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ABSTRACT 

Tomato production plays a crucial role in Saudi Arabia, with significant yield variations due to factors 

such as diseases. While automation offers promising solutions, accurate disease detection remains a 

challenge. This study proposes a deep learning approach based on the YOLOv8 algorithm for automated 

tomato disease detection. Augmenting an existing Roboflow dataset, the model achieved an overall 

accuracy of 66.67%. However, class-specific performance varies, highlighting challenges in differentiating 

certain diseases. Further research is suggested, focusing on data balancing, exploring alternative 
architectures, and adopting disease-specific metrics. This work lays the foundation for a robust disease 
detection system to improve crop yields, quality, and sustainable agriculture in Saudi Arabia. 
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I. INTRODUCTION  

Tomatoes, grown worldwide and yielding approximately 
170 million tons annually, are essential in vegetable crop 
production [1]. Despite the harsh environmental conditions in 
Saudi Arabia, characterized by arid and hot climates, the 
Greenhouse Horticulture Business Unit of Wageningen 
University & Research (WUR) has achieved remarkable 
success, boasting an annual tomato yield of 80 kg/m

2
 [2]. This 

achievement is attributed to advanced greenhouse technology 
and precise irrigation methods. In Saudi Arabia, tomato 
cultivation spans 1260 hectares of greenhouse area, exhibiting 
varied productivity ranging from 8-10 kg/m

2
 under 

uncontrolled conditions to 35-45 kg/m
2
 in managed 

greenhouses, notably lower than in countries such as the 
Netherlands where yields can exceed 80-90 kg/m2. The 
disparity in crop yields is influenced by agricultural practices, 
climate, water quality, and tomato cultivar selection, factors 
that still lack precise understanding despite the introduction of 
several tomato varieties annually. 

In addition, tomato harvesting faces challenges with 
damage rates as high as 10% [3-4]. However, advances in 
automation technology offer promising solutions [5], focusing 
on image recognition, precise positioning, and efficient picking 
mechanisms. Traditionally, early fruit recognition relied on 
complex machine learning algorithms, but the advent of 
Convolutional Neural Networks (CNNs) has significantly 
improved efficiency and precision [6-9]. Object detection 
algorithms, crucial for automating tomato disease detection, 
include two-stage algorithms such as R-CNN [10] and one-
stage algorithms such as SSD [11-12] and YOLO [13], with 
various iterations of YOLO (v3 [14-15], v4 [16], v5 [17-20], v7 
[21], and v8 [22]) that improve object detection capabilities. 

This study proposes a deep learning-based approach for 
tomato disease detection, leveraging a YOLO-based algorithm 
trained on a custom dataset to improve tomato quality and 
increase crop yields in remote sensing technologies. The key 
contributions of this study are: 

 Prepare a custom dataset and apply the YOLOv8 algorithm 
to improve disease detection in tomatoes and potentially 
increase crop yields. 

 Present a carefully trained model that uses a wide array of 
images, including those collected from databases. The 
effectiveness of the model is thoroughly evaluated on 
validation and testing sets, as well as on external photos. 

II. RELATED WORKS 

Since the advent of DL algorithms, significant advances 
have been made in plant disease detection, particularly in leaf 
disease identification and diagnosis, contributing to the 
progress of precision agriculture. These developments, driven 
by computer vision techniques and neural networks, have led to 
the creation of machine learning and deep learning models 
tailored to accurately diagnose leaf diseases such as early 
blight, late blight, bacterial spot, and powdery mildew in 
various plant species, including tomatoes. Using image 
processing techniques and CNNs, these models analyze leaf 
images and classify diseases according to visual symptoms. In 
addition, spectral and hyperspectral imaging techniques have 
been explored for early disease detection, bolstering plant 
health monitoring. Although disease detection efforts have 
shown high accuracy rates, there is a lag in tomato fruit disease 
detection. Although many models have been developed to 
identify fruit diseases such as blossom end rot, fruit rot, and 
sunscald, the focus remains primarily on leaf diseases. This 
discrepancy underscores the need to expand research efforts 
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toward fruit disease detection to advance tomato disease 
management and overall crop productivity. Currently, datasets 
for tomato fruit disease detection are limited, typically 
containing fewer than five classes, with less emphasis 
compared to leaf disease datasets, reflecting the research 
imbalance between the two domains. 

In [23], a 15-layer CNN served as the backbone of the 
Single-Shot Detector (SSD) to improve the detection of healthy 
tomato fruits and three classes of tomato fruit diseases. The 
proposed CNN-SSD model outperformed state-of-the-art 
models, achieving a significantly higher detection accuracy. In 
[24], the detection and classification of tomato plant diseases 
was automated using a Raspberry Pi. This study used image 
processing techniques and CNN-based classification to 
successfully detect diseases such as late blight, gray spot, and 
bacterial canker. In [25], YOLOv5m was used to classify 
tomato fruits into ripe, immature, and damaged categories. 
These models demonstrated high prediction accuracy, 
particularly in ripe and immature tomatoes, offering potential 
applications in automated tomato fruit harvesting. In [26], an 
improved YOLOv5 tomato detection algorithm, called CAM-
YOLO, was introduced that incorporated a Convolutional 
Block Attention Module (CBAM) to improve accuracy in 
detecting small and overlapped tomatoes, achieving an average 
precision of 88.1%. These studies show ongoing efforts to 
improve the detection of tomato fruit diseases, paving the way 
for advances in agricultural practices and crop management. 

III. MATERIALS AND METHODS  

A. Data Improvement 

This study used a dataset called "balanceddata Dataset" [27] 
in Roboflow, published in October 2023, and contained three 
types of tomato diseases. Figure 1 depicts an illustrative image 
of a class. This dataset was augmented to improve the model 
performance. Although the original dataset contains 906 
images, the augmented dataset consists of 2152 images. The 
augmented dataset was divided into three sets for training, 
validation, and testing tasks. Specifically, 87% or 1872 images 
were allocated for the training set, 9% or 188 images for the 
validation set, and 4% or 92 images for the testing set. The 
dataset was partitioned into these subsets with an average ratio 
of 87:9:4. Figure 2 shows the number of labels corresponding 
to each class and the size of the labels used in the dataset. 
YOLOv8 was used as the foundational architecture for the 
proposed model, as it offers enhanced efficiency and flexibility 
and addresses three key computer vision tasks: 

 Classification: This task involves the identification of a 
predominant class within an input image, with the model 
outputting a class index along with a confidence score. 
Classification proves to be beneficial for discerning the 
presence of specific classes in an image. YOLOv8 offers 
five sizes, namely yolov8n (nano), yolov8s (small), 
yolov8m (medium), yolov8l (large), and yolov8x (extra 
large), each tailored for specific purposes [28]. 

 Detection: Building on classification, detection involves 
identifying various classes present in an image and 
precisely locating them using bounding boxes.  

 Segmentation: Positioned beyond object detection, 
segmentation delves into identifying individual pixels 
belonging to objects, offering a more precise understanding 
compared to object detection alone. This technique finds 
diverse applications and provides detailed insight into 
objects within an image.  

 

   
(a) (b)  (c)  

Fig. 1.  Dataset classes: (a) Blossom end rot rotation, (b) splitting rotation, 

(c) sun scaled rotation. 

  

  

(a) (b) 

Fig. 2.  (a) Number of labels in a class, (b) and different sizes of the labels. 

B. Architecture of YOLOv8l  

The YOLOv8 design consists of 53 convolutional layers 
and is implemented as a CNN. In particular, it integrates cross-
stage partial connections, enabling improved information 
transmission between layers for enhanced performance. 
YOLOv8 stands out for its ability to efficiently detect objects at 
multiple scales because it employs a feature pyramid network. 
This network uses multiple layers specifically engineered to 
detect objects of different sizes and scales within an image, 
guaranteeing extensive coverage across various object 
dimensions. The structure of YOLOv8 can be dissected into 
three main elements [28]. 

1) Backbone 

This component consists of a pre-trained CNN that is 
responsible for extracting low-, medium-, and high-level 
feature maps from the input images. Figure 3 shows the 
dimensions of the input images in four different sizes. 
Functionally, this component of YOLOv8 largely approximates 
that of YOLOv5, with the main divergence being the mosaic 
data augmentation technique. Mosaic data augmentation 
includes the simultaneous presentation of many resized images 
to the model, improving its ability to recognize objects from 
different viewpoints and in situations where they are partially 
obscured by merging four images. However, it has been 
observed that the implementation of mosaic data augmentation 
in YOLOv8 tends to reduce performance, terminating its 
discontinuation during the last 10 training epochs. To boost 
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model efficiency, YOLOv5's C3 module was replaced with the 
C2f module, inspired by YOLOv7's ELAN concept. C2f, 
shown in Figure 4, unlike C3, which uses only the last output, 
uses all the outputs of the choke unit. The C2f structure 
consists of two convolution blocks (this process reduces the 
number of channels in the feature map usually by half) and 
three bottleneck convolution blocks. The structural bottleneck 
blocks, shown in Figure 5, are composed of two convolutional 
blocks and a contact. This block reduces the calculations and 
improves the training speed. C2f optimizes the network 
structure by regulating gradient routes, improving trainability. 
Additionally, it effectively learns multiscale features and 
expands receptive fields through feature diversion and 
multilevel convolution, all without altering the network's 
shortest and longest gradient paths. This leads to a lighter 
model with preserved feature richness. Figure 6 shows a 
backbone block, which comprises a sequence of convolutional 
layers responsible for extracting significant features from the 
input image at different sizes. Toward the end of the backbone, 
the Spatial Pyramid Pooling Fusion (SPPF) layer, followed by 

convolutional layers, processes features across various scales, 
while upsample layers improve the resolution of feature maps. 

 

 

Fig. 3.  The different sizes of an image in backbone. 

 

 
Fig. 4.  The structure of the C2f convolutional block. 

 
Fig. 5.  The structure of the convolutional bottleneck block. 

2) Neck 

The neck is the bridge between the backbone's raw feature 
maps and the head's final predictions. He refines and merges 
information from the backbone's raw features before feeding it 
to the head for final predictions. It employs path aggregation 
blocks, such as FPNs, to optimize multiscale feature integration 
[29], further enhanced by upsampling and numerous C2f 
modules. Figure 7 shows three components: the upsampling 
block that aims to increase the spatial resolution of the feature 
maps extracted from the backbone, the c2f module that 
manipulates the feature maps to extract more relevant 
information for object detection, and the conventional block. 
These components can extract higher-level features, reduce 
noise, and improve the model's ability to differentiate between 
different objects. YOLOv8 also decouples confidence and 

regression boxes in the later stages of the neck, increasing 
accuracy. Through these mechanisms, the neck prepares high-
quality data for the head, ensuring accurate object detection. 

3) Head 

The head of YOLOv8 acts as the decision-maker, taking the 
refined information from the neck and turning it into actionable 
results. Unlike previous iterations, the head no longer combines 
classification and regression tasks. Instead, it performs these 
tasks independently, resulting in enhanced model performance. 
The feature maps are transmitted to the head, where objects are 
classified, and predictions for bounding boxes, objectness 
scores, and class probabilities are made for detected objects 
within an image. The head comprises multiple convolutional 
layers followed by a sequence of fully connected layers, as 
shown in Figure 8. YOLOv8 takes object detection up a notch 
with its innovative "anchor-free" approach. Ditching the 
limitations of predefined shapes, it predicts bounding boxes 
directly, seamlessly adapting to diverse object sizes and shapes. 
However, YOLOv8 incorporates a self-attention mechanism 
that mimics this focus, allowing it to prioritize relevant image 
features for even more precise detection. This powerful 
combination of independent analysis and keen attention to 
detail makes the YOLOv8 head a critical player in delivering 
accurate results. 
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Fig. 6.  The structure of the backbone block. 

 
Fig. 7.  The structure of the neck. 

 
Fig. 8.  The structure of the head block. 
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IV. EXPERIMENTAL RESULTS ANALYSIS 

A. Hardware Environment 

The experiments were conducted using Google Colab, a 
free cloud-based platform that offers a convenient notebook 
environment for research because of its seamless integration 
with popular machine learning libraries such as TensorFlow 
and PyTorch. Google Colab provides the flexibility to choose 
between different hardware options: CPUs, GPUs, and even 
TPUs, each offering a 12-hour continuous execution window. 
To maximize performance, the 12GB NVIDIA Tesla T4 GPU 
was used, achieving significant computational power at no cost. 
The models were trained for 50 epochs, processing small 
batches of 3 images at a time. Each image was resized to 640 
pixels to balance model performance with training efficiency. 

B. Results 

Figure 10 shows the effectiveness of the proposed YOLO-
based tomato disease detection algorithm evaluated using 
precision, recall, and mean Average Precision (mAP). 
Precision ensures minimal false alarms by measuring the 
proportion of true positives in detections, reflected by a 
consistently high precision curve. Recall measures the 
efficiency in identifying actual diseased plants, depicted by a 
high recall curve. Finally, mAP combines both, providing a 
holistic view of performance across various diseases. These 
metrics were used to objectively evaluate the model's ability to 
accurately and efficiently detect diseases, minimizing both 
false positives and missed infections. 

 

 
Fig. 9.  Some experimental results. 

Figure 11(a) shows the confidence-precision curves. Each 
curve shows how accurate the model is for different object 
types as its confidence increases. In general, higher confidence 
leads to higher precision, indicating that the model effectively 
distinguishes confident detections from less confident ones. 
Figure 11(b) shows the recall vs. confidence curves, indicating 
how many true positives the model finds at different 
confidence levels. Initially, it detects many diseases even with 
low confidence, suggesting a good sensitivity. However, as the 
confidence threshold increases, the model becomes stricter. 
Figure 11(c) shows the precision-recall curve, which visualizes 
the trade-off between precision and completeness (recall). The 
model starts by selectively prioritizing accuracy. As it tries to 
capture more diseases, it includes some false positives. The 
peak shows the optimal balance, where it identifies many 
diseases while maintaining good accuracy. The chosen 

threshold determines the specific precision-recall values. 
Figure 11(d) shows the F1-confidence curve, which combines 
precision and recall and is a measure of balanced performance 
at different confidence levels. The peak indicates the 
confidence level where the model achieves the best balance 
between precision and recall for this specific dataset. 

 

 
Fig. 10.  Performance results. 

 

 
Fig. 11.  (a) Precision-confidence, (b) recall-confidence, (c) precision-recall, 

and (d) F1-confidence curves. 

The confusion matrix in Figure 12 shows the model's 
performance in different types of tomato diseases. Each cell 
shows how often the model confused one disease for another, 
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or correctly identified it. For example, 51 "blossom end rot 
rotation" instances were correctly identified, while 8 were 
misclassified. In general, the model achieved 66.67% accuracy 
across all diseases. However, this masks differences in 
performance for each disease. Table I illustrates the precision, 
recall, and accuracy of each class in the chosen model. 

 

 
Fig. 12.  Confusion matrix. 

TABLE I.  PRECISION AND RECALL FOR EACH CLASS IN 
THE MODEL 

 
Blossom end rot 

rotation 

Splitting 

rotation 

Sun scaled 

rotation 

Precision 86.44% 74.07% 85.71% 

Recall 70.84% 90.90% 66.67% 

Accuracy  82.50% 50.00% 67.10% 

 

V. CONCLUSION 

This study trained the YOLOv8 model to automatically 
detect three tomato fruit diseases. Although the overall 
accuracy was 66.67%, discriminatory disease detection 
occurred. Although the splitting rotation was accurately 
identified, the visual similarity between blossom end rot and 
sun-scaled rotation posed difficulties. Although the precision 
for blossom end rot rotation remained satisfactory at 86.44%, 
the recall of 70.84% indicates the possibility of overlooking 
genuine instances of the disease. The recall and precision for 
sun-scaled rotation were 66.67% and 85.71%, respectively, 
suggesting that there is potential to improve the ability to 
classify this category with greater accuracy. The model 
performed exceptionally well in identifying dividing rotation 
with a high recall of 90.90% and a precision rate of 74.07%. 
The limitations mentioned can be ascribed to intrinsic visual 
similarities among diseases, which can complicate the precision 
of the identification process. 

Future work should focus on addressing data imbalance by 
adding healthy class, data collection or augmentation, 
exploring alternative architectures or incorporating domain 

knowledge, and evaluating disease-specific metrics for a more 
practical perspective. These improvements can pave the way 
for a robust and reliable automated tomato disease detection 
system, enhancing crop monitoring and contributing to 
sustainable agriculture. 
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