decoding process utilizes the data from neighboring
bits and the decoded judgments made by the MQ decoder to
determine the importance of each bit in the image. During the
decoding process, if a bit is found to be significant, the
surrounding bits are used to offer contextual information to the
MQ decoder for that particular bit. After obtaining the binary
decision from the MQ decoder, the decoding operation must
pause before processing the adjacent bits [15]. The decoding
process has three separate phases: the Magnitude Refinement
Pass (MRP), the Clean-Up Pass (CUP), and the Significance
Propagation Pass (SPP) [1, 8]. SPP detects coefficients that are
not labeled as significant but have at least one neighboring
coefficient that is tagged as significant. The sign of the
coefficient is established if the decoded bit is one. MRP
focuses on coefficients that were previously determined to be
significant in a previous bit plane and decodes the remaining
bits of those coefficients. CUP decodes bits that are deemed
inconsequential by the preceding two rounds.

b) The Binary Arithmetic Decoder

The binary arithmetic decoder used in JPEG 2000 is widely
referred to as the MQ decoder. The likelihood estimate
between the Most and the Least Likely Symbol (MPS and LPS,
respectively) is considered, along with the context provided by
the decoding steps, to calculate the output bit value. The
resulting output value is subsequently utilized in the decoding
process to assist in determining the importance of neighboring
bits and their correct positioning in the final decoded image.

C. Binary Arithmetic Coding (BAC)

BAC executes entropy coding to construct the code stream
based on the context data pairs from the bit plan coding. The
BAC in JPEG 2000, frequently referred to as the MQ coder, is

based on the QM adaptive arithmetic encoder in JBIG but
employs the Q coder's byte emission [7, 12]. Like in the Q
coder, 0 and 1 are dynamically assigned to MPS and LPS. The
MQ coder, as depicted in Figure 3, is based on the recursive
probability subdivision of Elias coding. With each binary
decision, the current probability interval is divided into two
smaller intervals. The code string is modified if needed to
indicate to the lower bound of the probability sub-interval for
the symbol that occurred. Although the coding method includes
the addition of binary fractions rather than the concatenation of
integer code words, more probable binary decisions can
frequently be coded for less than one bit per decision [11].

Fig. 3. MQ coder procedure.

D. MQ Decoder’s Algorithm

The MQ decoder's algorithm is initialized using the
INITDEC procedure, as shown in Figure 4. When all contexts
have been read, the context (CX) is read and sent on to the
DECODE procedure. The DECODE algorithm decodes the
binary decision D and outputs a value of either 0 or 1. It is
composed of four procedures: LPS_EXCHANGE,
MPS_EXCHANGE, RENORMED, and BYTEIN. DECODE
includes a probability estimation table that gives adaptive
estimates of probability for every scenario. The compressed
data have been decompressed once all CXs have been read, see
[3, 5, 6, 11, 16] for a more detailed description of the
algorithm.

Fig. 4. The MQ-decoder's flowchart.

Engineering, Technology & Applied Science Research Vol. 14, No. 2, 2024, 13463-13469 13466

www.etasr.com Horrigue et al.: Efficient Hardware Accelerator and Implementation of JPEG 2000 MQ Decoder …

Figure 5 describes the arithmetic decoder's register
configurations:

 In order to save the current interval value, the 16-bit A
register is used.

 During the decoding procedure, the partially coded bits are
stored in the C register, also known as the code register.

 By combining the Chigh register and the Clow register, we
create a 32-bit C register. When we renormalize C, we
move one bit of new data from Clow's bit 15 to Chigh's bit
0.

In the A register, the "a" bits stand for the fractional bits of
the current interval value, and in the C register, the "x" bits
imply the same. The "s" bits represent spacer bits that enforce
crucial limitations on carry-over. The "b" bits indicate the
specific locations from which entire bytes of data are taken
from the C register. The letter "c" represents a carry bit.

Fig. 5. Register structures for the MQ decoder.

III. PROPOSED MQ DECODER ARCHITECTURE

The main approach to reduce the execution time of the MQ
decoder is to minimize the number of clock cycles needed to
generate all the contexts of a picture. Given this, we propose a
low-power, efficient hardware solution that obtains a bitstream
and a context, then renders a decision in 4 clock cycles. This
section provides a comprehensive description of the hardware
architecture of our recently launched MQ decoder. Figure 6
depicts a simplified and functional diagram of the MQ decoder.

Fig. 6. MQ decoder functional diagram.

For every given CX value, the Bit Plane Coder (BPC) can
produce one of nineteen possible outcomes [1]. The CX values

are entered into a MQ decoder, where each context is
associated with a corresponding item in the Index Look-Up
Table (ILT). One field, ICX, is an index, and the other, S_mps,
is the MPS value field. These two compose the ILT. While the
ICX is used as a reference for the Probability Estimation Table
(PET), the S_mps value decides if the symbol '0' or '1' is
regarded as an MPS symbol. The initial values of the ILT are
determined according to the standard JPEG 2000 and are later
adjusted throughout the decoding process. The Positron
Emission Tomography (PET) scan provides a detailed
visualization of the decoder's internal structure [11, 16]. This
architecture is comprised of two components: the probability
estimator and the decoding block.

A. Probability Estimator

The context block prediction consists of the subsequent
components: the ILT_RAM and the PET_ROM. These two
principal components are composed, respectively, of 2 RAMs
and 4 ROMs, as seen in Table I. The initial phase of the
proposed architecture, as seen in Figure 7, commences with the
retrieval of the context CX.

TABLE I. TTHE DIFFERENT COMPONENTS USED IN THE
PREDICTION BLOCK

 RAM/ROM Description/Use

ILT_RAM

RAM_ICX

It comprises 19 indexes, which correspond to

the current index in the look-up table. Every

index is encoded using 6 bits. In this

scenario, the I (CX) functions as a pointer to

the 4 ROMs.

RAM_MPS

It has 19 MPSs (current Most Probable

Symbols), and each MPS has a single bit of

coding.

PET_ROM

ROM_NMPS
It has 47 NLPSs (Next Most Probable

Symbols). Every NLPS has a 6-bit code.

ROM_NLPS
It contains 47 NLPSs. Each NLPS is coded

on 6 bits.

ROM_Switch
It contains 47 elements (Switch). Each

element is coded on 1 bit

ROM_Qe
It consists of 47 components. Every element

is encoded using 16 bits.

Fig. 7. Internal architecture of the MQ decoder.

Engineering, Technology & Applied Science Research Vol. 14, No. 2, 2024, 13463-13469 13467

www.etasr.com Horrigue et al.: Efficient Hardware Accelerator and Implementation of JPEG 2000 MQ Decoder …

To obtain the values of I (CX) and mps_D, the address bus
is utilized to transfer the CX value to two RAMs, specifically
RAM I (CX) and RAM MPS. Once the provided I(CX) value
has been fed into each of the four ROMs (ROM_NMPS,
ROM_NLPS, ROM_Switch, and ROM_Qe), the matching
entries can be accessed. In cases where renormalization is
required, the NMPS or NLPS value is copied and stored in the
RAM (CX). Additionally, the S_MPS bit in RAM_MPS is
modified when the S_Switch signal is very high.

B. The Decoding Block

In order to explain the functioning of the MQ decoder, we
developed a state machine consisting of 11 states. We have
created a hardware description of the process that is
synchronized by the state machine, as depicted in Figure 8.

Fig. 8. The proposed state machine.

The state machine operates using a sequential pseudocode.
Its primary states are:

• INITDEC: This state is utilized to initiate the MQ decoder.
The compressed data pointer, BP (Byte Pointer B), is
initialized to BPST (the starting value of BP). The initial
byte of the compressed data is transferred to the least
significant byte of Chigh, and subsequently, a new byte is
retrieved. Ultimately, the register C undergoes a shift of 7

bits, the value of CT is decremented by 7, and the register A
is set to the hexadecimal value 0x8000.

• BYTEIN: As seen in Figure 8, the bytein state is called by
the RENORMD state when CT equals zero. This state
handles the processing of a single byte of input, taking into
consideration any extra bits that may come after the
hexadecimal FF byte. The Clow and Chigh registers are
concatenated to generate the Reg_C in Bytin. B is updated
and put in the highest 8 bits of the Clow_register if it is not
a hexadecimal FF byte. In this case, the value of BP is
decremented. Indeed, B represents the byte specified by the
compressed data buffer address BP. The byte B1, situated at
the memory address BP+1, is examined to ascertain its
equivalence to the hexadecimal value FF. When B1's value
is greater than 8F in hexadecimal notation, the data byte in
register C is incremented by adding the hexadecimal value
FF, and bit counter CT is set to 8.

 Ren_1: During this state, both Reg_A and Reg_C are
shifted to the left, and the counter CT is decremented by 1.
If the value of reg_A is less than the hexadecimal value
8000, then the Renormed state is executed. Otherwise, the
final state was executed successfully.

 FINISH: in this state if the number of pairs (nbpaire) is
equal to the total number of CX, we will transition back to
the pause state. Otherwise, the read operation will be
repeated.

IV. IMPLEMENTATION AND RESULTS

A. Implementation

The proposed design was successfully tested on three
platforms, namely Virtex5, Virtex4, and Spartan3A. This
implementation utilized the default configurations of Xilinx
ISE 14.7. Table II displays the maximum clock frequency and
device consumption overview for the suggested MQ decoder
design. It is possible for the proposed design to operate at 394.3
MHz, 320 MHz, and 176.8 MHz, respectively. The average
decoding time for one decision is 4.10 cycles.

TABLE II. SYNTHESIS RESULTS FOR THE SUGGESTED
DESIGN USING XILINX ISE 14.7

Used FPGA XC5VLX50T XC4VLX15 XC3SD3400a

Total slices LUTs 420 605 654

Total slices registers 288 322 345

Total FF pairs 197 289 290

Max. Frequency (MHz) 394.3 320 176.8

Using the default settings of Xilinx Vivado 15.1, the
architecture's performance was assessed in terms of operating
frequency and hardware requirements. The proposed MQ
decoder architecture has been effectively implemented on three
platforms: Zync7000, KINTEX7, and VIRTEX7, while
adhering to all user-imposed constraints for implementation.
Table III displays the summary of hardware requirements,
Worst Negative Slack (WNS), data path delay, and
requirements. Slack is determined by subtracting the arrival
time from the required time [17]. WNS represents the amount
of free time available once the timing constraints have been

Engineering, Technology & Applied Science Research Vol. 14, No. 2, 2024, 13463-13469 13468

www.etasr.com Horrigue et al.: Efficient Hardware Accelerator and Implementation of JPEG 2000 MQ Decoder …

met. The time period for 1 clock cycle at a frequency of 100
MHz is 10 ns, as specified in the constraints file for the purpose
of completing the execution.

TABLE III. SYNTHESIS RESULTS FOR SUGGESTED
ARCHITECTURE USING VIVADO 15.1

Used FPGA
Zync7000

xc7z045

KINTEX7

XC7K70T

VIRTEX7

XC7VX415T

Total FF slices 260 260 260

LUT 372 384 386

Memory LUT 14 14 14

WNS (ns) 3.686 3.612 3.502

Data path delay (ns) 0.817 0.94 0.803

Requirements (ns) 5 5 5

Frequency (MHz) 757.7 720 667.5

Throughput (MB/s) 118.35 112.47 104.27

In order to ascertain the maximum clock frequency, it is
necessary to initially establish the required clock period [17,
18]. Upon implementation of the proposed design on Zynq
7000, the required clock period is calculated as 1.32 ns (by
subtracting 3.68 ns from 5 ns), which gives a frequency of
757.7 MHz and a throughput of 118 MB/s.

B. Comparison

In order to assess the efficiency of our architecture in terms
of hardware demands and operational speed, we conducted
comparative analysis with other pre-existing architectures that
employed the identical FPGA. The maximum frequency values
reached by the proposed design and existing architectures using
the same FPGA are shown in Table IV.

TABLE IV. COMPARISON OF THE MQ DECODER WITH THE
ARCHITECTURES FROM [8, 9]

Used FPGA

Architecture

[8]
Architecture [9] Proposed

Frequency

(MHz)

Frequency

(MHz)
FPS

Frequency

(MHz)
FPS

Virtex-6

XC6VLX75T-

3FF68

437.1 - - 438.5 63.1

Virtex-4

XC4VLX15-

12FF68

- 195.3 28.07 321.1 46.2

Virtex-5

XC5VLX30-

3FF324

- 222.8 32.02 394.1 56.7

From the comparison, it can be inferred that the proposed
MQ decoder runs at a greater frequency. For example, the
operating frequency of the suggested design, when targeted at
Virtex 5, is 1.76 times greater than that of current architecture
[9]. The frame rate at 321.1 MHz is predicted to be 46.2
Frames Per Second (FPS). However, at 394.1 MHz and 438.5
MHz, the frame rates are 56.7 FPS and 63.1 FPS, respectively.
These values are specific to high-definition TVs with a
resolution of 1920p.

The frequency achieved with the Virtex2 XC2V6000-6
platform and the average clock cycle obtained by using a
counter in state machine HDL to build the design are used to
calculate the theoretical throughput. Equation (1) is utilized to
ascertain the throughput of sources [11, 19]. The throughput

and the average number of clock cycles from references [10,
11, 19, 20] are shown in Table V. Equation (1) calculates the
throughput of the binary arithmetic decoder in MB/s. The terms
wCB and hCB denote the width and height of each code block,
measured in pixels, dCB and f denote the pixel depth and design
frequency in MHz, respectively, whereas µ represents the
number of cycles needed per code block [11]. The design
comparison uses (64 × 64) for the height and width per code
block, and a byte for the depth of every each pixel. The
processed data has a cumulative size of 4.096 bytes.

Throughput (MB/s) = wCB× hCB × dCB × f/µ (1)

TABLE V. MQ DECODER THROUGHPUT

Used FPGA Virtex-2 XC2V6000-6

Design [9] [10] Proposed [11] [19] [20] [21]

No slice

registers
328 498 313 313 - 315 -

No slice

LUTs
579 944 640 630 - 586 -

Frequency

(MHz)
142 140.4 200.2 205.5 45.6 157.2 127.9

Frame rate

supported

(FPS)

20.41 - 350 29.56 - - -

Avg. no of

clock cycles
- 74.23 26.22 28.44 32.7 68.53 -

Throughput

(MB/s)
- 7.74 31.27 35.74 5.7 9.4 5.3

Table V presents the expected frame rate, maximum cycle
count, maximum clock frequency, and logic utilization of the
proposed MQ decoder design compared to other existing
architectures implemented in Virtex 2. Each code block in the
recommended design requires 26,223 clock cycles in total. The
proposed design produces a throughput of 31.27 based on the
outcomes of FPGA synthesis. Compared to the architecture
indicated in [18], it has a throughput that is 5.48 times higher.
Table V demonstrates a significant decrease of 36% in memory
requirements for the proposed architecture in comparison to the
architecture mentioned in [10]. The predicted frame rate of the
suggested MQ decoder design is 1.41 times higher than that of
the MQ decoder architecture in [9].

V. CONCLUSION

This paper presents a detailed explanation of the advanced
design of an MQ arithmetic decoder, which is built upon the
MQ decoder technique used in JPEG 2000. The VHDL
hardware description language was used to implement the
proposed design, which was then synthesized for FPGA
devices. The zynq7000 device achieves a maximum working
speed of 757.7 MHz. For high-definition TV with a resolution
of 1920 pixels, the estimated frame rate is 63.1 FPS.
Furthermore, the memory requirement for the proposed
architecture is diminished by 37.1% in comparison to the other
existing architectures, and the proposed design achieves the
highest maximum frequency among the compared designs.
Hence, the proposed design can be effortlessly transferred to
Xilinx architectures and has the ability to decode 63.1 FPS of
high definition (HD, 1920 × 1080 pixels). This makes it a
promising option for deployment as a high-speed real-time

Engineering, Technology & Applied Science Research Vol. 14, No. 2, 2024, 13463-13469 13469

www.etasr.com Horrigue et al.: Efficient Hardware Accelerator and Implementation of JPEG 2000 MQ Decoder …

JPEG 2000 decoder in diverse applications such as medical
imaging, satellite imagery, digital cinema, and mobile
applications.

ACKNOWLEDGMENT

The authors extend their appreciation to the Deanship of
Scientific Research at Northern Border University, Arar, KSA
for funding this research work through the project number
"NBU-FFR-2024-1662-02."

REFERENCES

[1] JPEG 2000 Part I: Final Draft International Standard

(ISO/IECFDIS15444-1). ISO/IEC JTC1/SC29/WG1 N1855, 2000.

[2] ISO/IEC JTC 1 / SC 29 /WG 1, (ITU-T SG8) Coding of Still Pictures.

JBIG, 1999.

[3] D. S. Taubman and M. W. Marcellin, JPEG2000 Image Compression

Fundamentals, Standards and Practice. Boston, MA, USA: Springer

US, 2002.

[4] D. Santa-Cruz, R. Grosbois, and T. Ebrahimi, "JPEG 2000 performance

evaluation and assessment," Signal Processing: Image Communication,
vol. 17, no. 1, pp. 113–130, Jan. 2002, https://doi.org/10.1016/S0923-

5965(01)00025-X.

[5] D. Taubman, "High performance scalable image compression with
EBCOT," IEEE Transactions on Image Processing, vol. 9, no. 7, pp.

1158–1170, Jul. 2000, https://doi.org/10.1109/83.847830.

[6] A. Samet, M. B. Ayed, M. Loulou, and N. Masmoudi, "Comparison
between JPEG and JPEG2000 still image compression standard," in

Proc. Visualization, Imaging, and Image Processing, 2002.

[7] K. Sarawadekar and S. Banerjee, "VLSI design of memory-efficient,
high-speed baseline MQ coder for JPEG 2000," Integration, vol. 45, no.

1, pp. 1–8, Jan. 2012, https://doi.org/10.1016/j.vlsi.2011.07.004.

[8] D. J. Lucking, E. J. Balster, K. L. Hill, and F. A. Scarpino, "FPGA
implementation of the JPEG2000 binary arithmetic (MQ) decoder,"

Journal of Real-Time Image Processing, vol. 8, no. 4, pp. 411–419, Dec.
2013, https://doi.org/10.1007/s11554-011-0214-9.

[9] O. C. Kulkarni, K. Sarawadekar, and S. Banerjee, "VLSI implementation

of MQ decoder in JPEG2000," in IEEE Technology Students’

Symposium, Kharagpur, India, Jan. 2011, pp. 193–197,

https://doi.org/10.1109/TECHSYM.2011.5783844.

[10] A. Descampe, F.-O. Devaux, G. Rouvroy, J.-D. Legat, J.-J. Quisquater,

and B. Macq, "A Flexible Hardware JPEG 2000 Decoder for Digital
Cinema," IEEE Transactions on Circuits and Systems for Video

Technology, vol. 16, no. 11, pp. 1397–1410, Nov. 2006, https://doi.org/
10.1109/TCSVT.2006.884573.

[11] L. Horrigue, T. Saidani, R. Ghodhbani, J. Dubois, J. Miteran, and M.

Atri, "An efficient hardware implementation of MQ decoder of the
JPEG2000," Microprocessors and Microsystems, vol. 38, no. 7, pp. 659–

668, Oct. 2014, https://doi.org/10.1016/j.micpro.2014.06.005.

[12] S. D. Jayavathi and A. Shenbagavalli, "FPGA-based Auxiliary Minutest
MQ-coder architecture of JPEG2000," Journal of Real-Time Image

Processing, vol. 16, no. 5, pp. 1765–1779, Oct. 2019, https://doi.org/
10.1007/s11554-017-0683-6.

[13] K. Liu, Y. Zhou, Y. Song Li, and J. F. Ma, "A high performance MQ
encoder architecture in JPEG2000," Integration, vol. 43, no. 3, pp. 305–

317, Jun. 2010, https://doi.org/10.1016/j.vlsi.2010.01.001.

[14] T. Acharya and P.-S. Tsai, JPEG2000 Standard for Image Compression:

Concepts, Algorithms and VLSI Architectures, 1st ed. Hoboken, NJ,
USA: Wiley-Interscience, 2004.

[15] R. Ghodhbani, T. Saidani, L. Horrigue, A. M. Algarni, and M.

Alshammari, "An FPGA Accelerator for Real Time Hyperspectral
Images Compression based on JPEG2000 Standard," Engineering,

Technology & Applied Science Research, vol. 14, no. 2, pp. 13118–
13123, Apr. 2024, https://doi.org/10.48084/etasr.6853.

[16] N. Ramesh Kumar, W. Xiang, and Y. Wang, "Two-Symbol FPGA
Architecture for Fast Arithmetic Encoding in JPEG 2000," Journal of

Signal Processing Systems, vol. 69, no. 2, pp. 213–224, Nov. 2012,
https://doi.org/10.1007/s11265-011-0655-1.

[17] T. Saidani and R. Ghodhbani, "Hardware Acceleration of Video Edge

Detection with Hight Level Synthesis on the Xilinx Zynq Platform,"
Engineering, Technology & Applied Science Research, vol. 12, no. 1,

pp. 8007–8012, Feb. 2022, https://doi.org/10.48084/etasr.4615.

[18] T. Saidani, R. Ghodhbani, A. Alhomoud, A. Alshammari, H. Zayani,
and M. B. Ammar, "Hardware Acceleration for Object Detection using

YOLOv5 Deep Learning Algorithm on Xilinx Zynq FPGA Platform,"
Engineering, Technology & Applied Science Research, vol. 14, no. 1,

pp. 13066–13071, Feb. 2024, https://doi.org/10.48084/etasr.6761.

[19] H.-H. Chen, C.-J. Lian, T.-H. Chang, and L.-G. Chen, "Analysis of

EBCOT decoding algorithm and its VLSI implementation for JPEG
2000," in 2002 IEEE International Symposium on Circuits and Systems

(ISCAS), Feb. 2002, vol. 4, https://doi.org/10.1109/ISCAS.2002.
1010457.

[20] D. J. Lucking, E. J. Balster, K. L. Hill, and F. A. Scarpino, "FPGA

implementation of the JPEG2000 binary arithmetic (MQ) decoder,"
Journal of Real-Time Image Processing, vol. 8, no. 4, pp. 411–419, Dec.

2013, https://doi.org/10.1007/s11554-011-0214-9.

[21] T. Zhu, J. Zhou, and S. Liu, "Design and implementation of JPEG2000
arithmetic decoder based on Handel-C," in 2009 3rd International

Conference on Anti-counterfeiting, Security, and Identification in

Communication, Hong Kong, China, Aug. 2009, pp. 505–508,

https://doi.org/10.1109/ICASID.2009.5276988.

