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ABSTRACT 

Images sent across internet platforms are frequently subject to modifications, including simple alterations, 

such as compression, scaling, and filtering, which can mask possible changes. These modifications 
significantly limit the usefulness of digital image forensics analysis methods. As a result, precise 

classification of authentic and forged images becomes critical. In this study, a system for augmented image 

forgery detection is provided. Previous research on identifying counterfeit images revealed unexpected 

outcomes when using conventional feature encoding techniques and machine learning classifiers. Deep 

neural networks have been also utilized in these efforts, however, the gradient vanishing problem was 

ignored. A DenseNet model was created to tackle limitations inherent in typical Convolutional Neural 

Networks (CNNs), such as gradient vanishing and unnecessary layer requirements. The proposed 
DenseNet model architecture, which is composed of densely connected layers, is designed for precise 

discrimination between genuine and altered images. A dataset of forged images was implemented to 

compare the proposed DenseNet model to state-of-the-art deep learning methods, and the results showed 

that it outperformed them. The recommended enhanced DenseNet model has the ability to detect modified 
images with an astonishing accuracy of 92.32%. 

Keywords-image forgery detection; convolutional neural networks; digital image forensics; deep learning; 
DenseNet   

I. INTRODUCTION  

With the advent of digital image browsing on individuals’ 
devices and their widespread distribution via the World Wide 
Web, severe security concerns regarding the authenticity of 
images have emerged [1]. Due to the availability of powerful 
and user-friendly photo altering software, digital photographs 
are often susceptible to being altered [2]. Digital images 
frequently undergo deliberate aberrations during processing, 
the most typical of which are copy-move, interpolation, and 
merging. Each of these techniques is employed to mask or edit 
details in a digital image [3]. Forensic imaging methods  are 
required to determine an image's authenticity, processing 
history, and originality [4]. 

A. Research Motivation 

The motivation for this research stems from the urgent 
necessity to tackle the rising problem of picture fraud and 
manipulation in today's digital world. The advent of 
sophisticated image editing software has increased the 
possibility of coming across false and counterfeit images. 
Traditional counterfeit detection systems frequently fail to 
detect subtle alterations and produce reliable results [5]. 
Researchers have proposed numerous strategies for uncovering 

image forgeries [4, 6-8]. Traditional forgery detection 
approaches focus on seeing numerous artifacts inside modified 
images, such as changes in lighting, contrast, compression, 
sensor disturbances, and reflections. In the current state of 
research [1-4], supervised Machine Learning (ML) and Deep 
Learning (DL) algorithms are used in image forgery detection. 
Conventional methods for spotting image forgeries have 
accuracy and robustness limits, especially when dealing with 
sophisticated modifications. DL, a cutting-edge technique, 
offers a way to address these issues by automatically learning 
and extracting detailed information from images [4]. 
Considerable performance loss can be attributed to improper 
neural network parameter and layer selection. The above 
discussion emphasizes the DenseNet-based DL approach's 
potential as a feasible tool for effectively identifying forged 
images. While Convolutional Neural Networks (CNNs) show 
great promise, applying innovative architectures could improve 
their results. Previous investigations were limited by the lack of 
training data points and some other challenges, such as gradient 
fading and the requirement for a large layer count. This study, 
on the other hand, makes extensive use of training samples. As 
a result, the primary motivation  of the former is the 
employment of an advanced CNN model with adequate 
training data for reliable forged image classification. 
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B. Problem Statement and Discussion 

This study focuses on the issue of classifying images with 
the goal of creating a system that can detect and categorize 
types of image manipulation. The main challenge lies in 
spotting forging artifacts, which can undermine the 
trustworthiness and genuineness of visual material across 
various fields. To address this problem, we propose the use of 
DenseNet, a DL framework renowned for its ability to capture 
details and patterns within images. By enhancing the precision 
and dependability of algorithms, for detecting image tampering 
with the features of DenseNet, this study aims to overcome the 
shortcomings encountered by CNN and ML classifiers, which 
struggle with gradient disappearance and require complex 
layering to effectively identify changes in images. The goal is 
to boost the effectiveness of image manipulation detection, 
thereby safeguarding the authenticity of the content. 

C. Research Contribution 

The main raised Research Objectives (ROs) are: 

 RO1: Apply a DenseNet-based DL model to detect image 
forgeries in digital forensics. 

 RO2: Compare the results of the proposed DL model to 
those of other ML and DL strategies. 

 RO3: Evaluate the effectiveness of the proposed model 
related to other comparable techniques. 

When answering those ROs, the following important 
contributions were made:  

 The proposed system employs a newly adopted DenseNet-
based DL algorithm to carry out digital image forensics for 
the purpose of identifying image forgery. 

 A suitable number of layers are incorporated into the 
suggested DL approach. 

 Extensive experimental evaluations were used to evaluate 
the DenseNet’s performance across a variety of measures, 
including precision, recall, f1-score, and accuracy. 

 The study's originality lies in establishing the efficacy of 
the DenseNet121 CNN as a superior pre-trained model. 

 The study demonstrates the effectiveness of using a lighter 
model architecture to achieve equivalent results with 
computationally more complex models. 

 Evaluation of the suggested model’s competence in the 
light of comparable research. 

II. LITERATURE REVIEW 

Several strategies based on ML and pattern identification 
have been explored in an effort to improve the detection 
efficiency of counterfeit photographs. To detect manipulative 
operations and the operator's sequencing for two operators in 
specific, authors in [2] presented a strong medium CNN. The 
limiting solution deepens the system and reduces processing. 
To maximize information exchange and prevent the layer 
fitting problem, a global average max-pooling was used. 
Authors in [4] showcased a strong DL system for detecting 

image counterfeiting in dual compression techniques. Their 
model was trained by comparing genuine and recompressed 
photographs. An end-to-end trainable BusterNet-based DL 
framework for duplicate image fraud prevention and detection 
was proposed in [5]. Authors in [6] employed DL methods to 
detect image forgeries in real-world datasets. Their compact 
model outperformed the baseline methods. The research 
conducted in [10] presents a revolutionary DL-based strategy 
for pinpointing copy-move forgeries. The method uses 
modified dense peak clustering to split images into patches, 
attention-based DenseNet121 to extract features, and adaptive 
chimp patch matching to match patches. Even in compressed or 
modified images, the method finds forged regions with an 
improved accuracy and less processing time. Prior research has 
demonstrated DenseNet's advantage over other CNN models in 
image classification, due to its low parameter count. Notably, 
DenseNet has displayed success in image forensics’ analysis, 
particularly in spotting manipulated images. 

Despite the efficiency and widespread usage of simple ML 
and DL approaches in image forgery detection, most previous 
efforts struggled to improve classification accuracy. 
Performance degrades due to improper neural network model 
parameter and layer selection. Furthermore, despite the 
widespread implementation of standard ML methods, only a 
few researchers applied DenseNet121 to categorize real and 
forged images. As a result, difficulties such as improving 
model accuracy while simplifying the model by using less 
parameters, layers, depth, runtime, and model size, persist. The 
proposed DenseNet model detects digital image counterfeiting 
using several layers and hyper parameters. The proposed model 
was also compared with benchmark research.  

III. THE PROPOSED TECHNIQUE 

The primary goal of this study is to use DL technique to 
conduct digital forensics by identifying instances of image 
forgery. The proposed procedure works as follows: First, a 
benchmark dataset is needed to evaluate performance; second, 
preprocessing methods are employed to clean the data of 
unwanted noise, and third, a DL system, namely DenseNet, is 
deployed to reach the ultimate prediction (Figure 1). 

A. Data Set 

The publically available CASIA V2.0 image tampering 
detection evaluation database [7] was utilized, as outlined in 
Table I. This accessible for research purposes database allows 
for the comparison and assessment of tampering detection 
methods. It is specifically created for identifying forgeries and 
is divided into two groups; altered/fake and genuine/original. 
The dataset consists of a total of 12,323 images with 7,200 
authentic and 5,123 altered images. 

TABLE I.  INFORMATION ABOUT THE CASIA.2.0 DATASET 

Real Fake Dimensions Format 

7200 5123 
From 320×240 to 800×600 color 

images 
JPEG,BMP,TIFF 

 

B. Input Image Preprocessing 

The ImageDataGenerator class and API [8] was put into 
service to perform some preliminary processing on the images 
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in Keras. The imageDataGenerator class was deployed, 
resizing both training and testing images to 1./255, applying a 
shear intensity of 0.2, and randomly varying the zoom range by 
0.2. It is essential to arrange the data in such a way that they 
can be processed by the CNN after they have been 
preprocessed, since the CNN can only comprehend the 
numerical description of the picture data. Consequently, this is 
why the convolutional layer's "input shape" parameter displays 
information as a vector. In an array, numbers represent the 
values of individual pixels. For instance, the network interprets 
an input piece of data as a 64×64×3 numeric array (where 64 
represents height, 64 represents width, and 3 represents depth) 
[4]. Following the generation of the raw image matrix, the 
CNN processes the data. 

 

 
Fig. 1.  Block diagram of the proposed system. 

C. Existing DenseNet Architecture 

The baseline DenseNet architecture [10] is a robust CNN 
architecture for visual object recognition that is noted for 
providing top-tier performance with fewer parameters. It is 
closely related to ResNet with some important modifications. 
DenseNet uses a concatenation attribute to integrate the output 
of previous and subsequent layers, whereas ResNet utilizes an 
additive attribute to combine previous and future levels [11, 
12]. Traditional CNNs compute the output of the l

th
 layer by 

subjecting the previous layer's output to a nonlinear 
transformation designated as Hl(.). 

xl = Hl (xl-1)     (1) 

DenseNet differs from the standard practice of merely 
adding layer output feature maps to inputs by concatenating 
them. DenseNet's distinct methodology provides a smooth 
communication paradigm, improving the flow of information 
across layers. In particular, the inputs in the l

th
 layer are taken 

from the properties of all preceding layers: 

��  �  �� �〖��	, ��, �〗����     (2) 

The tensor [x0, x1, x2, ……, xl-1] is created by concatenating 
the output maps from the previous layers [10]. Hl(.) is a non-
linear transformation function. This function consists of three 
primary operations: Batch Normalization (BN), activation 
(ReLU), and a pooling and convolution combination. The 
growth rate, indicated as k, contributes to the generalization of 
the l

th
 layer as follows:  

��  �  �	 �  � � �� � 1�        (3) 

where k0 represents the array of the channels. 

D. Improved Densenet Architecture for Forged Image 

Detection 

The proposed model is a modified version of the 
DenseNet121 framework that has been enhanced with 
additional layers that have been painstakingly tailored to the 
unique requirements of identifying forged and genuine image 
data. More particular, the model makes use of the DenseNet121 
neural network's intrinsic densely interconnected topology. 
However, as shown in Figure 2, it incorporates tailored changes 
to improve performance with respect to the targeted dataset. 

 

1) How it Works 

The proposed DenseNet architecture is made up of dense 
blocks with different repetitions of convolutional layers. Each 
dense block has two layers (1×1 and 3×3), with the former 
acting as a bottleneck layer to minimize input channels before 
convolution. Transition layers include 1×1 convolution and 
2×2 average pooling (stride 2). The initial layers in the 
architecture include a 7×7 stride-2 convolutional layer and a 
3×3 stride-2 max pooling layer. It then has three thick blocks 
(with 6, 12, and 24 repeats) followed by corresponding 
transition layers. The last dense block has 16 repetitions and 
leads to global average pooling for classification and the output 
layer. Because of its dense connections and bottleneck layers, 
DenseNet121 excels in computer vision applications. The 
proposed extension (Figure 3) improves model performance 
and training efficiency with fewer parameters [12]. The 
configuration parameters of the suggested approach are 
depicted in Table II. 

TABLE II.  DENSENET ARCHITECTURE 

Layers Output size 
DenseNet-

121 

DenseNet-

169 

DenseNet-

201 

DenseNet-

264 

Convolution 110×110 5×5 Conv, stride 2 

Pooling 40×40 4×4 max pool, stride 2 

Dense block-

1 
40×40 

�1 1
4 4�

� 8 

�1 1
4 4�

� 8 

�1 1
4 4�

� 8 

�1 1
4 4�

� 8 

Transition 

layer-1 

40×40 1×1 Conv 

20×20 2×2 average pool, stride 2 

Dense block-

2 
20×20 

�1 1
4 4�

� 16 

�1 1
4 4�

� 16 

�1 1
4 4�

� 16 

�1 1
4 4�

� 16 

Transition 

layer-2 

20×20 1×1 Conv 

15×15 2×2 average pool, stride 2 

Dense block-

3 
15×15 

�1 1
4 4�

� 32 

�1 1
4 4�

� 48 

�1 1
4 4�

� 64 

�1 1
4 4�

� 82 

Transition 

layer-3 

15×15 1×1 Conv 

5×5 2×2 average pool, stride 2 

Dense block-

4 
5×5 

�1 1
4 4�

� 24 

�1 1
4 4�

� 48 

�1 1
4 4�

� 48 

�1 1
4 4�

� 64 

Classification 

layer 

1×1 2×2 global average pool, stride 2 

 10000D fully connected soft max 
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Fig. 2.  Improved DenseNet's proposed architecture. 

 
Fig. 3.  The proposed improved DenseNet architecture for forged image detection. 

The following algorithm describes the pseudocode steps of 
the proposed system: 

Data Preprocessing: 

def preprocess_data(data_path): 

#Load the CASIA 2.0 dataset 

real_images,fake_images = 

load_dataset(C://CASIA2.0dataset//images) 

#Image resizing and normalisation 

real_images = 

resize_and_normalize(real_images) 

fake_images = 

resize_and_normalize(fake_images) 

#Combine actual and forged images with 

their respective labels   

data = 

np.concatenate((real_images,fake_images)) 

labels = 

np.concatenate((np.zeros(len(real_images))

, 

 np.ones(len(fake_images)))) 

#Shuffle data and labels To avoid biases 

data,labels = shuffle(data,labels) 

Model Definition: 

defbuild_model(): 

#Load pre-trained DenseNet-121 model with 

ImageNet weights 

model = 

DenseNet121(weights="imagenet",include_top

=False) 

#Freeze pre-trained layers 

for layer in model.layers: 

layer.trainable = False 
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#Add custom layers for binary 

classification 

x = model.output 

x = Flatten()(x) 

x = Dense(1,activation="sigmoid")(x) 

#Compile the model with appropriate loss 

function,optimizer,and metrics 

model = 

Model(inputs=model.input,outputs=x) 

model.compile(loss="binary_crossentropy", 

optimizer="adam",metrics=["accuracy"]) 

return model 

Model Training: 

deftrain_model(model,data,labels,epochs): 

#Define data augmentation for improved 

generalizability (optional) 

datagen = ImageDataGenerator(...) 

#Train the model with the specified 

data,labels,and epochs 

model.fit(datagen.flow(data,labels,batch_s

ize=32),epochs=epochs) 

Image Prediction: 

defpredict_image(model,image_path): 

#Load and preprocess the image 

image = 

load_and_preprocess_image(image_path) 

#Predict the class probability 

prediction = 

model.predict(np.expand_dims(image,axis=0)

)[0][0] 

#Determine and print the result 

if prediction < 0.5: 

print("Image is classified as Real") 

else: 

print("Image is classified as Fake") 

Evaluation and Analysis: 

defevaluate_model(model,data,labels): 

#Evaluate model performance on test data 

loss,accuracy = 

model.evaluate(data,labels) 

print(f"Test loss: {loss:.4f}") 

print(f"Test accuracy: {accuracy:.4f}") 

#Generate and analyze Class Activation 

Maps (CAMs) for insights into model's 

decision 

2) Applied Example 

A two-dimensional grid of pixel values was the first 
representation of the digital image 2620.jpg, which was stored 
on a hard drive. Red, Green, and Blue (RGB) values were used 
to create a 3-tuple that represented the color information for 
each pixel. It was crucial to convert this 2D image into a 3D 
array with 220×220×3 dimensions in order to prepare it for 
inclusion into a DL model. The RGB values of each pixel were 
divided into several channels and the image was enlarged to 
224×224 pixels. For model compatibility, the RGB values were 
scaled down from their original range of 0 to 255 to a range of 
0 to 1 by dividing each value by 255. Figure 4 provides a 

graphic breakdown of the procedure [13]. The common method 
of pooling was implemented to optimize the input image for 
use in DenseNet. The supplied image's dimensions were 
reduced from 224×224×3 to 7×7×3 with this technique. 
Pooling minimizes the quantity of the input data while 
preserving key characteristics. The input image is divided into 
more manageable, non-overlapping portions, and a 
representative statistic is computed for all sections. In this 
illustration, the preprocessed 3D array image was separated 
among two segments of 2×2 size, and the highest value inside 
each segment was kept. The 3D array's dimensions were 
effectively decreaased to 7×7×3 with this step. 

After the pooling operation, a flatten layer, a crucial 
component in many DL models, processed the resulting 3D 
array. This layer combined all array values along a single 
dimension, resulting in a vector spanning of 147 units, and 
converted the 3D array into a single 1D array. This flatten 
layer's function is to transmute the output of the preceding 
layer. It may have various dimensions, inside a vector of fixed 
length suitable for the next layers. This procedure is essential 
for creating a model input structure that is consistent and 
matches the predicted insertion data shape. This 1D array 
incorporates, in a condensed and standardized structure, all the 
appropriate information that was taken from the input image 
and has been preprocessed and pooled [14]. The model's later 
layers can analyze data more quickly thanks to this format. 
Figure 5 illustrates the entire series of actions outlined above. 

Following the preprocessing and flattening of the input 
image, the ensuing vector/ray is directed via the concealed 
layers of the suggested DL model. The flattened vector, 
spanning 147 units, is initially inputted into a concealed layer 
harboring 50 neurons. Within this layer, each neuron takes the 
input vector (x) and conducts a multiplication with a distinctive 
weight matrix (w) designated for that neuron. Subsequently, the 
outcome of this multiplication is augmented by a distinct bias 
term (b) allocated to the same neuron. These actions yield a 
scalar value known as z for every neuron residing in the layer. 

Rectified Linear Unit (ReLU) activation function 
transforms the z-values, adding a nonlinear component to each 
neuron's output. The output of the layer, 50 dimensional 
vectors, has been sent to the next layer that is hidden with 30-
neurons. Within this layer, a similar process takes place and 
results in a vector with a length of 30. Two neurons are housed 
in the output layer of the model. A softmax activation function 
is encountered by the z-values in this layer, normalizing the 
data and generating a probability distribution between the two 
classes. This leads to an output 2D vector in which every 
component depicts the probability that the given class will 
handle the input image. The two considered classes are genuine 
and forged. The input image classification is affected by the 
softmax result being measured against a threshold. The output 
of the model is shown as a [0, 1] vector, denoting the image's 
classification. Figure 6 provides a clear illustration of the 
process involving the connection of the flattened vector to the 
layers in the suggested DL model and the operations in the 
hidden and output layers. 
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3) Implementation of the Proposed Model 

Python programming language and appropriate libraries 
designed for the DenseNet121 architecture were employed to 
implement the proposerd DenseNet model. A DL framework 
like TensorFlow or PyTorch allows to build and train the 
model by streamlining the computation of the architecture's 

parameters and layers. Table III offers a brief summary of the 
key features of the DenseNet model. This summary is 
extremely helpful in understanding the model's structural 
composition and provides a starting point for comparison with 
similar models in the field of natural image identification. 

 

 
Fig. 4.  Arrays of integers from an image. 

 

 
Fig. 5.  Pooled and flattened array. 
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Fig. 6.  Using DenseNet to classify an input image. 

TABLE III.  SUMMARY OF THE PROPOSED MODEL'S PARAMETERS  

Layer (type) Output shape Param # Connected to 

5conv_16block_con (Concatena) (False, 6, 6, 1024) 0 5conv_15block_con[0][0] 

5conv_16block_2_conv[0][0] 

B_N (BatchNormalization) (False, 6, 6, 1024) 4090 5conv_16block_con[0][0] 

ReLu (Activation) (False, 6, 6, 1024) 0 B_N[0][0] 

flatten (Flatten) (False, 50170) 0 ReLu [0][0] 

den (Dense) (False, 40) 2508840 flatten[0][0] 

den_1 (Dense) (False, 20) 2520 den[0][0] 

den_2 (Dense) (False, 2) 102 den_1[0][0] 

Total params: 9,549,006 

Trainable params: 2,511,502 

Non-trainable params: 7,037,504 

 

DenseNet use DenseBlocks, a modular framework that 
maintains feature map size inside each block while changing 
filter numbers. The ransition layers, which exist between 
DenseBlocks, cut channels in half. This improves the 
information flow across network layers, which helps with tasks 
like detecting faked images. DenseNet is created by adding an 
additional layer to the DenseNet blocks, as portrayed in Figure 
7. 

 

 
Fig. 7.  DenseNet model implementation plan. 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

A. Addressing RO1 

Numerous settings were deployed, which led to the 
evaluation of many DenseNet-based DL classifiers on the task 

of separating images into two distinct categories: genuine and 
forged. This study experimented with a variety of parameters 
and laboratory settings, described as follows: 

To ensure an unbiased evaluation of the proposed DenseNet 
model's performance, the dataset was randomly divided into 
distinct training and testing subsets, each containing half of the 
original data. The model was trained with the training subset. 
Training was done in batches of 19 images over the course of 
10 epochs. Table IV provides a thorough overview of the 
successes the suggested model experienced on the training 
dataset. The results shown in Table V can be closely examined 
to provide important insights into the strengths and weaknesses 
of the proposed DenseNet model. These discoveries might 
serve as a roadmap for upcoming developments and 
improvements in the field of digital forensics. 

A comparison of the expected and projected results for true 
forged and true genuine image was carried out. These results 
were represented by corresponding vectors, [0,1] for the latter 
and [1,0] for the former. The projected values exhibited in 
Table VI have two elements [15]. The vector materializes as 
[1,0] if the first constituent exceeds the other, otherwise, it has 
the form [0,1]. Table VI displays the determined class that was 
derived from the values presented in Table V. 
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TABLE IV.  PROPOSED MODEL’S ACCURACY, TEST LOSS, 
AND TRAINING DURATION 

Epochs 

(E) 

Time 

(s) 

Training 

loss 

Training 

accuracy 

Testing 

loss 

Testing 

accuracy 

E-1 87 0.95 0.65 0.50 0.81 

E-2 75 0.38 0.84 0.55 0.78 

E-3 75 0.36 0.86 0.71 0.72 

E-4 80 0.25 0.91 0.41 0.85 

E-5 77 0.24 0.89 0.451 0.82 

E-6 79 0.20 0.94 0.452 0.83 

E-7 100 0.18 0.94 0.450 0.84 

E-8 104 0.12 0.970 0.50 0.85 

E-9 108 0.10 0.971 0.481 0.86 

E-10 103 0.11 0.96 0.483 0.87 

 

B. Results on Testing Data 

Table V showcases the results of using the DenseNet model 
on a selection of 5 initial forged images and 5 initial genuine 
images of the testing dataset. 

TABLE V.  VALUES PREDICTED FROM TESTING DATA 

Image Predicted value 

Forged-345 (7.1218686e-03, 9.8983681e-01) 

Forged-346 (0.02381727, 0.9763827) 

Forged-348 (0.02158027, 0.9784198) 

Forged-355 (0.01666011, 0.9833399) 

Forged-356 (0.05612681, 0.9438732) 

Genuine-930 (9.9943285e-01, 4.725437e-04) 

Genuine-938 (0.94824463, 0.05175542) 

Genuine-941 (0.997224, 0.00277604) 

Genuine-946 (9.9983799e-01, 1.6193767e-04) 

Genuine-947 (0.41195405, 0.5880459) 

 

Image Genuine-547, despite being genuine in reality, 
obtained an incorrect forged prediction in the context of this 
experiment. As a result, it is referred to as a False forged. This 
situation highlights the value of accurate categorization and 
identification of natural features while also highlighting the 
limitations of predictive algorithms [16-18].  

The proposed model's prediction results were: 240 images 
were False genuine (i.e. identified as genuine whereas they 
were forged), 226 images were True genuine (genuine images 
predicted as genuine), 230 images were False forged (genuine 
images predicted as forged), and 127 images were True forged 
(forged imaged predicted as forged). Table VII shows the total 
results, along with the calculated accuracy, recall, and precision 
values. Accuracy, measures the total prediction score. Precision 
assesses the accuracy of identifying forged images while recall 
gauges the models ability to detect all forgeries. The F1 score 
combines precision and recall to give an assessment of the 
model performance. High precision reduces alarms while high 
recall ensures most forgeries are caught. Understanding the F1 
score is crucial for grasping the models effectiveness in 
datasets with distributions of classes. These metrics collectively 
provide an assessment of how well the model performs, 
highlighting its strengths and areas that need improvement. 

 

 

 

TABLE VI.  IDENTIFYING THE PREDICTED CLASSES 

Image 
Actual 

(vector) 

Actual 

(class) 

Predicted 

(vector) 

Predicted 

(class) 
Result 

Forged-

221.jpg 
[0,1] Forged [0,1] Forged 

True 

forged 

Forged-

229.jpg 
[0,1] Forged [0,1] Forged 

True 

forged 

Forged-

291.jpg 
[0,1] Forged [0,1] Forged 

True 

forged 

Forged-

340.jpg 
[0,1] Forged [0,1] Forged 

True 

forged 

Forged-

799.jpg 
[0,1] Forged [0,1] Forged 

True 

forged 

Genuine -

191.jpg 
[1,0] Genuine 

[1,0] 
Genuine 

True 

genuine 

Genuine -

533.jpg 
[1,0] Genuine 

[1,0] 
Genuine 

True 

genuine 

Genuine -

534.jpg 
[1,0] Genuine 

[1,0] 
Genuine 

True 

genuine 

Genuine -

537.jpg 
[1,0] Genuine 

[1,0] 
Genuine 

True 

genuine 

Genuine -

547.jpg 
[1,0] Genuine [0,1] Forged 

False 

forged 

TABLE VII.  CONFUSION MATRIX FOR THE PROPOSED 
MODEL'S BINARY CATEGORIZATION 

Class Precision Recall F1-score 

Genuine 0.87 0.86 0.88 

Forged 0.91 0.92 0.92 

Average 0.89 0.90 0.91 

Accuracy 92.32 

 

The proposed DenseNet model's excellent accuracy in 
recognizing real and forged images for digital image forensics 
analysis with the CASIA 2.0 benchmark collection can be 
attributed to several factors: 

 Dense Connectivity: By directly connecting each layer to 
all subsequent levels, DenseNet's architecture encourages 
efficient information flow and feature reuse. When 
compared to standard CNNs, which depend purely on 
feedforward connections, this allows the model to acquire 
richer and more discriminative characteristics. 

 Bottleneck Layers: These layers reduce computational 
complexity and overfitting by limiting the amount of input 
channels before each 3×3 convolution. This is especially 
useful for smaller datasets, such as CASIA 2.0, where 
overfitting is a typical concern. 

 CASIA 2.0 Dataset Properties: CASIA 2.0 dataset contains 
a wide range of image forgery types, like copy-paste, 
splicing, and compression. Because of the variety and 
difficulty of these modifications, it serves as a solid 
standard for testing image forgery detection models. 

 Preprocessing approaches: Using appropriate image 
normalization and de-noising techniques has considerably 
improved model performance. 

In conclusion, the proposed DenseNet's excellent accuracy 
in distinguishing authentic and forged images for digital image 
forensics analysis can be attributed to its efficient design, data 
augmentation approach, and the nature of the CASIA 2.0 
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dataset. More advancements can be made by optimizing 
training techniques, experimenting with different feature 
engineering methods, and integrating many models using 
ensemble learning. 

C. Complexity of the Proposed Algorithm 

The following factors affect the algorithmic complexity: 

 Image size input: Since there are more pixels and 
calculations are required, difficulty rises with greater image 
sizes. 

 Network depth: Compared to shallower networks, 
DenseNet's 21 Dense Blocks add more layers and 
connections to the network, increasing its complexity. 

 Growth rate: Within the Dense Blocks, DenseNet uses a 
growth rate parameter to regulate how many feature 
mappings are added per layer. Complexity rises with 
increasing growth rate. 

 Computational operations: The network's layers carry out a 
variety of computations, including activation functions, 
pooling, and convolutions. The particular operations and 
their parameters determine the level of complexity. 

A breakdown of the complexity in big O notation follows: 

 Time Complexity: O(N2×K2×D) is the formula for 
convolution operations, where N is the size of the input 
image, K is the size of the kernel, and D is the total number 
of input and output channels. 

 Pooling operation: O(N
2
) 

 Activation function: O(N
2
) 

 Dense connections have a size of O(L×D×N
2
), where L is 

the network's layer count. 

 Space Complexity: features Map: O(L×D×N
2
) and weights 

and biases: O(L×D×K2). 

As a concequence, the entire complexity of the proposed 
DenseNet algorithm for digital image forensics analysis can be 
expressed as: 

Time complexity: O(N2×D×K2×L) + O(N4) 

Space complexity: O(L×D×N2) + O(L×D×K2) 

D. Addressing RO2 

To answer RO2, the performance of the proposed DenseNet 
model was compared with those of different ML and DL 
classifiers . The results are listed in Table VIII. Established 
metrics were used to evaluate how well it can distinguish 
genuine from from manipulated images.  

E. Addressing RO3 

The findings of the baseline methods and the suggested 
method are compared in Table IX, with the proposed model 
outperforming the baseline methods. The suggested model 
performed best in forge picture recognition (92.32% accuracy). 

 

TABLE VIII.  COMPARATIVE RESULTS 

ML/DL model Precision Recall F1 score Accuracy 

Xception 0.77 0.74 0.73 76.51 

Mobilenetv3-small 0.78 0.75 0.77 72.21 

Resnet-50 0.59 64 0.63 69.24 

LSTM 0.61 0.63 0.62 63.31 

RNN 0.71 0.71 0.71 70.64 

Improved DenseNet 

(proposed) 
0.89 0.9 0.91 92.32 

TABLE IX.  PROPOSED MODEL VS. RELATED RESEARCH 

Work Method 
Results 

(accuracy) 

[2] Forged image recognition with DL 0.8542 

[10] Forged image detection with DL 0.882 

Proposed 

A novel model based on the DenseNet121 

architecture, a CNN version with densely 

connected layers 

0.9232 

 

The proposed CNN is contrasted with the CNN model from 
[2], with four fully connected layers, which recognized falsified 
images. The quad convolution CNN architecture had lesser 
effectiveness (accuracy: 85.42%) than the proposed CNN 
model (92.32%). The CNN different parameter settings and 
insufficient layer count are held responsible for the baseline 
model's inadequacy, thus, the effectiveness of the CNN 
degrades whenever the number of concealed layers is increased 
by even more than 2. The performance of the proposed CNN 
model driven by DL was also contrasted with the research 
conducted in [10]. The recommended method surpassed the 
benchmark work across a variety of parameter combinations of 
layers in a deep neural network, including filters, step size, 
block size, number of iterations, and various measures like 
precision, recall, and F1-score. A significant difference is 
revealed when contrasting the current study with the findings in 
[10]. The latter used a CNN model and was limited to 
categorizing photos of glaciers as "yes" or "no," with an 
accuracy rate of 72%. The proposed study, on the other hand, 
adopted a more thorough methodology by including both 
forged and real photos in the training data. This method 
produced a higher accuracy of 84% by adopting a less 
complicated model architecture. 

This comparison emphasizes how essential it is to take a 
greater variety of natural factors into account when developing 
ML models that correctly categorize images. The proposed 
work also shows how a simpler model design can produce 
outcomes that are equivalent to those of more complex, 
computationally expensive models. The DenseNet model 
suggested provides significant advantages in various areas of 
digital image forensics. In media the former can counteract the 
proliferation of fake photos and videos, playing a crucial role in 
combating misinformation and protecting users from online 
scams. The journalism industry can benefit from the model's 
capacity to authenticate images used in news reports ensuring 
correctness and preventing the spread of fake news. In 
cybersecurity and law enforcement, the proposed model may 
assist in investigating crimes involving manipulated images, 
such as identity theft and cyber fraud, by identifying photos 
and deepfake identities. Moreover, the medical field can be 
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favored from the model's ability to guarantee the accuracy of 
diagnoses and treatments. These instances highlight the model's 
adaptability and its potential to improve image integrity and 
security across various sectors. With the advancements in DL 
technology, it is anticipated that DenseNets applications will 
broaden further as it strengthens efforts, against image 
manipulation. 

V. CONCLUSION AND FUTURE WORK 

In conclusion, identifying fake photographs is crucial for a 
number of industries, including transportation and outdoor 
recreation. Convolutional Neural Networks (CNNs) have 
emerged as a popular method for classifying and recognizing 
images. While earlier studies focused on a variety of image 
categories, the topic of forged image detection is still largely 
untapped. The presented DenseNet-based picture forgery 
recognition model performs well at differentiating genuine and 
altered photos. Three stages are involved in applying the 
DenseNet model: data gathering, data preprocessing, and 
model deployment. The current study presents a novel model 
based on the DenseNet121 architecture, a version of CNNs 
with densely connected layers. This model effectively 
distinguishes fabricated and genuine photos. The model was 
evaluated with a dataset of 12,614 photos, both forged and 
genuine, and remarkable results with an accuracy rate of 
92.32% were obtained. This accomplishment places the 
recommended model among the best in forged picture 
detection tasks, demonstrating its high performance. 

The proposed model is a modified version of the 
DenseNet121 architecture, with extra layers added to meet the 
special requirements of forged picture detection. This 
architectural arrangement consists of several layers, beginning 
with an initial convolutional layer with 64 7×7 filters and a 
stride of 2. Following that, dense blocks and transition layers 
are incorporated into the architecture. The final dense block 
consists of 16 repetitions, ending in the output layer with a 
global average pooling layer that consolidates all network 
feature maps for classification. Despite its achievements, the 
suggested model has some limitations. These include using one 
dataset and a specific DenseNet design, without testing trained 
models. Suggestions for research involve broadening the types 
of studied images, integrating various datasets, and trying out 
pre-trained neural network models like AlexNet, VGG, and 
ResNet. Moreover, there are plans to investigate neural 
network setups. such as CNN+BiLSTM and CNN+BiGRU, to 
conduct a thorough image forgery analysis. This effort aims to 
improve the model's accuracy in various scenarios. 
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