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ABSTRACT 

Deep learning is a concept of artificial neural networks and a subset of machine learning. It deals with 

algorithms that train and process datasets to make inferences for future samples, imitating the human 

process of learning from experiences. In this study, the YOLOv5 and YOLOv6 object detection models 

were compared on a plant dataset in terms of accuracy and time metrics. Each model was trained to obtain 

specific results in terms of mean Average Precision (mAP) and training time. There was no considerable 

difference in mAP between both models, as their results were close. YOLOv5, having 63.5% mAP, slightly 

outperformed YOLOv6, while YOLOv6, having 49.6% mAP50-95, was better in detection than YOLOv5. 

Furthermore, YOLOv5 trained data in a shorter time than YOLOv6, since it has fewer parameters. 
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I. INTRODUCTION  

The agricultural process plays a vital role in the food 
supply, while the farming sector contributes to the employment 
[1]. Plant diseases are a significant issue since they can cause 
huge economic losses. Many factors lead to such infection 
types, such as viruses, bacteria, and fungi [2]. Farmers or 
experts can monitor diseases in traditional ways with some 
experience or training, but this method can be considered 
challenging, expensive, and open to mistakes. A disease can be 
recognized and examined at an early stage if the farmer 
regularly controls the crops and has sufficient information. As 
it is difficult to manage larger fields, a fast, healthy, and 
accurate disease detection system is strongly needed in cases 
where human evaluation is unreliable or not enough. Early 
detection systems can reduce large-scale crop losses by 
preventing the spread of diseases [2-4]. Image processing, 
machine learning, and deep learning methods can be used to 
examine infected regions of plants by predicting the class of a 
specific disease [5]. Machine learning algorithms try to explore 
hidden insights and complex patterns of a given dataset and are 
generally preferred for tasks related to classification, 
regression, and clustering. Artificial Neural Networks (ANNs) 
operate according to the principle of information processing in 
biological systems. Each processing unit is an artificial neuron 
that connects to others and is represented by mathematical 
concepts. Each connection between neurons sends signals 
simulating the synapses in the brain. If a specific signal ensures 
a certain threshold determined by an activation function, it can 
be processed by subsequent neurons. Typically, neurons are 
organized into networks with different layers. An input layer 
usually receives the data input, and the output layer produces 
the ultimate result. Deep neural networks have more than one 
hidden layer, usually containing complex neurons, and employ 

high-level operations using multiple activation functions 
instead of a single neuron [6-7]. 

Object detection is a research area in deep learning and is 
more complicated than object classification. Object 
classification does not provide information on the location of 
the object in the image. Object detection can be divided into 
two different categories, one- and two-stage. In two-stage 
detection, the region proposal is generated first, and then the 
classification task is performed. Faster R-CNNs generally 
apply this mechanism to perform detection, but it cannot work 
in images with more than one object [8]. However, the YOLO 
models perform the detection process by combining two 
operations called classification and localization. YOLO is a 
one-stage detector, which means that regional proposal and 
classification are performed simultaneously. YOLO divides an 
image into a grid of cells. Each grid cell predicts the class of an 
object and specifies the bounding box determining the object's 
location. Each bounding box can be described using four 
descriptors: the center of a bounding box (bx, by), width (bw), 
height (bh), and object class (c). Non-max suppression is a 
common algorithm used for discarding bounding boxes when 
multiple boxes are predicted for the same object [9-10]. 

Many studies have been conducted by applying YOLO 
models. In [11], YOLOv7, YOLOv5, YOLO-X, and YOLO-R 
were compared in terms of Frames Per Second (FPS) and 
accuracy metrics, showing that YOLOR-p6 had the best results 
with 23 FPS, followed by YOLO-Xm and YOLOR6-p6 with 
23 and 22 FPS, respectively, while YOLOv7 had the lowest 
speed of only 17 FPS. YOLOv7 showed the highest mean 
Average Precision (mAP) of approximately 60%, followed by 
YOLO-p6, YOLOv5, and YOLO-Xm with 56, 53, and 46%, 
respectively. In [12], a performance comparison was made 
between YOLOv3, YOLOv4, and YOLOv5 for poultry 



Engineering, Technology & Applied Science Research Vol. 14, No. 2, 2024, 13714-13719 13715  
 

www.etasr.com Iren: Comparison of YOLOv5 and YOLOv6 Models for Plant Leaf Disease Detection 

 

recognition. The dataset was split into training and testing parts 
with a ratio of 80% and 20%, respectively. After the manual 
annotation process, different YOLO versions were trained. The 
experimental results showed that YOLOv5x achieved the 
highest accuracy of 99.5%, while the YOLOv4-tiny model had 
the lowest mAP and the least training speed. 

In [13], YOLOv5 and YOLOv8 were compared on aerial 
image data taken from the Roboflow pedestrian dataset. 
Training and validation tasks were performed with 100 epochs 
using the Google Colab environment, showing that YOLOv8 
had better precision and F1-score than YOLOv5, by 2.82% and 
0.98%, respectively. In [14], a safety helmet detection system 
was developed based on YOLOv5. 6045 images were collected 
and annotated, and then some operations such as random flip, 
geometric and illumination distortion, random erase, cutout, 
and mix-up were used for data augmentation. Four YOLOv5 
models were compared, showing that without pre-trained 
weights, YOLOv5x obtained the best mAP value of 93.6%, 
which was only 0.1% higher than YOLOv5l. The performance 
of all YOLOv5 models improved with pre-trained weights 
(transfer learning), and while YOLOv5s had the highest 
improvement rate with 1.3%, YOLOv5x was the leader in 
terms of accuracy. 

In [15], the YOLOv5 and DETR models were compared in 
detecting sea cucumbers. The results showed that YOLOv5 
outperformed DETR in terms of accuracy and computing 
resources. Authors in [13] aimed to find the most suitable 
hyperparameters for the detection of healthy and diseased 
tomato leaves, using private and public datasets, showing that 
YOLOv5 reached an accuracy rate of 93% during the 
evaluation of the test data. In [16], a YOLOv5 model with a 
special configuration of hyperparameters, such as learning rate 
and batch size, and transfer learning provided an mAP value of 
60.9%. This study compares the detection performance of the 
YOLOv5 and YOLOv6 models on a leaf disease dataset. 

II. MATERIALS AND METHODS 

This study compares the object detection performance of 
the YOLOv5 and YOLOv6 models on a data set that contains 
different types of leaf diseases. Figure 1 illustrates each step of 
the detection process. At first, a dataset was obtained and split 
into training and validation parts, and then each detection 
model was trained to obtain specific metric results. 

A. Dataset 

The PlantDoc [17] dataset was developed at the Indian 
Institute of Technology and is shared on the GitHub platform. 
PlantDoc has 2,569 images, including 13 plant species and 30 
classes as diseased and healthy for image classification and 
object detection purposes. The data set has 8851 annotations 
and was divided into training and validation parts in a 90:10 
ratio. Therefore, 2328 images were used for training and 239 
images were used for validation. 

B. YOLOv5 Object Detection Model 

YOLOv5 has four different scale variations, named S, M, 
L, and X that represent Small, Medium, Large, and Extra 
Large, respectively. These scales contain different multipliers 
in terms of depth and width, while the structure of the model 

remains constant. Only the complexity and size of the objects 
are scaled in each variation [14]. YOLOv5 is an object 
detection framework that has been established in the 
CSPDarknet53 and PyTorch frameworks. CSPDarknet53 
provides a backbone architecture that consists of a Focus 
structure and a CSP network and aggregates image features to 
achieve feature extraction. The Focus layer is used to decrease 
the Compute Unified Device Architecture (CUDA) memory, 
layers, and parameters and improve the backward and forward 
speed. Aggregated features are directed to the Neck (PANet) 
structure, which includes a new Feature Pyramid Network 
(FPN) with many bottom-up and top-down layers. Low-level 
features can be obtained with the help of FPN, and lower layers 
improve the localization accuracy of the object. In the Head 
block, features from the Neck are used to detect classes in 
terms of class, location, confidence score, and size [18-20]. 
Figure 2 shows the YOLOv5 architecture. 

 

 

Fig. 1.  Method's flow diagram. 

C. YOLOv6 Object Detection Model 

YOLOv6 shows better performance than YOLOv5 in terms 
of detection accuracy and inference speed, making it an 
efficient option for industrial applications. YOLOv6 has been 
designed with many improvements in the Backbone, Neck, and 
Head blocks. The Neck and Backbone structures have been 
replaced with Rep-PAN and EfficientRep. Since the design of 
the backbone network plays an important role in detection 
effectiveness, a RepBlock with RepVGG is preferred since it 
offers a re-parameterizable structure. A multi-branch topology 
is used during the training process, and then RepBlock is 
converted to RepConv stacks of 3×3 convolutional layers with 
ReLU activation functions during the inference stage. 
EfficientRep Backbone supports hardware such as GPU and 
CPU. Rep-Pan Neck is considered more precise and operates 
faster than PANet and SPP. A convolutional layer has been 
added between the network and the final Head to improve 
performance, using processing power and memory [21-22]. 
Figure 3 shows the architecture of YOLOv6. 
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Fig. 2.  YOLOv5 architecture. 

 
Fig. 3.  YOLOv6 architecture. 

D. Environment and HyperParameters 

Each model was trained in the Google Colab environment, 
which provides a service with powerful GPUs and TPUs for 
machine and deep learning problems. Python and NVIDIA 
Tesla T4 GPU were used for the experiments. Table I shows 
the hyperparameter configurations of the models, which were 
the same for each model for a fair comparison. Epochs are the 
total iterations of a training task. The learning rate determines 
the change level of the model based on the predicted error 
when updating the model weights. Batch size defines the 
number of samples for one epoch during training, and the 
optimization algorithm adjusts the weights to minimize error. 
Lastly, momentum deals with optimizing convergence. 

TABLE I.  HYPERPARAMETERS OF YOLO MODELS 

Parameter Value 

Epochs 100 

Learning rate 0.01 

Batch size 16 

Optimization algorithm SGD (Stochastic Gradient Descent) 

Momentum 0.937 

III. RESULTS AND DISCUSSION 

True Positives (TP), False Positives (FP), True Negatives 
(TN), and False Negatives (FN) were used to evaluate the 
results of the experiments, which are generally considered 
indicators of detection performance. TP refers to the number of 
accurate detections of diseased leaves, FP refers to the number 
of objects that were incorrectly identified as a diseased leaf, TN 
represents the number of negative samples with a negative 
prediction, and FN is the number of diseased leaves that were 
missed. Precision (P) is the rate of the total number of actual 
positives to all predicted positives (1), and Recall (R) refers to 
how many samples that had to be predicted as positive were 
correctly estimated as positive (2). The Average Precision (AP) 
balances precision and recall by taking into account both FP 
and FN (3). The area under the precision-recall curve is 
calculated to find the AP for each class, while mAP is the 
average of the precision-recall curve of each object class (4) 
[13, 23], and it is a well-known metric for measuring the 
accuracy of detection models. 

Precision (P) =

�


����
    (1) 

Recall (R) =

�


����
    (2) 

Average Precision (AP) =  � P(r) dr
�

�
  (3) 

mAP =
�

�
∑ A�

� P�    (4) 

The mAP50 metric represents the mean average precision 
in an IoU at the threshold of 0.5, while mAP50-95 is a term for 
the mean average precision, calculated as the average of 10 AP 
values for 10 IoU thresholds between 0.5 and 0.95 confidence 
levels [23-24]. Therefore, it is a way to examine several 
confidence values to assess the accuracy of the detected 
objects. Table II shows the accuracy, precision, recall, and 
training duration for each YOLO model. YOLOv5 showed a 
slightly better result than YOLOv6, having mAP50 of 63.5% 
and 62%, respectively. When examining mAP50-95, YOLOv6 
had a higher performance (49.6%) than YOLOv5 (48.8%). 
However, there is not a huge difference between the two 
models when analyzing the mAP metrics, as the results were 
close to each other. On the other hand, YOLOv6 needed much 
more time to train than YOLOv5. The training process for the 
YOLOv6 model took nearly 2.3 hours, while the YOLOv5 
training process took approximately 0.8 hours. More complex 
models train more parameters, leading to an increased training 
time. The mAP graphs can be seen in Figures 4-6. 

 

  
(a) (b) 

Fig. 4.  YOLOv5 graphs: (a) mAP, (b) map50-95. 
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TABLE II.  PERFORMANCE METRICS 

Model mAP50 mAP50-0.95 Precision Recall Duration 

YOLOv5 63.5% 48.8% 64.8% 54.8% 0.772 

YOLOv6 62% 49.6% 56.6% 62.4% 2.282 

 

 
Fig. 5.  mAP graph of YOLOv6. 

 

Fig. 6.  mAP50-95 graph of YOLOv6. 

The precision of YOLOv5 was 64.8%, which was better 
than YOLOv6 (56.6%). The recall of YOLOv6 (62.4%) was 
found to be greater than that of YOLOv5 (54.8%). Figures 7 
and 8 show the precision-recall curves of each model. Figures 
9-12 show the detection of some validation samples with their 
class categories and confidence levels for both models. In 
Figure 9, cherry and blueberry leaves were estimated with 
confidence levels of 70, 50, and 80%, respectively, using 
YOLOv5. Likewise, corn leaf blight disease was detected with 
an 80% confidence level using the same algorithm, as shown in 
Figure 10. Additionally, YOLOv6 detected squash powdery 
mildew leaf disease and apple leaf with 77% and 91% 
confidence levels, respectively, as shown in Figures 11 and 12. 

 

 
Fig. 7.  Precision-recall curve of YOLOv5. 

 

Fig. 8.  Precision-recall curve of YOLOv6. 

 

Fig. 9.  YOLOv5 detection of cherry and blueberry leaves with confidence 

levels. 

 
Fig. 10.  YOLOv5 detection of corn leaf blight with confidence levels. 

Other studies that compared YOLOv5 and YOLOv6 in 
different datasets showed that mAP values can vary according 
to different parameters such as class category distribution, total 
number of class categories, hyperparameters, and augmentation 
methods. In [25], YOLO models were trained on a dataset 
containing road cracks and potholes, reaching mAP50 values of 
77 and 68.11% for YOLOv5-s and YOLOv6-s, respectively. In 
[26], YOLOv5 and YOLOv6 were compared on the COCO 
dataset with 30 class categories, and YOLOv5-m had a mAP of 
9.28%, followed by YOLOv6-m with 8.51%. In [24], two 
models were compared in an oil tank dataset, showing mAP50-
95 of 69.69 and 65.60% for YOLOv5-x and YOLOv6-l, 
respectively. In [21], the same models were compared on a 
lunar crater dataset, where OLOv5 achieved 72% mAP and 
YOLOv6 had 62% with SGD optimization. 
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Fig. 11.  Detection of squash powdery mildew leaf with confidence level by 

YOLOv6. 

 
Fig. 12.  Detection of apple leaf with confidence level by YOLOv6. 

IV. CONCLUSION 

This study carried out a comparative analysis of YOLOv5 
and YOLOv6 object detection models on a plant leaf disease 
dataset to evaluate their detection and time performance. The 
results showed that there were no great differences between the 
detection performance of each model according to the mAP 
metric. If saving time is significant, the YOLOv5 model can be 
chosen since it is trained in a shorter time compared to 
YOLOv6. In the future, the hyperparameters of these models 
can be tuned by changing the learning rate, batch size, 
optimization method, and momentum. Furthermore, advanced 
YOLO versions, such as YOLOv7 and YOLOv8, can be 
studied with the same dataset to discover and compare their 
performance results. 
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