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ABSTRACT 

In this study, the Digital Shadow (DS) of the Shell and Tube Heat Exchanger (STHE) is designed and 
analyzed for numerous disturbances that occur when the system is in a running condition. The disruptive 

segregation of the heat exchanger is related to the DS for its operation, and thus a realistic DS was 

developed for the STHE. Fuzzy Logic (FL) was used to identify and segregate the disturbance signals from 

the process output. The Response Optimization (RO) algorithm was adopted and modified to work on the 

STHE. The observer-based residual generator design was implemented to prevent system failure and 

defective conditions. Model Predictive Controller (MPC), Transposed System Controller (TSC), and a 

looping-based control technique called Unity Response Loop (URL) were also implemented, and the results 

are discussed. The findings of this study contribute to the improvement of the overall performance of non-
linear systems in industrial processes and the avoidance of defects. 

Keywords-controller design; digital shadow; fuzzy logic; heat transfer 

I. INTRODUCTION  

The Digital Shadow (DS) of a process encapsulates unique 
data consisting of observable digital behaviors, activities, 
impacts, and contacts that have shown evidence on digital 
devices or cloud-based systems. Generally, the DS monitors 
the process without visiting the installation field. In addition to 
that, a process can interact with its DS. This implies that there 
must be an effective way to share data between the device and 
its shadow, through either a wired or a wireless channel. Since 
the communication is better enabled between the process and 
the DS, the response of the physical system will be replicated 
in the DS’s output. Also, the disturbance that takes place in the 
system is monitored with the aid of the DS. A Cyber-Physical 
System (CPS) integrates a physical asset and a digital twin. In 
industry 4.0, CPS is found to be an important technology to 
monitor health and production planning [1]. The DS is 
responsible for collecting data from the machine and generating 
future data, but in the case of simulation, the generation of new 
data is impossible. This is the significant difference between 
the DS and the simulation. The steps to achieve the dynamic 
process of a heat exchanger are calculated using heat exchange 
parameters, whereas there are practical constraints involved in 

the modelling of the heat exchanger. Once the dynamic system 
is achieved, the next step is to qualify the interaction between 
the physical system and the designed digital one. This further 
makes the digital model a DS of the system. 

Generally, there are two steps in the classification or 
diagnosis process. One is fault identification or residual 
generation, and the other is used to classify the identified faults, 
mainly depending upon the threshold value. To reduce the 
deviations occurring in the output response, some kind of 
control is required. Different types of controllers are employed 
to control these deviations. Every industrial process has 
different types of faults or disturbances in its output. Similarly, 
hydraulic systems have some common faulty conditions. Faults 
are defined as the difference between the actual and the desired 
result/ouput. Leakages in pipelines, calibration errors in 
sensors, and environmental conditions are the most common 
causes which change the system parameters and cause 
malfunctions in the hydraulic systems [2]. Based on the fault 
tolerance property, fault failures are majorly ranked into two 
categories, namely partial fault failures and total fault failures. 
When a process has an abnormality, a specific diagnostic 
classifier will be employed to picturize the faults. Finding, 
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separation, and categorization are the three important key 
points of fault analysis which will be primarily done through 
the modeling of a physical system. In this work, the proposed 
idea is to perform fault analysis through the DS. 

By setting a variable or fixed threshold value on the 
generated residual signals, the faults are detected with the help 
of the DS and the difference between the actual measurements 
and the estimated output is noted. The system can be addressed 
as a residual generator if an algorithm is employed to generate 
the residuals [3]. Generation and analysis of the residuals can 
be completed through fuzzy logic. However, in this paper, the 
Luenberger Observer is deployed to generate the residuals [4] 
and the fuzzy logic system analyzes them. A non-zero D matrix 
represents a system with a transfer function with a relative 
degree of zero and the same number of poles as zeros. The 
magnitude of the output would reach a constant value at very 
high frequencies instead of zero. In general, the looping 
concept is introduced to reduce the error value of the process. 
Nevertheless, the proposed URL [5] significantly decreases the 
error and makes the output resemble the desired input using the 
former’s algorithm without the application of any external 
controllers. Also, this method does not affect the dynamics of 
the digital system, which receives the data from the physical 
system. 

II. DATA ACQUISITION AND PARAMETER 
ESTIMATION 

An industrial IoT-based sensor system is deployed to 
acquire the physical parameters of the heat exchanger. A DS 
should relate to the physical system to collect the information 
through the proper communication channel [6, 7]. The digital 
system will work based on the collected parameters from the 
real system. A suitable parameter estimation algorithm should 
be adopted to calculate the values. The Logarithmic Mean 
Temperature Difference (LMTD) is selected to calculate the 
overall heat transfer coefficient. 

III. OPTIMAL PID CONTROL 

Optimization is the process of selecting the most 
appropriate range or value for adjustable parameters. Within 
the optimization plane, the appropriate parameter value is 
chosen and utilized to achieve the desired output. There is an 
increasing variety of optimization methods available for 
purchase. The Response Optimization (RO) technique is a 
straightforward and efficient approach for optimizing the 
parameters. The PID controller manages the virtual heat 
exchanger by the utilization of the RO algorithm. Nevertheless, 
it is intricate and characterized by strong non-linearity. The 
PID controller, optimized and tuned using the RO algorithm, is 
utilized to regulate the digital representation of the heat 
exchanger. The controller's settings are detailed in Table I. 

TABLE I.  CONTROLLER PARAMETERS 

 PID Optimal PID 

Kp 0.3674 0.0980 

Ki 2.1552 1.0923 

Kd 1.0215 0.2533 
 

IV. MODEL PREDICTIVE CONTROL  

The controlled variable should be specific and have a 
desired value. The process model is implemented to achieve 
that, and it calculates the perfect changes of the Manipulated 
Variables (MVs) [8]. Now the model is replaced by the DS of 
the system. The output variables are measured at all time 
instants. After that, the optimization algorithm is applied to 
compute the associated alterations in the MVs for some instants 
in the future [9, 10]. 

The changes are made first, and the controlled variables 
have a certain effect due to these changes. At the next time 
instant, the optimization problem receives the new values of the 
measured controlled signals to get the updated values of the 
MVs. 

 

 
Fig. 1.  Model predictive control horizons. 

V. TRANSPOSED SYSTEM CONTROL 

The proposed Transposed System (TS) controller is very 
powerful when compared to the other classical controllers. It is 
designed in such a manner that it will effectively reduce the 
error value. The TS controller achieves the best results with a 
simple arrangement and by simply transposing the A, B, C, and 
D matrices. The structure of the TS controller is depicted in 
Figure 2. The controller structure is equivalent to that of the 
state-space model of the process. The TS controller is 
mathematically represented in (1) and (2): 

x ����t� � A�x�t� 
 C�e�t�   (1) 

u�t� � B�x�t� 
 D�e�t�   (2) 

From the structure portrayed in Figure 2 e(t) = r(t) − y(t)=> 

u�t� � B�x�t� 
 D��r�t� � y�t��  

u�t� � B�x�t� 
 D��r�t� � �Cx�t� 
 Du�t���  

u�t� � B�x�t� 
 D�r�t� � D�Cx�t� � D�Du�t�  

u�t� � �B� � D�C�x�t� 
 D�r�t� � D�Du�t�   

u�t� 
 D�Du�t� � �B� � D�C�x�t� 
 D�r�t�   

�I 
 D�D�u�t� � �B� � D�C�x�t� 
 D�r�t�   

u�t� � ���������
������� � x�t� 
 � ��

�������� ��t�  
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u�t� � �B� � D�C 
  !�D�D��" � CD�"� x�t� 
 �D� 

D�"�r�t�      (3)  

where u(t) is the controller output that goes to the system 
as an input. To get the system response for the input u(t), 
(3) is substituted by output y(t) and state x(t). 

 

 
Fig. 2.  Structure of the TS controller. 

y�t� � Cx�t� 
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y�t� �
�C
DB� � DD�C 
 D !�D�D��" � DCD�"� x�t� 
 �DD� 

DD�"�r�t�     (4) 

x ,�t� � Ax�t� 
 Bu�t�  

x ,�t� � Ax�t� 
 B��B� � D�C 
  !�D�D��" �
CD�"� x�t� 
 �D� 
 D�"�r�t��  

x ,�t� � Ax�t� 
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 � D� 
 BD�"�r�t�   (5) 

For a better understanding, (4) and (5) are rewritten as (6) 
and (7): 

x ,�t� � A∗x�t� 
 B∗r�t�   (6) 

Y(t)= C∗x�t� 
 D∗r�t�    (7) 

where: 

A∗ �  A 
 BB� � BD�C 
   !�D�D��" � BCD�"  

B∗ �   D� 
 BD�"  

C∗ � C
DB� � DD�C 
 D !�D�D��" � DCD�"  

D∗ � DD� 
 DD�"  

These are the state, input, output, and direct feedthrough 
matrices with the impact of the TS controller, respectively. The 
closed-loop gains (A∗, B∗, C∗, and D∗) are investigated through 
calculating the observability and controllability matrices and 
ranks. This results in a system with the TS controller being 
fully observable and fully controllable. 

VI. UNITY CONTROL LOOP 

Unity Response Loop (URL) is a simple looping concept 
that can control any system in a very strong manner. URL 
applies to both transfer function and state-space models. To 
control the system, the URL is not going to use any 
components from the system. The structure of the URL is 
exhibited in Figure 3. 

 

 
Fig. 3.  Structure of the URL controller. 

u�t� � r�t� � �r�t� � y�t��  
u�t� � r�t� � r�t� 
 y�t�  

u�t� � y�t�      (8) 

Equation (8) is substituted by the output equation y(t): 
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�I � D�y�t� � Cx�t�   
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���� x�t�   

y�t� � ��
" � �

�� x�t�  
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Equation (8) is substituted by the in state equation x’(t): 

& ��'� � (&�'� 
  )�'�    (10) 

Equation (9) is substituted in (10): 

& ��'� � (&�'� 
  ��C � CD�"�x�t��  
& ��'� � (&�'� 
 � C �  CD�"�x�t�    

& ��'� � �( 
  C �  CD�"�x�t�   (11) 

where:  

( 
  C �  CD�" � (⨀   

C � CD�" �  ⨀   

So, (9) and (11) can be written as: 

x ��t� � A⨀x�t�     (12) 

y�t� � B⨀x�t�     (13) 

Equations (12) and (13) are, respectively, the state and 
output equations of the closed loop system with URL. These 
equations explain the effect of URL on a state space model. 
Both equations are only affected by the state x(t). 

VII. FAULT CLASSIFICATION 

An undetermined fluctuation from the standard, acceptable, 
or usual condition of at least one system parameter or process 
characteristic property is called a fault. To ensure mapping is 
performed to confirm the robustness of inherent fluctuation in 
the detected trends, the fuzzy reasoning technique is proposed 
[11-12]. Fault diagnosis includes identification of the type, 
location, time, and size of the detected fault. A collection of 
physically interchangeable if-then rules, collectively known as 
the fuzzy rule base (Figure 4), interfere with the process. They 
are used to estimate the amplitude of faults [13]. The residuals 
generated and the threshold values (Table II) for three different 
faults are given as inputs to the fuzzy system.  

TABLE II.  MAGNITUDE RANGE AND ITS RESPECTIVE 
FAULT TYPE 

Magnitude 

Range (dB) 

Sensor 

fault 

Actuator 

fault 

Process 

fault 

0 to 10 - - ✓ 

10 to 15 - ✓ - 

15 to 40 
✓ - - 

< 0 - - - 
 

 
Fig. 4.  Fuzzy rule viewer for the classification of different faults from the 
generated residual signal. 

Based on the threshold values, the residual is classified into 
3 different types (Table III). The classified faults are sensor 
fault, actuator fault, and process fault [14]. 

TABLE III.  FAULT TYPE AND ITS VALUE 

Type of fault Value given by fuzzy logic 

Sensor Fault 4.64e−16 

Actuator Fault −9.77e−17 

Process Fault 1.16e−16 
 

VIII. RESULTS 

The DS of the shell and tube heat exchanger is successfully 
designed and compared with the output of the physical heat 
exchanger. The shadow gets data from the physical system and 
works based on the controller actions. To obtain the response 
of the DS, controllers, such as optimal PID, Model Predictive 
Control (MPC), Transposed System Controller, and Unity 
Response Loop are proposed. The effect of the Optimal PID 
controller on cold liquid temperature is manifested in Figure 5.  

 

 
Fig. 5.  The cold fluid output temperature. 

The Optimal PID controller is powered by the response 
optimization algorithm, which gives the controlled output or 
the approximately desired output [15]. Figure 6 illustrates the 
hot output of the heat exchanger with the optimal PID control 
action.  

The responses are settled, but the settling time is very high. 
Because of this, the DS took much time to make decisions on 
the physical system. The MPC algorithm was implemented to 
reduce the setting time. The open-loop response of the TITO 
transfer function model of the heat exchanger is detected in 
Figure 7. 

Since the response is obtained through the linearized model, 
the system gives the settled output, but the responses widely 
deviate from the respective desired setpoints. 

The MPC fabulously contributed to reducing the settling 
time of the response. In Figure 8, the response of the cold fluid 
output temperature is followed in every instance and settles 
near to it with a small-time difference [16]. 
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Fig. 6.  Hot fluid output temperature. 

 
Fig. 7.  Open loop response of the system along with its setpoints. 

 
Fig. 8.  The effect of MPC on the response of cold fluid output temperature 
with its setpoint. 

Figure 9 demonstrates the effect of the MPC controller on 
the responses of the cold and hot fluid outlet temperatures. 
Depending upon the step-change in the reference signal, the 
servo tracking of cold inlet flow rate takes place on the 
response of the system as the MPC control action. The 
controller makes the manipulated variables attain the reference 
value in all step changes [17]. Once the error value is 
minimized, the controller renders the MVs stable. To get an 
error-free response and overcome the drawbacks of Optimal 
PID and MPC, the TS controller is proposed.  

 
Fig. 9.  Controlled responses of cold and hot fluid outlet temperatures. 

The final response of the TS controller is spotted in Figure 
10. The input change is occurring at t = 4. After that, the 
controller is making the system response follow the reference 
signal r(t). This quality makes the TS controller more suitable 
for controlling linear time-invariant systems. The system 
response is exactly settled on the reference signal provided to 
the system. Figure 10 shows that the controller extremely 
minimized the error e(t). Every controller’s performance is 
determined based on the error value and the acquired value of 
the error is very close to zero.  

 

 
Fig. 10.  Setpoint vs response of the system with the TS controller. 

If the error value is minimal, then the controller 
performance is considered good. The proposed TS controller 
works well on the system with and without the D matrix. 

The URL does not depend on the effect of the input u(t). 
So, the equations do not consist of the input matrix B and the 
direct feedthrough matrix D. URL eliminates the D matrix 
from the output equation. The system output y(t) is equal to the 
value of the input, u(t). At t = 0, the u(t) is equal to r(t). It is 
obvious that y(t) = r(t) Since u(t) = r(t) at the initial state, the 
output equation is fully dependent on the value of x(t). So, it 
produces the actual reference signal r(t) as the output y(t). 

The obtained response from the system with the URL is 
displayed in Figure 11. The output y(t) replicates the reference 
signal r(t). A fuzzy inference system is used to classify the 
residuals generated by the Luenberger Observer. The 
Luenberger Observer takes the DS's input and the output 
signals as input.  
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Fig. 11.  System response with the URL controller. 

 
Fig. 12.  Residual signal generated by the Luenberger Observer. 

Based on this signal, the Luenberger Observer generates the 
residual signal as disclosed in Figure 12. However, the 
identified residual signal consists of more than one faults. The 
combined signal is given to FIS to segregate the faults from the 
residual signal. The fuzzy rule base will be used to classify the 
faults from the residual signal. The rules are constructed in 
terms of membership functions. They could be classified based 
on the amplitude of faults. 

 

 
Fig. 13.  Segregated process fault. 

A total of three faults are segregated from the residual 
signal utilizing FIS. Out of them, the process fault is exhibited 
in Figure 13. Given that the amplitude is very low, the fuzzy 
system gives a complex waveform. The other two faults have a 

negligible effect on the process. Considering this, only the 
process fault is presented in this paper. 

IX. CONCLUSION 

This study focused on the design and examination of the 
Digital Shadow (DS) of a heat exchanger in conjunction with a 
physical shell and tube heat exchanger. The integration of an 
IoT-based sensor unit facilitated data collection, bringing the 
DS to life. Through the application of a response optimization 
algorithm, the parameters of the PID controller were fine-tuned 
to mitigate process interaction inherent in MIMO systems. The 
optimized PID controller, powered by the response 
optimization algorithm, ensured system responses were stable 
and accurately settled at the reference value. To further 
enhance performance, Model Predictive Control (MPC) was 
introduced to minimize the settling time, resulting in quicker 
attainment of steady-state values. The proposed Transposed 
System (TS) controller exhibited superior response compared 
to both Optimal PID and MPC, delivering precise and prompt 
responses without delays at the setpoint. Additionally, the 
effectiveness of the fuzzy-based fault segregation was 
demonstrated, successfully identifying and classifying major 
faults based on their amplitude. 

This study competently uses the DS to regulate the heat 
exchanger mechanism. The integrated approach optimized 
controller parameters and shortened the settling time, 
enhancing control and fault detection capabilities. With the 
goal of improving the heat exchanger system performance and 
reliability, this research offers significant new insights into the 
implementation of advanced control techniques and DS.  
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