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ABSTRACT 

Advances in robotics and biomedical engineering have expanded the possibilities of Human-Computer 

Interaction (HCI) in the last few years. The identification of hand movements is the accurate and real-time 

signal acquisition of hand movements through the use of image-based systems and surface 

electromyography sensors. This study uses multithreading to record motion signals from the forearm 

muscles in conjunction with a surface electromyography (sEMG) sensor and a camera image. The finger 

movement information labels were tabulated and analyzed along with the simultaneous acquisition of 

surface electromyography signals and these gestures through the camera. After the acquisition, signal 

processing techniques were applied to the sEMG signal markered from the camera. Therefore, once the 

interface is established, data sets suitable for machine learning can be generated. 
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I. INTRODUCTION  

Surface electromyography (sEMG) signals are being 
explored for robotic control, but their multidimensional nature 
poses challenges in motion translation. Integrating sEMG 
signals with camera-based image signals is a promising 
approach. Robotic arms play a critical role in the integration of 
artificial intelligence. They are in high demand and have drawn 
numerous research investigations from both academia and 
business [1]. sEMG is a non-invasively technique, recording 
data from the skin's surface, and is thought to be a useful 
source for Human-Computer Interaction (HCI), which offers a 
natural manner of control. It represents a person's 
neuromuscular activity and neurological information [2]. 
Authors in [3] developed a sEMG signal acquisition instrument 
for body rehabilitation training. They used the ADS1294 chip 
and STM32 master hardware circuit to achieve the sEMG 
signal acquisition; then the acquisition software was to read 
and send the sEMG signal data. Authors in [4] reached a 
consensus on the acceptance of using a universal user interface 
model. The users' attitude towards the suggested application 
was reported as effective, pleasant, and enjoyable. They 
measured ease of use, consistency, operability, perceived 
usefulness, minimal memory load, system usability scale, 
understandability, and learnability through a survey 

questionnaire. The results illustrate that their proposed solution 
is more robust, easy to use, and adaptable than other solutions 
operated through accessibility services [4]. Regarding real-time 
data acquisition, authors in [5] presented an automated weather 
station for real-time and local measurements based on an 
embedded system that continuously measures several weather 
factors.  

II. MATERIALS AND METHODS 

Nine healthy participants, with a mean age of 41.3 ± 12.0 
years (two females and seven males), volunteered to take part 
in this study. Using the right hand, the subjects' sEMG signals 
and the camera-derived finger movement states of six positions 
(Tumb, Index, Middle, Ring, Pinky, and Open, which is the 
relaxed position of the fingers without movement) were 
simultaneously recorded in real time. None of the participants 
had a prior history of neuromuscular disease, and all were 
thoroughly informed about the experimental protocol prior to 
their participation. 

A. Integrated Method: Combining Camera and sEMG Data 

The current study proposes a novel way of HCI using 
forearm sEMG) biosignal data and camera image processing 
data. There are several steps in the process, which are depicted 
in the block diagram of Figure 1. 
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Fig. 1.  Real-time hybrid data acquisiton HCI for sEMG signals and 
camera images. 

A finger identification algorithm records hand movement 
data acquired from the camera in order to identify hand 
movements. This was made possible by the Python-
programmed HCI implementation shown in Figure 2. Thirty 
five seconds were recorded during the real-time sEMG and 
camera data collection. To precisely capture muscle action 
using the sEMG signal, an image processing package was used. 
In order for their movements to be classified, volunteers had to 
follow the instructions displayed on the screen for each 
movement (3 seconds on, 3 seconds off, 5 repeats). 
Multichannel wearable technologies, such the Myo Armband, 
greatly improve the recognition of numerous hand gestures 
from EMG data obtained using multichannel devices, providing 
several advantages over single-channel devices in biomedical 
applications [6]. 

 

 
Fig. 2.  sEMG-HCI data recording interface and finger identification 
algorithm. 

Biosignal data were collected from every channel at a 
sampling frequency of 240 Hz. As shown in Figure 3, a 
microcontroller with a 16-bit ADC input was then used to 
transport the data to the computer environment via a serial port. 
A forearm band featuring dry surface electrodes was created in 
order to gather sEMG data from the forearm muscles. Eight 
sEMG amplifier circuits were linked to the electrodes by a 3.5" 
TTS cable, and a microcontroller with eight 16-bit ADC inputs 
was attached to the amplifier circuit's signal outputs. The USB 
cable of the microcontroller, which was connected to the data 
recording interface made in the computer environment for 8-
channel sEMG recording, had the DC power line and the data 
line separated by a USB isolator in order to guarantee the 
accuracy of the data. 

 
Fig. 3.  Real-time hybrid data acquisiton HCI for sEMG signals and 
camera images prototype. 

The 8 sEMG sensor electrodes were placed on the cross-
section of the forearm as sensors 5 and 4 [7] were replaced with 
sEMG-0 and sEMG-1, respectively, and the others were 
replaced in this order. The remaining sensors were put together 
into a ring and were assigned numbers. The study employed 
dry electrodes, and the (+), (-), and reference points were 
positioned side by side to form one electrode, obviating the 
need for a separate reference electrode. 

B. Image Processing and Camera Image Data for Finger 
Detection 

The camera picture data were generated by the MediaPipe 
(Hand Tracking) library, which uses digital image processing 
to identify finger joint points. Within the identified hand 
regions, the library is able to locate the crucial point of the 21 
hand-joint coordinates [8]. With the MediaPipe library, the 
finger identification algorithm was developed as shown in 
Figure 4. 

The hand was in an open position and was marked as 
"Open" if the number of fingers with function was equal to 
five. In order to label the sEMG signal for no movement in 
real-time, the markering subroutine has been invoked using the 
algorithm in the red-lined area. If the counted finger number 
was equal to 0 instead of 5, it meant that all fingers were closed 
and this gesture was marked as "Fist." To mark the sEMG 
signal for hand movement, the markering subroutine has been 
called. One finger had to be closed in order to have the smallest 
distance possible from the distance measurement if the counted 
fingers were equal to 4. To calculate the distance between each 
fingertip and the wrist point (0) in Figure 5, we used the 
Euclidean distance formula: 

��� � ���� 	 �
�
 � �� 	 
�
  (1) 
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Fig. 4.  Finger identification algorithm. 

 
Fig. 5.  The changeable distance between the terminal point (8) of the 
index finger and the wrist point (0). 

To provide a regulated recording process for the 
participants, finger identifications were shown on the screen 
during the recording of sEMG signals (Figure 6). The interface 
screen featured finger motion data validated by the created 
algorithm in the left corner, a time counter in the center, and 
on-off motion commands in the right corner. This made it 
possible to record the same moment every time and to capture 
each movement more than once. The stages of picture 
processing were carried out at a speed of 15 fps. 

As can be observed in Figure 7, the sEMG signal was 
registered on finger movement timings when the label changed 
in the signal markering subroutine. It indicated if volunteers 
closed all or just one finger. Their hand was considered open if 
they did not close any fingers. Because of the camera-based 
image processing, the start and end points of the sEMG signal 
were marked, and a valid dataset was constructed. 

 
Fig. 6.  Finger identification algorithm on recording. 

 
Fig. 7.  Signal markering subroutine. 

C. sEMG Signal Processing and Feature Extraction 

In the current study, the sEMG signal was first subjected to 
a band-pass filter to extract features. The filtered signal was 
then rectified and subjected to smoothing and overlapping 
windowing techniques [9]. A feature extraction function was 
developed by selecting a period of 150 ms and a processing 
time of 25 ms [10]. It can be difficult to distinguish between 
signals from different muscles and noise when interpreting 
EMG signals for limb motions. Using popular feature types like 
RMS, VAR, MAV, IEMG, WL, MNP, TP, and MNF, a high-
performing EMG classification system was created to solve this 
problem [11]. These characteristics were chosen because they 
are common in earlier research. 
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Root Mean Square (RMS): RMS is a feature used in EMG 
analysis. Equation (2) illustrates how it relates to non-fatiguing 
contraction and constant force [12]. 

RMS � ��
� ����� ��
    (2) 

Variance (VAR) is generally defined as the average of 
square values of the variable's deviation. However, the EMG 
signal's mean value is very near to zero (~10–10) [13]. 

VAR � �
��� ����� ��� 	 �̅�
    (3) 

In clinical practice, integrated electromyography (iEMG) is 
a measurement that is frequently used to identify patterns of 
muscle activity without depending on EMG data using (4). In 
patient assessments, it is frequently utilized as an initial 
detection index [14]. 

iEMG � ∑ |��|����       (4) 

In MAV, |��| is the magnitude of the  !" sample of x and N 
represents the total number of samples in a segment [15]: 

MAV � �
� ����� |��|     (5) 

WL is defined as the wavelength of an EMG signal over a 
segment [16]: 

WL � ∑ |�� 	 ����|���
      (6) 

Furthermore, using (7)-(9), the frequency domain 
characteristics MNP, TP, and MNF are computed [17-19]: 

MNP � �
� ����� ��
     (7) 

TP � ( )�*��
�
���      (8) 

MNF � ( ,-.
-/0 ⋅2�,-�3

( 2�,-�3.
-/0

     (9) 

As a result of applying signal processing techniques to the 
sEMG signal, the signals shown in Figure 8 were created. 

 

 
Fig. 8.  The results of applying signal processing techniques to the 8-
channel sEMG signal. 

With this study, 8-channel sEMG signal data can be 
recorded in real-time with the help of the finger identification 
algorithm on the created interface. With this approach, the 
process of recording muscle data with the sEMG sensor while 
users make finger movements can be done with visual 
guidance. With the recording data being more controlled, a 
functional interface has been developed to create the necessary 
data set for machine learning as a result of signal processing 
techniques. 

III. CONCLUSION 

The finger movement detection method in this system was 
created using image processing and multithreading. It comes 
with an armband that can record 8-channel sEMG data. In 
contrast to the sEMG hybrid data collection and classification 
research, the purpose of the current study was to assess the 
efficacy of a real-time hybrid data acquisition system. Table I 
presents a comparison of the developed system with related 
studies. Image data source, sEMG data source, and features are 
detailed in Table I. In this study, the sEMG signals and image 
data sources were used in real-time, which facilitated the 
comparison of data. 

TABLE I.  COMPARISON OF THE DEVELOPED SYSTEM 
WITH RELEATED STUDIES 

Work Image source sEMG source Features 

[20] LeapMotion 
4-channel sEMG data 

aquisition system 

MAV, ZC, Slope sign 
change, DAMV, VAR, 
joint angle, finger wrist 

distance 

[21] 

Dynamic Vision 
Sensor 
(DVS) 

MyoArmband 
(8-channel sEMG 

band) 200 Hz 
MAV, RMS 

[22] LeapMotion 
MyoArmband 

(8-channel sEMG 
band) 200 Hz 

RMS + LeapMotion 
features + feature fusion 

[23] 

Motion capture 
system 

with 12 cameras 

Delsys's TrignoTM 
Wireless EMG System 

RMS 

[24] 

Azure Kinect 
+ Google 

Mediapipe 
- 

Movement area average, 
Coefficient of Variation 

Proposed 

PC Camera 
+ Google 

Mediapipe 

8-channel sEMG 
armband design 240 

Hz 
RMS, VAR, MAV, IEMG, 

WL, MNP, TP, MNF 
Real-Time data aquisition 

 

Promising outcomes have been found in the study of the 8-
channel sEMG signal and its real-time motion estimatation by 
image processing methods. The integration of sEMG signals 
with the MediaPipe library and finger gesture identification 
algorithm has demonstrated greater effectiveness in real-time 
acquisition, particularly when visual input sources are utilized. 
Thus, the real-time data collection interface design required to 
classify finger movements with machine learning algorithms 
could be realized with a new method. 
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