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ABSTRACT 

This paper introduces a novel approach to improve security in dynamic network slices for 5G networks 

using Graph-based Generative Adversarial Networks (G-GAN). Given the rapidly evolving and adaptable 

nature of 5G network slices, traditional security mechanisms often fall short in providing real-time, 

efficient, and scalable defense mechanisms. To address this gap, this study proposes the use of G-GAN, 

which combines the strengths of Generative Adversarial Networks (GANs) and Graph Neural Networks 
(GNNs) for adaptive learning and anomaly detection in dynamic network environments. The proposed 

approach utilizes GAN to generate realistic network traffic patterns, both normal and adversarial, whereas 

GNNs analyze these patterns within the context of the network's graph-based topology. This combination 

facilitates the early detection of anomalies and potential security threats, adapting to the ever-changing 

configurations of network slices. The current study presents a comprehensive methodology for 

implementing G-GAN, including system architecture, data processing, and model training. The 

experimental analysis demonstrates the efficacy of G-GAN in accurately identifying security threats and 
adapting to new scenarios, revealing that G-GAN outperformed established models with an accuracy of 

97.12%, precision of 96.20%, recall of 97.24%, and F1-Score of 96.72%. This study not only contributes to 

the field of network security in the context of 5G, but also opens avenues for future exploration in the 
application of hybrid AI models for real-time security across various domains. 

Keywords-accuracy; adaptively learning; anomaly detection; generative adversarial networks; graph neural 

networks 

I. INTRODUCTION  

The rapid evolution of wireless communication systems has 
put forth a demand for a diverse range of services to meet the 
varying requirements of applications, such as enhanced Μobile 
Βroadband (eMBB), ultra-Ρeliable and Low-Latency 
Communication (uRLLC), and massive Machine Type 
Communication (mMTC). For example, eMBB applications 
demand high throughput for activities, like virtual reality and 
video streaming, whereas uRLLC services require low latency 
and high reliability for critical tasks such as autonomous 
driving. Similarly, mMTC services, which cater to sensing and 
monitoring applications, require a widespread connectivity. 
However, traditional network architectures struggle to 
effectively meet these diverse service needs. Network slicing is 
a concept introduced in 5G networks that enables the provision 
of tailored services with diverse requirements through a unified 
network infrastructure. Figure 1 shows how the network slicing 
framework can perform several services concurrently with 
access, transport, and core network slices. The core network 
slice includes the control plane and the user plane, offering a 
mix of shared and exclusive functions across different slices. 
Functions, such as the Session Management Function (SMF), 
Mobility Management Function (MMF), User Plane Function 
(UPF), and Policy Control Function (PCF) are examples of this 
provision. In particular, key industry players, such as Ericsson 

and Nokia, have developed and implemented their own 
versions of network-slicing solutions tailored to their specific 
market needs [1]. 

 

 
Fig. 1.  Network slicing for 5G networks. 
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The network slicing business model, as illustrated in Table 
I, includes various essential components and crucial entities for 
its operation. These entail the Network Slicing Instance (NSI), 
Network Slicing Subnet Instance (NSSI), logical network, 
Network Sub-Slice (NSS), Network Slicing Template (NST), 
network segment, Network Function Virtualization (NFV), 
Software-Defined Networking (SDN), network slicing 
manager, communication service manager, resource slice, 
network slicing provider, network slicing terminal, network 
slicing tenant, network slicing repository, slice border control, 
slice selection function, infrastructure owner, infrastructure 
slice, infrastructure slice provider, and infrastructure slice 
tenant [2, 3]. Each element plays a specific role in managing 
the lifecycle of a network slice. For example, the NSI 
represents a collection of comprehensive logical networks that 
offer varied services tailored to specific needs, including 
multiple subslice instances. 

TABLE I.  KEY COMPONENTS AND ROLES IN NETWORK 
SLICING ARCHITECTURE 

Component Role 

Network Slicing Instance 

(NSI) 
Represents a set of logical networks. 

Network Slicing Subnet 

Instance (NSSI) 

Denotes localized logical networks within a slice, 

shareable across multiple NSIs. 

Network Sub-slice (NSS) A subdivision within an NSI. 

Network Slicing 

Template (NST) 

Preset configurations for creating NSIs with 

predefined characteristics. 

Network Function 

Virtualization (NFV) 

Technology enabling the virtualization of network 

functions for flexible deployment and management. 

Software-Defined 
Networking (SDN) 

A networking approach that enables programmable 

network configurations, aiding in the creation and 

management of network slices. 

Communication Service 

Management Function 

(CSMF) 

Manages communication and updates slice 

requirements. 

Network Slice 

Management Function 

(NSMF) 

Manages NSIs and responds to requirements from 

the CSMF. 

Network Slice Subnet 

Management Function 

(NSSMF) 

Manages NSSIs as specified by the NSMF. 

 
In contrast, NSSI denotes the localized logical network 

within a slice that can be shared across multiple NSIs. Logical 
networks are virtual representations of network functions 
established on a single physical network. The network slicing 
manager is instrumental in managing the complete lifecycle of 
each slice or sub-slice through various management functions. 
These include the Communication Service Management 
Function (CSMF), Network Slice Management Function 
(NSMF), and Network Slice Subnet Management Function 
(NSSMF). CSMFs oversee the management, communication, 
and the updating of slice requirements to support service 
requests via the communication service manager. NSMFs 
manage NSIs based on notifications from CSMFs, whereas 
NSSMFs handle NSSIs according to NSMF specifications. 
Network slicing requirements cover various aspects, including 
network type, capacity, Quality of Service (QoS), latency, 
security level, device count, and throughput. The resource slice 
comprises the physical and virtual resources needed for the 
network slices to function. The network slicing provider owns 

the physical infrastructure where multiple slices are created, 
while the network slicing tenant refers to the NSI users who 
deliver specific services to customers. The infrastructure owner 
possesses the physical infrastructure, whereas the infrastructure 
slice provider owns the infrastructure and leases it for hosting a 
variety of services through network slicing. Infrastructure slice 
tenants are users of the infrastructure slice itself [4]. 

A. Background 

The emergence of 5G technology signifies a crucial 
transformation in the telecommunication landscape, 
introducing speeds, latency, and connectivity of an 
unprecedented nature. This technology is not merely an 
incremental advancement in bandwidth but represents a 
fundamental shift in the fabric of network architecture, opening 
avenues for groundbreaking applications, namely the Internet 
of Things (IoT), autonomous vehicles, smart urban ecosystems, 
and enhanced mobile broadband [5]. At the core of the 5G's 
operational capability lies the innovative concept of dynamic 
network slicing. This avant-garde architectural design allows 
the partitioning of a physical network into multiple, distinct 
virtual networks. Each of these networks is designed to cater to 
specific application demands, service requirements, or device 
utilities, thus ensuring a versatile and efficient network 
ecosystem [6]. Such an arrangement not only optimizes the 
network for thousands of service demands, ranging from high 
bandwidth to paramount reliability, but also ensures the 
coexistence of diverse service demands on a shared physical 
infrastructure. However, the complex and dynamic 
characteristics of 5G networks, especially when coupled with 
network slicing, introduce an array of security challenges. 
Being quasi-independent and serving unique functionalities, 
each slice presents its distinct security landscape and potential 
vulnerabilities [7]. The fluid nature of these slices, with 
capabilities for spontaneous creation, modification, or 
decommissioning, necessitates a security paradigm that is not 
only robust and comprehensive, but also inherently adaptive 
and capable of real-time evolution in response to emerging 
threats. Security in such a layered and complex environment is 
not just critical. It is paramount. A security lapse in a single 
slice has the potential to compromise the entire network, 
leading to severe service disruptions, critical data breaches, and 
a compromise of user privacy. Therefore, the advent of 5G and 
its subsequent network-slicing innovation mandates a security 
mechanism that is proactive, intelligent, and capable of 
responding to threats and more importantly anticipating and 
neutralizing them effectively and efficiently. 

Generative Adversarial Networks (GANs) and Graph 
Neural Networks (GNNs) stand out as beacons of hope. These 
networks harness the power of advanced Machine Learning 
(ML) to simulate and comprehend complex network behaviors 
and also to predict potential vulnerabilities and provide 
actionable insights to enhance security measures. By 
integrating GANs and GNNs into the fabric of 5G network 
slices, a dynamic and intelligent security framework is 
envisioned. This framework comprehends the unique demands 
of each slice and adapts its protective strategies in real-time, 
thus ensuring a secure, resilient, and robust 5G infrastructure. 
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B. Problem Statement 

The dynamic and flexible nature of 5G network slices, 
while being a cornerstone for customized and efficient service 
delivery, introduces a spectrum of security challenges. Each 
network slice, acting as an isolated network with its specific 
configurations and service requirements, presents a unique 
security landscape. The challenges in ensuring security in these 
dynamically changing network slices include: 

 Complexity of Configuration: Each slice can be configured 
differently, making the establishment of an one-size-fits-all 
security protocol impractical [8]. 

 Rapid Scalability: Network slices need to be rapidly scaled 
up or down based on demand, which can introduce 
vulnerabilities during scaling operations [9]. 

 Slice Isolation: Ensuring strict isolation between slices to 
prevent a breach in one slice from affecting others is 
challenging [3]. 

 Evolving Threat Landscape: The open and interconnected 
nature of 5G networks makes them susceptible to a wide 
array of evolving security threats [10, 11]. 

 Real-time Detection and Response: The ability to detect and 
respond to threats in real-time is crucial but difficult due to 
the dynamic nature of network slices [12]. 

C. Research Objectives 

The primary objective of this study is to explore and 
validate the efficacy of Graph-based GANs (G-GANs) for 
adaptive learning in dynamic network slices. This study aims to 
achieve the following objectives: 

1. Develop an Adaptive Security Framework: Design a G-
GAN-based framework that can adapt to the unique 
configurations and requirements of each network slice, 
ensuring tailored security measures. 

2. Real-time Anomaly Detection: Implement a system capable 
of real-time monitoring of network traffic, capable of 
detecting anomalies and potential threats swiftly and 
accurately. 

3. Dynamic Learning and Evolution: Leverage the adaptive 
learning capabilities of G-GANs to continuously evolve 
security measures in response to new threats and changes in 
network behavior. 

II. LITERATURE REVIEW 

A. Existing Methods and Technologies in Network Security 

The concept of network security, particularly in the context 
of dynamic network slices in 5G networks, has been the subject 
of extensive research and development efforts. Traditional 
security mechanisms often fall short of addressing the unique 
and evolving challenges posed by these advanced networks. 

1) Traditional Security Mechanisms 

Traditional security solutions, such as firewalls, Intrusion 
Detection Systems (IDSs), and antivirus software, have been 
foundational in protecting network infrastructures. However, 

their efficacy diminishes in the context of 5G network slices 
owing to the dynamic nature and heterogeneity of the services 
involved. These solutions are typically designed for static 
network environments and are not equipped to adapt to the 
rapid changes and scalability requirements of network slices 
[8].  

2) Virtualization-based Security Approaches 

With the advent of virtualization technologies, such as NFV 
and SDN, security approaches have evolved to leverage these 
platforms for enhanced protection. NFV allows the 
virtualization of network functions, enabling flexible and rapid 
deployment of security services. SDN, on the other hand, 
separates the control plane from the data plane, providing a 
centralized view of the network that can be crucial for security 
monitoring and policy enforcement [13]. The utilization of 
SDN in network slicing represents a paradigm shift in network 
security, offering a more agile and responsive framework. By 
decoupling the network's control logic from the physical 
devices, SDN provides a centralized control plane. This 
centralization is instrumental in competently implementing and 
orchestrating security policies across the network's various 
slices. It facilitates a comprehensive view of the network state, 
crucial for timely threat detection and policy enforcement [14]. 
However, these technologies also introduce new attack surfaces 
and complexities in security management, particularly in 
orchestrating security policies across different virtualized 
functions and slices [15]. 

3) AI and ML-based Security Solutions 

Artificial Intelligence (AI) and ML have emerged as 
powerful tools to detect and mitigate security threats in 
dynamic network environments. These technologies enable the 
analysis of large volumes of network data to identify patterns 
indicative of malicious activities. ML models can adapt and 
improve over time, offering the potential for proactive and 
predictive security measures [16]. However, the deployment of 
AI and ML in network security is not without challenges. The 
quality and integrity of the training data, the risk of adversarial 
attacks on the models, and the computational resources 
required for processing are significant considerations [17]. 

4) Blockchain-based Security Frameworks 

Blockchain technology has also been explored for securing 
network slices, primarily because of its inherent properties of 
decentralization, transparency, and immutability. Blockchain 
can facilitate secure and transparent transactions between 
different stakeholders in a network-slicing ecosystem, from 
service providers to users. It can also be used to securely 
manage the lifecycle of network slices and enforce access 
control policies [18]. However, integrating the blockchain into 
network slicing frameworks presents challenges, entailing 
scalability issues and the computational overhead associated 
with consensus mechanisms. 

B. Adaptive Dynamic Learning 

Adaptive dynamic network slicing is fundamental in 
realizing the full potential of 5G networks, allowing the 
customization and optimization of network resources in real 
time to meet diverse service requirements. The surge in 5G 
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applications, from IoT to smart cities and intelligent vehicular 
systems, demands an unprecedented level of network 
scalability and efficiency. Some recent advances in Adaptive 
Dynamic Slicing are discussed below. 

1) DLVisor 

The aim of [14] was to advance the vSDN technology by 
introducing an enhanced proactive dynamic slice resource 
allocation mechanism. This mechanism aims to optimize traffic 
delivery and resource utilization across virtual networks. This 
approach proposed an intelligent forecasting model for vSDN 
slice resource utilization, leveraging advanced statistical and 
ML techniques. This model was designed to dynamically adjust 
to concept drifts in network demand, informing the 
development of a resource allocation mechanism tailored for 
vSDN environments. The efficiency of the dynamic forecasting 
resource allocation mechanism was validated using real 
network traces from various sources. Impressively, the 
DLVisor, ameliorated by its Dynamic Learning Framework 
(DLF), demonstrated the potential to eliminate overutilization 
and resource starvation by 100% compared to the existing 
benchmarks. This achievement highlights the significant 
promise of incorporating dynamic learning and ML techniques 
to improve the flexibility and efficiency of vSDN resource 
management, setting a new standard for adaptive network 
slicing in the era of advanced networking technologies. 

2) Deep Reinforcement Learning 

In [19], the critical issue of network slicing in the evolving 
IoT landscape was highlighted, particularly focusing on the 
efficient allocation of limited resources at the network edge, 
represented by Fog Nodes (FNs), to meet the diverse latency 
and computing demands of mobile and smart city users in 
dynamic environments. The proposed approach centered 
around a network-slicing model that leveraged a cluster of FNs, 
all coordinated by an Edge Controller (EC). This setup was 
designed to optimize resource utilization at the network edge 
by making strategic decisions for each service request: either 
processing the task locally within the edge or, when necessary, 
relegating it to the cloud. The complexity of this problem was 
addressed through the formulation of an infinite-horizon 
Markov Decision Process (MDP). To navigate this complex 
decision-making landscape, a solution grounded in Deep 
Reinforcement Learning (DRL) was proposed. This DRL-
based approach was designed to adaptively learn the optimal 
slicing policy by continuously interacting with and learning 
from the environment. Such a method promises to improve the 
efficiency of resource allocation and additionally to imbue the 
network slicing process with the ability to dynamically adapt to 
the changing conditions in vehicular and smart city 
environments. The efficiency of this DRL-based slicing method 
was rigorously evaluated against other slicing strategies across 
various dynamic scenarios and design objectives. The 
comprehensive simulation results confirmed the superior 
performance of the proposed method, demonstrating its rapid 
adaptation to the optimal policy for efficient and automated 
network slicing. This study stressed the potential of DRL to 
manage the complexities of network slicing in 5G and set a 
new benchmark for adaptive and intelligent resource allocation 

in the rapidly evolving domains of intelligent vehicular systems 
and smart city infrastructure. 

3) Intent-Based Network Slicing Framework (IBNSlicing) 

The IBNSlicing framework [20] adopted an intent-based 
strategy, transforming how network slices are created and 
managed. By leveraging deep learning technologies, 
IBNSlicing automated the slice creation process, customizing 
each slice to meet specific service requirements and the 
purposes articulated by the network operator. This method 
simplified the complex task of network slice configuration, 
ensuring that each slice is precisely optimized to support its 
intended application for high-speed data services, low-latency 
applications, or massive IoT deployments. The intent-based 
approach of IBNSlicing marks a significant step forward in 
making network management more intuitive and aligned with 
the strategic objectives of network providers. 

4) Resource Orchestration using GANs 

The Industrial Internet of Things (IIoT) represents a frontier 
in intelligent manufacturing, harnessing the power of 5G/6G 
connectivity to facilitate seamless interaction between 
industrial production units. With the advent of network slicing 
in 5G and future networks, customized management and 
allocation of resources have become achievable, addressing the 
varied demands of diverse applications. In [21], network slicing 
was explored within a radio access network framework that 
included IIoT devices, involving base stations that share the 
same physical infrastructure. A deep reinforcement learning-
based technique was used for resource orchestration, designed 
to adapt to the variable service demands reflecting the 
environment's state value and the corresponding actions in 
resource allocation. The cognitive decision-making process 
was directed towards maximizing the optimal policy for IIoT 
rewards, focusing on achieving higher system throughput, 
Spectral Efficiency (SE), adherence to Service Level 
Agreements (SLA), and improved transmission packet rates, 
while simultaneously minimizing power consumption and 
transmission delays. This study deployed GAN-based deep-
distributional Noisy Q-Networks (GAN-NoisyNet) to master 
the action-value distribution learning process. This was further 
advanced by the introduction of GAN-NoisyNet dueling, which 
incorporated a dual generator mechanism to estimate both the 
action advantage function and the state value distribution. This 
high-level approach allows for a more precise and efficient 
orchestration of network resources, tailored to the specific 
needs of IIoT applications. 

C. Gaps in the Existing Literature 

While the existing research provides a foundational 
understanding and initial solutions for securing dynamic 
network slices in 5G networks, certain gaps persist that need to 
be addressed. These gaps present opportunities for further 
research and development in the realm of network security. 

1) Limited Adaptability to Dynamic Environments 

Current security solutions often lack the flexibility and 
adaptability required to cope with the highly dynamic and 
rapidly evolving nature of network slices. Traditional security 
mechanisms are designed for relatively static network 
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environments and may not respond effectively to real-time 
changes in network configurations and usage patterns [8]. 

2) Scalability Challenges 

As the number of network slices increases, the scalability of 
security solutions becomes a critical issue. Current approaches 
may not be efficient or robust enough to manage the security of 
a large number of slices, each with distinct characteristics and 
requirements [22]. 

3) Insufficient Real-time Anomaly Detection 

Real-time detection of anomalies and threats is crucial for 
the security of network slices. However, existing anomaly 
detection systems may not be swift or accurate enough to 
identify and mitigate threats in real time, especially in a high-
traffic 5G environment [16]. 

4) Challenges in Integrating AI and ML-based Solutions 

Although AI and ML offer promising solutions for 
predictive and adaptive security measures, integrating these 
technologies into existing network infrastructures presents 
challenges. These include issues related to data quality, model 
robustness, and the risk of adversarial attacks on the learning 
models [23]. 

5) Security Overhead in Virtualization Technologies 

Even though NFV and SDN technologies provide a flexible 
framework for deploying security services, they also introduce 
additional layers of complexity and potential security 
vulnerabilities. Managing and securing these virtualized 
functions across different network slices remains a significant 
challenge [15]. 

6) Need for Comprehensive Security Frameworks 

Current research lacks a holistic security framework that 
includes all the aspects of network slicing, from the creation 
and management of slices to the deployment of tailored 
security policies and the real-time monitoring and response to 
threats [1]. 

D. GANs for Adaptive Learning 

The selection of GANs for this research stems from their 
unique ability to generate synthetic data that can closely mimic 
real-world network traffic patterns and conditions. This feature 
is invaluable in creating a dynamic and self-learning network-
slicing environment, where predictive models can be trained on 
comprehensive and realistic datasets without the need for 
extensive real-world data collection, which can be challenging 
or infeasible in many network scenarios. GANs also offer 
significant advantages in identifying and adapting to novel 
security threats. By simulating potential attack vectors, GANs 
enable the development of robust defense mechanisms, 
enhancing the overall security posture of network slices. This 
predictive and adaptive capability of GANs makes them 
exceptionally suited to address the identified research gap, 
providing a forward-looking approach to network slice 
management that can dynamically evolve with the changing 
network conditions and requirements. 

III. THEORETICAL BACKGROUND 

A. Generative Adversarial Networks (GANs) 

GANs [24] consist of two neural networks, namely the 
Generator ( � ) and the Discriminator ( � ), which are 
simultaneously trained through adversarial processes. The 
generator aims to create data that resemble real data, whereas 
the discriminator evaluates the generated data against the actual 
data. Formally, the GAN model can be represented by the min-
max game played between � and �: 

�������	
��, � = ��∼�������× 

[������] +     ��∼����[����1 − ����!]  (1) 

where ��∼������� is the distribution of real data, and "��! is 

the distribution of the input noise to the generator. The 
generator � maps the input noise ! to the data space, while the 

discriminator �  involves adjusting the parameters #$  and #% , 

respectively, to minimize �'s ability to distinguish between real 
and generated samples. 

1) GANs for Data Analysis 

GANs are used for generating synthetic data, data 
augmentation, and unsupervised learning. The ability of GANs 
to create new data samples that are indistinguishable from real 
data makes them a powerful tool for data augmentation, 
especially when the availability of actual data is limited or 
imbalanced. GANs can be used to create diverse and realistic 
samples, thus enriching the dataset and improving the 
performance of machine learning models trained on it [25]. 

2) GANs in Network Security 

GANs have shown promising results in improving network 
security, especially in the domain of anomaly detection and 
IDSs [26]. In dynamic network slices of 5G networks, where 
traditional security systems may struggle to cope with the high-
speed and diverse nature of traffic, GANs can offer significant 
advantages. 

a) Anomaly Detection 

Anomaly detection in network traffic is a critical task to 
maintain the security of network slices. GANs contribute to this 
by learning the distribution of normal traffic patterns and 
identifying deviations that may indicate a security threat. Let & 
denote the input feature space of network traffic data, and 
&'()*+,  and &+'(*+,-  represent normal and anomalous data 

respectively. The discriminator �  in a GAN is trained to 
classify the inputs as either real (normal) or fake (anomalous). 
The objective function of the discriminator can be formulated 
as: 


�� = ��∼./012�3
   

[������] + ��∼����[����1 − ����!] (2) 

The generator �, on the other hand, tries to generate data ��! 
that mimics the normal traffic &'()*+,, making it challenging 
for � to distinguish between real and generated samples. The 
anomaly detection can be enhanced by setting a threshold 4, 
such that if ��� for a given sample �  is lower than 4 , �  is 
classified as an anomaly. 
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1 ←  �6 ��� 7 4  

0 ← �9ℎ;<=�>;  

This mechanism enables real-time detection of anomalies, a 
crucial aspect in maintaining the security of dynamic network 
slices [16]. The green distribution in Figure 2 represents the 
normal data with its probability density. The red distribution 
represents the anomalous data with its probability density. The 
blue dashed line marks the anomaly detection threshold. Data 
points that fall beyond the threshold toward the anomalous data 
side can be considered anomalies. This figure visually 
demonstrates how GANs differentiate between normal and 
anomalous network traffic, aiding in effective anomaly 
detection for network security in dynamic environments such 
as 5G network slicing. 

 

 
Fig. 2.  Anomaly detection with GANs. 

b) Intrusion Detection 

IDSs aim to identify unauthorized access or attacks on the 
network. GANs can improve the performance of IDSs by 
generating synthetic attack patterns for training, thus enhancing 
the system's ability to recognize and respond to actual attacks 
[17]. Let &+??+@A  represent attack data. The generator � tries to 
generate data ��! that closely resembles &+??+@A , whereas the 
discriminator � aims to distinguish between real and generated 
attacks. The training objective for the generator can be 
expressed as: 

����
�� = ��∼����[����1 − ����!] (3) 

The goal is to train � such that � cannot easily distinguish 
between &+??+@A  and ��! , thereby ensuring that the IDS is 
well-trained to detect various forms of attacks. As observed in 
Figure 3, the x-axis represents the False Positive Rate (FPR), 
indicating the proportion of normal data that are incorrectly 
classified as attacks. The y-axis represents the True Positive 
Rate (TPR), signaling the proportion of the actual attacks that 
are correctly detected. The orange line represents the ROC 
curve, demonstrating the trade-off between TPR and FPR at 
various threshold settings. The blue dashed line represents the 
no-skill classifier, which serves as a baseline for comparison. 
The Area Under the Curve (AUC) is a measure of the model's 
ability to distinguish between normal and attack data. A higher 
AUC suggests better performance. This figure illustrates the 

performance evaluation of IDS using the ROC curve, 
showcasing how GANs contribute to improving IDS 
performance by generating synthetic attack patterns for 
training. 

 

 
Fig. 3.  Intrusion detection with GANs: ROC curve. 

c) Security Parameter Optimization for Dynamic 

Network Environments 

The dynamic nature of 5G network slicing necessitates 
continuous optimization of security parameters based on the 
evolving threat landscape. GANs facilitate this through an 
iterative optimization process, enhancing the adaptability and 
responsiveness of security measures in the network [27]. Let #$ 

and #% represent the parameters of � and �, respectively, and 

B�#$, #% denote the loss function. The optimization can be 

formulated as a two-player min-max game where �  and � 
update their parameters iteratively: 

#%
�?CD = #%

�? − E% ⋅ GH�
B�#$

�?, #%
�?  (4) 

#$
�?CD = #$

�? − E$ ⋅ GHI B�#$
�?, #%

�?CD  (5) 

Here, E%  and E$  are the learning rates for �  and � , 

respectively. This iterative process ensures that both � and � 
are continuously learning and adapting, enhancing the overall 
security of the network slices. 

 

 
Fig. 4.  Security parameter optimization with GANs. 
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In Figure 4, the x-axis represents the number of iterations 
during the optimization process. The y-axis symbolizes the 
values of the parameters, specifically the discriminator 
parameter (#%) and the generator parameter (#$). The red line 

indicates the evolution of the discriminator parameter (#%) over 
iterations. The blue line denotes the evolution of the generator 

parameter (#$ ) over iterations. The visualization depicts the 

iterative optimization process of parameters in GANs, 
emphasizing the critical role of iterative optimization in 
improving the security capabilities of GANs for applications. 
The objective is to adjust these parameters in such a way that 
the discriminator ameliorates its ability to distinguish real from 
fake data generated by the generator, while the generator 
improves its ability to produce data that are increasingly similar 
to the real ones. This iterative optimization process is crucial to 
improve the performance and security capabilities of GANs, 
especially in applications related to 5G network slicing. 

B. Graph Neural Networks 

GNNs extend the capabilities of neural networks to graph-
structured data. Unlike traditional neural networks that assume 
data to be in Euclidean space (such as images or text), GNNs 
are designed to process data in non-Euclidean domains, 
essentially graphs. This makes GNNs particularly suitable for 
applications where data are represented as nodes and edges, 
capturing the relationships and interactions within them [28]. A 
graph � can be represented as � = �
, �, where 
 denotes the 
set of vertices or nodes, and � ⊆ 
 K 
 represents the set of 
edges. Each node L ∈ 
 is associated with a feature vector �N, 
and each edge ; ∈ �  can also have associated features. The 
goal of GNNs is to learn a state embedding ℎN for each node 
that captures the information of its neighborhood. This 
embedding can then be used for tasks, such as node 
classification, graph classification, or link prediction. The 
update rule for state embedding in a GNN is typically based on 
the following formulation: 

ℎN
�ACD = 6OℎN

�A, �N ,⊕Q∈R�N ��ℎQ
�A, �Q , �NQS  (6) 

where ℎN
�A

 is the state of node L at the T-th iteration, �N is the 
feature vector of node L, �NQ is the feature vector of the edge 
between nodes L and U, V�L denotes the set of neighbors of 
node L , 6  and �  are differentiable functions (such as neural 
networks), and ⊕  denotes a differentiable, permutation 
invariant function, such as sum, mean, or max. 

1) GNNs in Understanding Network Topologies  

In the context of network topologies, especially in dynamic 
network environments, like 5G network slicing, GNNs offer a 
powerful framework for analyzing and understanding the 
complex relationships and interactions within the network. By 
modeling the network as a graph, GNNs can capture complex 
structural patterns, enabling tasks such as: 

a) Topology Analysis 

GNNs can identify critical nodes or links and understand 
the structure of the network, which is essential for network 
optimization and fault diagnosis. The importance of a node L in 
the network can be quantified using a scoring function W�ℎN 
based on its state embedding: 

W�ℎN = >�69����X ⋅ ℎN   (7) 

Here, X  represents the learnable parameters of the scoring 
function, and W�ℎN quantifies the importance of node L in the 
network topology [29]. 

Figure 5 represents topology analysis using GNNs. In this 
plot, nodes symbolize the entities within the network and edges 
represent the connections or relationships between these 
entities. The size and color of the nodes are indicative of their 
importance in the network, as determined by the degree 
centrality metric. Figure 5 visually represents the importance of 
nodes within a network topology analyzed employing GNNs, 
highlighting how GNNs leverage structural information to 
identify critical nodes or links, essential for various tasks, 
including anomaly detection, resource allocation, and traffic 
prediction in the context of network topologies such as those 
found in 5G network slicing. 

 

 
Fig. 5.  Topology analysis with GNNs: Node importance visualization. 

b) Traffic Prediction 

GNNs predict future network traffic by learning from past 
traffic patterns. If Y? represents the traffic at time 9 and Z is the 
state embedding matrix learned by the GNN, the future traffic 
can be predicted as: 

Y[?CD = Z ⋅ Y?      (8) 

This formulation enables the prediction of traffic in dynamic 
network slices, aiding in efficient network management [30]. 
Accurate traffic prediction is crucial for effective network 
management, resource allocation, and planning, especially in 
dynamic and complex network environments [31]. Figure 6 
represents Traffic Prediction employing GNNs, where the blue 
line represents the actual network traffic over time, showcasing 
a pattern that could be reflective of typical network traffic with 
some inherent noise, and the orange dashed line represents the 
predicted traffic. Here, a simple moving average is used as a 
stand-in for the more complex predictions that a GNN model 
would make. Figure 6 displays how GNNs can be used to 
predict network traffic, helping network administrators 
understand and predict future network conditions. 
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Fig. 6.  Traffic prediction with GNNs. 

c) Anomaly Detection 

To detect anomalies in network traffic, GNNs analyze the 
learned embeddings and identify patterns that significantly 
deviate from the norm. If \N represents the anomaly score for 
node L, it can be computed as: 

\N = ||ℎN − ℎ||^     (9) 

where ℎ represents the average state embedded over all nodes, 

and nodes with \N exceeding a certain threshold are flagged as 
anomalies [32]. Figure 7 depicts the spatial separation between 
the normal and anomalous nodes, illustrating the potential of 
GNNs to effectively identify anomalies, supporting the 
maintenance of network security and integrity, especially in 
complex environments such as 5G network slicing. The green 
dots symbolize normal nodes in the network, scattered in a 
specific region of the feature space. The red dots stand for 
anomalous nodes that are distinct and offset from the normal 
nodes. This scatter plot provides an intuitive representation of 
how GNNs can differentiate between normal and anomalous 
nodes within a network by analyzing their features. 

 

 
Fig. 7.  Anomaly Detection in Network Nodes in GNNs 

d) Resource Allocation 

GNNs optimize resource allocation by understanding the 
network topology and the requirements of different slices. If _ 
represents the resource allocation matrix and � represents the 
demand matrix, the optimized allocation can be computed as: 

_∗ = �<����a||Z ⋅ _ − �||b    (10) 

where || ⋅ ||b denotes the Frobenius norm, and this formulation 
ensures that resources are efficiently allocated considering the 
topology and demands of the network slices. 

C. Graph-based Generative Adversarial Network 

The integration of GANs with GNNs, forming Graph-based 
Generative Adversarial Networks (G-GANs), presents a 
compelling approach for adaptive learning in complex network 
structures, such as those encountered in 5G network slicing. 
This integration leverages the generative capabilities of GANs 
and the graph-structured data processing power of GNNs to 
address the dynamic and intricate nature of modern networks. 

1) Graph Representation in G-GANs 

In G-GANs, the graph � = �
, � with nodes 
 and edges 
�  represents the network structure. Each node L ∈ 
  has an 
associated feature vector �N, and the goal is to learn a node 
representation ℎN  that captures the neighborhood's structural 
and feature information. The GNN part of the G-GANs can be 
formulated as: 

ℎN = �VV��, �N =  

c�X ⋅ \��_��\d��eℎN , ∀U ∈ V�Lg  (11) 

where \��_��\d� is a differentiable function that aggregates 
information from the neighbors V�L  of node L , X  is a 
learnable weight matrix, and c  is a non-linear activation 
function. Integrating GNNs allows G-GANs to understand the 
complex topology of network slices, ensuring that each slice 
operates independently and maintains its specific performance 
and security requirements. As a result, G-GANs provide a 
robust framework for maintaining strict isolation between 
network slices, enabling a diverse range of services to coexist 
on a shared network infrastructure without compromising their 
individual SLAs. 

2) Adversarial Training in G-GANs 

The generator �  in G-GANs aims to generate node 
representations or subgraphs that mimic the real graph data 
distribution. The discriminator �, on the other hand, tries to 
distinguish between real and generated node representations or 
subgraphs. The adversarial training can be formulated as a min-
max game similar to traditional GANs but in the graph domain: 

�������	
��, � = ��∼h������   

[������] +     ��∼����[����1 − ����!] (12) 

where i%+?+ �� is the distribution of real graph data, and "��! 
is the input noise distribution for the generator �. 

3) Adaptive Learning in G-GANs 

G-GANs facilitate adaptive learning by continuously 
updating the model based on the feedback from the 
discriminator �  and the evolving network environment. The 
adaptive learning process ensures that the generated node 
representations or subgraphs are always reflective of the 
current state of the network. The parameter update rules for � 
and � can be similar to those in traditional GANs but tailored 
for graph-structured data: 
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#%
�?CD = #%

�? − E% ⋅ GH�
B�#$

�?, #%
�?  (13) 

#$
�?CD = #$

�? − E$ ⋅ GHI B�#$
�?, #%

�?CD  (14) 

where #% and #$  are the parameters of � and � , respectively, 

E%  and E$  are the learning rates, and B  is the loss function. 

Integrating GANs and GNNs into G-GANs provides a robust 
and versatile framework for adaptive learning in network 
environments. By harnessing the generative power of GANs 
and the structural data processing capabilities of GNNs, G-
GANs can effectively address the challenges of dynamic and 
complex network topologies, such as those encountered in 5G 
network slicing. This integration not only improves the 
adaptability and responsiveness of the system, but also opens 
new avenues for advanced network management and security 
solutions. 

D. Baseline Models 

1) BiGAN 

BiGAN introduces an encoder E in addition to the generator 
� and discriminator � found in traditional GANs [33]. While 
GANs achieve a mapping from low-dimensional latent space 

noise ! to synthetic data & in data space �& = ��!, they lack 
a mechanism for the inverse transformation. BiGAN's encoder 
� facilitates this by mapping real data & in data space to a low-
dimensional representation 6  in latent space �6 = ��& . In 
BiGAN, � is tasked with differentiating between the joint pairs 
�&, ��&  and ���!, !  across both data space and latent 
space. The training objective for BiGAN is defined as: 

����,j ���	
��, �, � = �.∼hk
[������&, ��&] +

    ��∼h�
[����1 − ����!]  = ��.,l∼hkm

[������&, 6] +
��.,�∼hk�

[����1 − ��&, !]   (15) 

where i.l  and i.�  denote the joint distributions of �&, 6 and 

�&, ! , respectively. Given an optimal � , �  and �  strive to 

minimize the nW divergence between i.l  and i.� , represented 

as: 

����,j
��, � = 2�pq�i.l||i.� − ��� 4  (16) 

the global minimum is attained when i.l = i.� , at which point 

� and � are inverses of each other: 

����& = & ��s ����! = !   (17) 

2) WGAN-GP 

In WGAN-GP, early GAN training phases often encounter 

minimal overlap between i.  and i.� , leading to constant nW 

divergence and gradient vanishing, prematurely halting 
training. WGAN addresses this by substituting nW divergence 
with the Wasserstein-1 distance, calculated as: 

XD�i.||i.� =  

>U"l∈tu
e�.∼hk

[6�&] − �.∼hk�
[6�&]g   (18) 

where BD denotes the set of 1-Lipschitz functions, constrained 
through weight clipping. However, weight clipping presents 

optimization challenges, leading to the proposal of WGAN 
with Gradient Penalty (WGAN-GP) [34]. This variant enforces 
the Lipschitz constraint by penalizing the norm of the gradient 
of �, thereby training � according to: 

���	
�� = �.∼hk
[��&] − �.∼hk�

v�O&Sw +
   E�.x∼hkx

[�||G.x
��&@||^ − 1^]   (17) 

where E is the penalty coefficient, and &@ is uniformly sampled 

along lines between pairs from i.  and i.� . Thus &@  is a 

weighted sum of &  and &: &@ = z& + �1 − z& , with z ∈
{[0,1]. � is then trained by minimizing: 

����
�� =  −�.∼hk�
[��&] = ��∼h�

[����!] (18) 

3) G-GAN 

The proposed G-GAN model significantly outperforms 
baseline models by efficiently embedding graph structural 
complexities into its learning paradigm. BiGAN introduces an 
encoder � to work in tandem with the traditional generator � 
and discriminator � , establishing a bidirectional mapping 
between the data space & and the latent space | through the 
relations & = ��|  and | = ��& . However, it primarily 
operates within the confines of flat data structures, limiting its 
contextual capacity. Conversely, G-GAN integrates GNNs to 
capitalize on the relational modulation in data, enriching the 
model's latent space with a structural and contextual depth 
through relations like Z = �VV��, ��&, where Z represents 
the embeddings of nodes computed by GNN. 

Similarly, WGAN-GP improves traditional GANs by 
mitigating early training challenges, employing the Wasserstein 
distance and gradient penalty to maintain stable gradients. It 
quantifies the distributional divergence between real and 
generated data using the Wasserstein-1 distance. Despite these 
advancements, WGAN-GP does not inherently adapt to graph-
structured data, a gap that G-GAN proficiently bridges. G-
GAN introduces a novel adversarial framework that respects 
the graph-based data peculiarities, meticulously optimizing a 
unique objective function: 

����,j
��, � = ��.,+∼hk�[������&, �, ��&, �] +
   ���,+∼h��

[����1 − ����!, �, �, !]   (19) 

Here, i.+  and i�+  denote the joint distributions of real and 
generated graph data, respectively. The discriminator in G-
GAN not only scrutinizes individual node feature authenticity, 
but also validates the topological coherence of the entire graph 
structure, emphasizing both nodal attribute fidelity and 
structural integrity. 

IV. METHODOLOGY 

A. System Architecture 

The proposed G-GAN model is designed to address the 
complex and dynamic nature of 5G network slicing, focusing 
on security, adaptability, scalability, and efficient resource 
utilization. The architecture includes several core components, 
each playing a crucial role in the system's functionality. 
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Fig. 8.  G-GAN model architecture. 

1) Data Collection Module (DCM) 

DCM gathers raw network data from various sources within 
the 5G network. This data includes traffic patterns, user 
activities, and other relevant metrics. 

�}~ = esD, s^, . . . . , s'g   (20) 

where � is the collected data, and s�  represents an individual 
data point. 

2) Data Preprocessing Unit (DPU) 

The raw data is forwarded to the �i{, where it undergoes 
normalization, feature extraction, and other preprocessing steps 
to prepare it for analysis. 

�i{ = 6�)��)(@�����}~   (21) 

where �i{ contains the processed data, and 6�)��)(@���  is the 

preprocessing function that includes normalization and feature 
extraction. 

3) G-GAN Module 

The processed data is fed into the G-GAN module. Inside 
the G-GAN module, the Generative Network (�) attempts to 
generate data that mimics the real network traffic, whereas the 
Discriminative Network ( � ) evaluates the generated data 
against the actual data, learning to distinguish the real data 
from the generated ones. 

 The Generative Network (G) can be represented as 
��!; #$, where � is the generator function parameterized 

by #$ and ! is the input noise vector.  

 The Discriminative Network (D) can be represented as:  
���; #% , where �  is the discriminator function 
parameterized by #% , and �  is the input data (real or 
generated by �). 

4) Graph Neural Network (GNN) 

The GNN receives input from the G-GAN Module and 
analyzes the network traffic within the context of the network's 
graph-based topology. It understands complex relationships 

and patterns, aiding in the detection of anomalies and 
optimization of resources: 

Z = �VV��, �′    (22) 

where Z represents the embeddings of nodes computed by the 
GNN, � is the graph structure, and �′ is the feature matrix of 
nodes. 

5) Anomaly Detection (AD) 

The processed and analyzed data are then scrutinized by the 
AD module. AD identifies any deviations or unusual patterns in 
the network traffic that may indicate potential security threats: 

1 ←  �6 ���; #% 7 4  

0 ← �9ℎ;<=�>;  

where � is the input data and 4 is the threshold. The function 
\�� is the anomaly detection function which outputs a binary 
decision. It outputs 1 (or True) if � is considered an anomaly 
(i.e., ��� 7 4), and 0 (or False) if �  is considered normal 
((i.e., ��� � 4). 

6) Feedback System (FS) 

The FS receives input from the AD module. Based on the 
anomalies detected, the FS provides feedback to the G-GAN 
module to improve the generative and discriminative models, 
ensuring that the system adapts to new threats and changes in 
network behavior. FS is represented as: 

#$
�?CD, #%

�?CD = �W�#$
�?, #%

�?, \��   (23) 

where �W  updates the parameters of �  and �  based on the 
anomalies detected by \��. 

7) Security Response (SR) 

Finally, based on the output of the AD module, SR initiates 
appropriate security measures to mitigate any identified risks 
and protect the network. SR is represented by W_�\�� and 
initiates security measures based on the output of \��. 
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ALGORITHM 1: GRAPH-BASED GENERATIVE ADVERSARIAL 
NETWORK (G-GAN) 

Input: Network Data Dn 

Output: Security Measures, Model Updates 

Initialize G-GAN module with G and D 

Initialize GNN 

Initialize AD 

Initialize FS 

Initialize SR 

While system is active do 

  Draw ← CollectData(DCM) 
  Dproc ← PreprocessData(Draw, DPU) 
  Dgen ← G(Dproc) 
  Ddisc ← D(Dproc, Dgen) 
  H ← GNN(Ddisc) 
  A ← AD(H) 

  FS(A) 

  SR(A) 

end 

 

B. Data Collection and Processing 

This study chose the UNSW-NB15 dataset [35] for its 
comprehensive nature and relevance to network security. This 
dataset includes a variety of network traffic features and has 
been labeled for supervised learning, making it ideal for 
anomaly detection and network behavior analysis tasks. 

1) Analysis and Preparation 

The dataset was loaded into the analysis environment. This 
involved reading the dataset from a CSV file into a Pandas 
DataFrame for easy manipulation and analysis. An initial 
exploration of the dataset was performed to understand its 
structure, including the features it contains and how the data is 
labeled. 

2) Feature Selection and Cleaning 

Relevant features from the dataset that are indicative of 
network behavior were carefully selected. These features 
include traffic attributes such as source and destination IPs, 
port numbers, protocol types, and various statistical measures 
of the traffic. Furthermore, missing values were handled, 
duplicate entries were removed, and any inconsistencies were 
corrected in the dataset to ensure the quality of the data.  

3) Data Transformation 

Data normalization was performed by scaling the numerical 
features to ensure they have a standard scale. This step is 
crucial as it helps in removing biases that might arise due to the 
varying scales of data. Categorical variables were transformed 
into a numerical format through a one-hot encoding technique, 
making the data suitable for input into the G-GAN model.  

4) Graph Structure Formation 

For the GNN part of the proposed G-GAN model, the 
preprocessed data was transformed into a graph structure. In 
this structure, nodes represent entities in the network, and edges 
represent connections or traffic flow between them. The 
selected and processed features were associated with the 
corresponding nodes and edges in the graph, preparing the data 
for input into the GNN. 

 

5) Model Input and Preparation 

The dataset was divided into a training set (Xtrain, ytrain) and 
a test set (Xtest, ytest) to ensure that the G-GAN model could be 
effectively trained and its performance accurately evaluated. 
Batches of data were prepared considering the computational 
efficiency and the requirements of the proposed G-GAN model 
during the training phase.  

 

 
Fig. 9.  Distribution of the duration (dur) feature before and after 

normalization. 

V. EXPERIMENTAL SETUP 

The experimental setup was designed to ensure 
reproducibility, efficiency, and the highest possible accuracy in 
the results. A Jupyter Notebook environment was set up to 
facilitate the development and evaluation of the G-GAN model. 
This environment was chosen for its versatility and support for 
interactive programming, which is crucial for iterative testing 
and visualization in deep learning research. Throughout this 
study, the latest versions of several key libraries, known for 
their roles in ML and data science, were used. 

A. Key Libraries 

TensorFlow was a primary tool for implementing and 
training the models. Its extensive support for deep learning 
operations, enhanced with robust GPU acceleration 
capabilities, made it an invaluable resource for efficiently 
handling the complex computations required by the models. 
PyTorch, where dynamic computation graphs offered an 
advantage, particularly in the development of custom loss 
functions and the implementation of GNNs, was employed. 
Scikit-learn was used for data preprocessing, train-test splits, 
and performance evaluation through metrics, such as accuracy, 
recall, precision, and F1-score. Additionally, Pandas and 
NumPy were put into service for data manipulation and 
numerical operations, essential for handling the dataset during 
training and testing operations. Matplotlib and Seaborn were 
employed to graphically represent the findings, including the 
loss curves over epochs and the comparative performance 
metrics of different models. These visualization libraries were 
used to illustrate the efficiency and behavior of the G-GAN 
model clearly. 

B. Hyperparameter Selection 

Hyperparameter tuning is a critical aspect of optimizing the 
performance of a model. The following hyperparameters were 
systematically varied during the experiment: 
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 Learning Rate: Explored within the range [0.0001, 0.001], 
identifying 0.0005 as optimal for balancing training speed 
and model convergence. 

 Epochs: The number of training cycles was set between 50 
and 200, with 100 epochs identified as the point of 
diminishing returns for model improvement. 

 Optimizer: Adam and RMSprop were primarily used, with 
Adam demonstrating slightly better performance in most 
scenarios due to its adaptive learning rate properties. 

C. Dataset 

The UNSW-NB15 dataset, which is widely utilized in the 
field of network security, was applied for training and 
evaluation. This dataset includes real-world network traffic 
data, involving intrusion attempts, and is well-suited for 
evaluating anomaly detection and intrusion detection models. 
The selection of the UNSW-NB15 was justified based on 
several key factors: 

 Real-world Relevance: The UNSW-NB15 dataset entails 
real-world network traffic data collected from a variety of 
sources, including both normal traffic and various types of 
intrusion attempts. This realism reflects the complexities 
and challenges inherent in actual network environments, 
making it highly suitable for evaluating security-related 
algorithms, such as anomaly detection and intrusion 
detection. 

 Diversity of Intrusion Attempts: The dataset contains a 
diverse range of intrusion attempts, involving different 
types of attacks, such as DoS, probing, and exploitation, as 
well as various attack scenarios and traffic patterns. This 
diversity enables a comprehensive testing of the G-GAN 
model's ability to detect and adapt to different types of 
threat commonly encountered in dynamic network slices. 

 Standard Benchmark: UNSW-NB15 has become a standard 
benchmark dataset in the field of network security, widely 
used by researchers and practitioners to evaluate the 
performance of anomaly detection and IDSs. Its established 
status facilitates comparability with the existing studies and 
allows for meaningful benchmarking of the proposed G-
GAN model against state-of-the-art methods. 

 Availability and Accessibility: The UNSW-NB15 dataset is 
publicly available and well-documented, which makes it 
easily accessible to researchers and practitioners for 
replication, validation, and further experimentation. This 
accessibility ensures transparency and reproducibility in the 
research process, enhancing the reliability and 
trustworthiness of the study findings. 

D. Processing Time 

Remarkably, the overall processing time for a single full 
training cycle of the G-GAN model, including multiple epochs 
essential for model convergence, was recorded at 43 minutes 
and 15 seconds. This efficient processing time reflects the 
successful integration of powerful computational resources and 
the effective optimization of the model's training procedure. 

VI. PERFORMANCE EVALUATION 

A. Model Training 

The G-GAN model was trained in a supervised setting. 
Initially, the generative network (G) learns to produce data by 
attempting to mimic the distribution of the real dataset. This 
process involves feeding the generator a random noise vector 
from which it generates synthetic data instances. 
Simultaneously, the discriminator network (D) is trained to 
distinguish between genuine data instances and synthetic ones 
created by G. Both networks are iteratively trained through 
backpropagation and gradient descent methods, with G aiming 
to maximize the error rate of D, and D aiming to minimize it. 
This adversarial process continues until D is no longer able to 
reliably differentiate between real and fake data, implying that 
G's data generation quality has significantly improved. 

The graphs portrayed in Figure 10 exhibit a line plot of the 
discriminator and generator loss over 100 epochs in the 
proposed G-GAN model. The blue line manifests the 
discriminator loss, which is the binary cross-entropy loss 
between the true labels and the discriminator's predictions for 
both real and fake data. The discriminator loss decreases 
steadily from about 0.7 to 0.1 as the epochs increase, indicating 
that it becomes better at distinguishing real and fake data over 
time. The orange line displays the generator loss, which is the 
binary cross-entropy loss between the inverted labels and the 
discriminator's predictions for the fake data. The generator loss 
also decreases but not as sharply as the discriminator loss, 
stabilizing around 0.2. This indicates that the generator 
becomes better at producing realistic data that can fool the 
discriminator over time. 

 

 
Fig. 10.  Discriminator and generator losses over 100 epochs for G-GAN 

training session. 

B. Evaluation Metrics 

Performance metrics such as accuracy, recall, precision, and 
F1-score were considered. For G-GAN, a consistent 
improvement was observed across all metrics, with the 
accuracy and the F1 score exhibiting an upward trend. WGAN-
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GP showed a more erratic behavior, influenced by random 
variations, resulting in a less stable training trajectory. BiGAN, 
being the most affected by randomness, presented a visibly less 
consistent performance with fluctuations in all metrics. The F1-
score captures the balance between precision and recall, 
offering a holistic measure of a model's overall performance. 
The introduced randomness in WGAN-GP and BiGAN metrics 
reflects the inherent instability and potential challenges 
associated with training these models, highlighting the 
importance of robustness in GAN architectures for reliable and 
consistent performance.  

1) Accuracy 

With 97.12% accuracy, G-GAN was efficient at correctly 
identifying true positives and true negatives of all the possible 
classifications. This high accuracy indicates that the model was 
reliable in its predictions over the dataset. The final value of 
WGAN-GP at 96.33% accuracy was slightly lower than that of 
G-GAN. At around 95%, BiGAN's accuracy was the lowest of 
the three, which may imply that it could be less reliable for 
making predictions in certain applications. 

2) Recall 

With a recall of 97.24%, G-GAN successfully retrieved a 
high percentage of relevant instances. This means that when it 
is crucial to capture as many positives as possible (such as 
detecting network intrusions), G-GAN proves to be highly 
effective. At 95.14%, WGAN-GP's ability to find all relevant 
instances was strong but not as robust as G-GAN's, showing 
that it might not be as effective in situations where missing any 
positive instance has significant consequences. With a recall of 
93.37%, BiGAN may missed more positive instances than the 
other models, which could be detrimental in critical 
applications where capturing all positives is necessary. 

3) Precision 

The precision of 96.20% reflects the G-GAN's ability to 
present a high ratio of relevant instances among those it 
classifies as positive. This is important when the cost of a false 
positive is high. With a precision of 94.03%, WGAN-GP is 
slightly more prone to false positives than G-GAN, which 
could be a concern in certain applications. A precision of 
92.01% suggests that BiGAN might incorrectly label negative 
instances as positive more often than the other models. 

C. F1-Score 

The F1-score of 96.72% is the harmonic mean of precision 
and recall, providing a single measure of quality for the 
classifier when the balance between precision and recall is 
important. The closer this score is to 100%, the better the 
model's performance is in terms of both precision and recall. 
This high F1-score insinuates that G-GAN maintains a robust 
balance between the two. An F1-score of 94.52% for WGAN-
GP indicates a good balance between precision and recall, 
though it falls short compared to G-GAN, which implies that 
there might be room for improvement in either precision or 
recall. The F1-score of 92.48% is the lowest among the three 
models, suggesting that BiGAN might need to improve either 
its precision or  its recall. 

TABLE II.  COMPARISON OF FINAL PERFORMANCE 
METRICS 

Model Accuracy Recall Precision F1-Score 

G-GAN 97.12 97.24 96.20 96.72 

WGAN-GP 96.33 95.14 94.03 94.52 

BiGAN 95.00 93.37 92.01 92.48 
 

VII. LIMITATIONS AND FUTURE WORK 

One of the potential limitations of this study is its reliability 
on the UNSW-NB15 dataset, which, while comprehensive, 
may not cover all possible real-world scenarios and emerging 
threats faced by existing network infrastructures. Additionally, 
the complexity of G-GAN poses challenges in computational 
resource requirements and training time, which, despite the 
efficiency improvements observed, may still present constraints 
for real-time application in more complex network 
environments. Further studies are expected to enhance the G-
GAN model, particularly in customizing it to predict and 
counteract zero-day vulnerabilities within network slices, 
which is a critical aspect of cybersecurity. An important avenue 
for future work will be to optimize the computational 
efficiency of G-GAN to ensure its viability for deployment in 
real-time security systems. This involves not only hardware 
and software advancements, but also algorithmic innovations 
that could reduce the complexity of the model without 
compromising its performance. In addition to computational 
optimizations, expanding the diversity and realism of datasets 
used for training and testing purposes could substantially 
enhance the robustness and generalizability of the G-GAN 
model. By incorporating a broader spectrum of network 
behaviors and attack vectors, the G-GAN framework can be 
further enhanced to meet the evolving requirements of network 
security in an ever-changing digital landscape. 

VIII. SUMMARY 

The development of the G-GAN model is a significant 
advancement in enhancing security for dynamic network 
slicing, a pivotal component of the 5G infrastructure. The 
findings show that the G-GAN model outperforms traditional 
GAN frameworks, such as BiGAN and WGAN-GP, in key 
performance indicators and also showcases a marked 
improvement in learning adaptive behaviors related to network 
security. The superiority of the G-GAN model is reflected in its 
ability to accurately model and interpret complex relationships 
within network traffic data. Through this, the G-GAN model 
demonstrates enhanced precision in anomaly detection, 
exhibiting a precision score of 96.20%, closely followed by a 
recall at 97.24%, and converging in an F1-Score of 96.72%. 
These figures notably surpass those of WGAN-GP and 
BiGAN, stressing G-GAN's improved functionality in 
differentiating between legitimate and malicious network 
behaviors. Moreover, the integration of G-GAN within 
dynamic network slicing addresses the essential requirement 
for a security framework that is both adaptable and quick to 
respond. This aligns with the growing demand for 
cybersecurity mechanisms that can keep pace with the rapid 
evolutions observed in network configurations and threat 
landscapes. 
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Fig. 11.  Comparison of G-GAN, WGAN-GP, and BiGAN. 

IX. CONCLUSION 

The enhanced performance and adaptability of the proposed 
G-GAN model make it a promising candidate to safeguard the 
dynamic, heterogeneous architectures characteristic of the 
modern 5G networks. The proposed G-GAN model has 
demonstrated superior performance over baseline models in the 
domain of dynamic network slicing security. The proposed 
model exhibited enhanced precision in identifying and 
mitigating security threats, a testament to its robust adaptive 
learning capabilities and high-level understanding of network 
behaviors. The results suggest a move toward more intelligent 
and anticipatory security systems capable of safeguarding 
complex digital ecosystems against increasingly sophisticated 
threats. G-GAN's intelligent design closely aligns with the 
needs of modern, dynamic networks, providing a leap forward 
in safeguarding the integrity and functionality of network 
slices. This study paves the way for the integration of G-GAN 
models into practical security applications within 5G networks, 
urging the community to consider adaptive and intelligent 
security solutions as a new standard. 
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