
Engineering, Technology & Applied Science Research Vol. 14, No. 2, 2024, 13578-13583 13578  
 

www.etasr.com Ramadan & Boubaker: Predictive Modeling of Groundwater Recharge under Climate Change … 

 

Predictive Modeling of Groundwater Recharge 
under Climate Change Scenarios in the 
Northern Area of Saudi Arabia 

 

Rabie A. Ramadan 

Computer Engineering Department, College of Computer Science and Engineering, Hail University, 
Saudi Arabia | Computer Engineering Department, Faculty of Engineering, Cairo University, Egypt 
rabieramadan@gmail.com (corresponding author) 
 
Sahbi Boubaker 

Department of Computer and Network Engineering, College of Computer Science and Engineering, 
University of Jeddah, Saudi Arabia 
sboubaker@uj.edu.sa 

Received: 6 February 2024 | Revised: 22 February 2024 | Accepted: 1 March 2024 

Licensed under a CC-BY 4.0 license | Copyright (c) by the authors | DOI: https://doi.org/10.48084/etasr.7020 

ABSTRACT 

Water scarcity is considered a major problem in dry regions, such as the northern areas of Saudi Arabia 

and especially the city of Hail. Water resources in this region come mainly from groundwater aquifers, 

which are currently suffering from high demand and severe climatic conditions. Forecasting water 

consumption as accurately as possible may contribute to a high level of sustainability of water resources. 

This study investigated different Machine Learning (ML) algorithms, namely Support Vector Machine 

(SVM), Random Forest (RF), Linear Regression (LR), and Gradient Boosting (GB), to efficiently predict 

water consumption in such areas. These models were evaluated using a set of performance measures, 

including Mean Squared Error (MSE), R-squared (R2), Mean Absolute Error (MAE), Explained Variance 

Score (EVS), Mean Absolute Percentage Error (MAPE), and Median Absolute Error (MedAE). Two 

datasets, water consumption and weather data, were collected from different sources to examine the 

performance of the ML algorithms. The novelty of this study lies in the integration of both weather and 

water consumption data. After examining the most effective features, the two datasets were merged and 

the proposed algorithms were applied. The RF algorithm outperformed the other models, indicating its 

robustness in capturing water usage behavior in dry areas such as Hail City. The results of this study can 

be used by local authorities in decision-making, water consumption analysis, new project construction, and 

consumer behavior regarding water usage habits in the region. 
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I. INTRODUCTION  

Today, many concerns are raised about environmental 
conditions and their effects on the global population. This 
raises the issue of water management as a natural resource. 
Water in countries such as Saudi Arabia, especially in northern 
areas such as Hail City, is a precious resource [1] and 
management and prediction of water consumption are 
challenging problems. This study uses Machine Learning (ML) 
capabilities in water management in the northern areas of Saudi 
Arabia, focusing on predictive analytics and using available 
datasets of water consumption and weather data [2-3]. Instead 
of traditional forecasting methods, which depend on historical 
data, this study aims to evaluate and compare four ML models: 
Support Vector Machine (SVM), Random Forest (RF), Linear 
Regression (LR), and Gradient Boosting (GB) in the context of 
water consumption prediction. These models were selected 

because of their proven capabilities in similar forecasting 
frameworks when applied to complex multidimensional data. 

Data collection is the first step of a successful prediction. In 
this regard, the two datasets used were collected from different 
sources [2-3]. This study uses a water consumption dataset, 
which contains records of monthly water consumption, and 
comprehensive hourly weather observations. Modeling the 
relationship between weather data and water consumption is 
crucial for managing water resources under climate change 
conditions, as water demand may increase following an 
increase in temperature [4]. Additionally, other weather data, 
such as wind speed and visibility, greatly affect water 
consumption.  

This study aims to make a significant contribution to the 
prediction of water consumption in the northern area of Saudi 
Arabia, which has a special climate with a scarcity of rain and 
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groundwater. Four methods were evaluated with the Mean 
Square Error (MSE), R square (R2), Mean Absolute Error 
(MAE), Explained Variance Score (EVS), Mean Absolute 
Percentage Error (MAPE), and Median Absolute Error 
(MedAE). These measures were selected to reflect the accuracy 
and reliability of the proposed algorithms in forecasting 
groundwater consumption in northern Saudi Arabia. For 
example, MSE reflects the sensitivity of large errors, which 
critically assesses the accuracy of the prediction, whereas R2 
and EVS measure the proportion of variance in water 
consumption that the models could explain, indicating the 
fitting of the models used to the datasets and their ability to 
capture the underlying patterns in water usage. Therefore, they 
perfectly reflect the study's objective of developing a model 
that accurately reflects consumption dynamics. MAE and 
MedAE indicate the average magnitude and central tendency of 
these errors, respectively. These measures are less sensitive to 
outliers than MSE. Therefore, a more robust view of model 
performance in different scenarios is very important in water 
resource management. Finally, MAPE is a relative error metric 
that was chosen to reflect the perspective on the error size 
relative to actual consumption values and is particularly 
important to policymakers because it gives an intuitive 
understanding of model accuracy in percentage terms. 

The results could benefit the local authorities of Saudi 
Arabia in managing water consumption in these areas and 
extend the results to many similar locations. However, in 
leveraging predictive analytics for water management, ethical 
integrity requires transparency, privacy protection, and equity, 
ensuring that the models do not perpetuate biases. Crucially, 
engaging communities in decision-making processes fosters 
trust and ensures that water management practices are inclusive 
and fair, respect diverse needs, and promote equitable access to 
water resources. 

II. RELATED WORKS 

The prediction of water consumption and Groundwater 
Level (GWL) plays a crucial role in water resource 
management. Therefore, researchers and water systems 
practitioners have been very interested in this topic for the last 
few decades. Traditional forecasting techniques have shown 
several limitations, although the potential they exhibited when 
applied to water time series. Some of these methods have linear 
relationships between variables. However, water consumption 
and GWLs often exhibit non-linear behavior patterns. 
Additionally, many techniques frequently require the time 
series data to be stationary, meaning the statistical properties of 
the series (mean, variance, autocorrelation, etc.) are constant 
over time. Additionally, they may focus on historical data 
patterns and not effectively incorporate external factors or 
variables. Moreover, they face difficulty in handling large and 
complex datasets. On the other hand, machine learning 
techniques consider the variability in the dataset and can handle 
large datasets. 

Water consumption greatly affects water resources, 
including GWLs, since climatic, topographic, and hydrological 
factors interact, making simulation and prediction challenging. 
In [5], a comprehensive overview of soft computing 
techniques, including ML, was provided to predict GWLs 

while considering the techniques used, the study location, the 
dataset, and the main performance metrics. This study showed 
that the prediction of GWLs is case-sensitive. In [6], a real-time 
framework was presented to predict short-term water 
consumption, based on a back-propagation ML algorithm and 
Long-Short-Term Memory (LSTM). The results obtained were 
promising, as they were found to have an accuracy of a few 
liters. Combining human mobility, historical water 
consumption, and applying ML algorithms such as SVM and 
tree-based ensemble methods yielded accurate forecasts for a 
case study in Wroclaw, Poland [7]. Compared to classical 
techniques such as ARIMA, ML techniques have improved 
accuracy. In [8], the water irrigation demand was estimated 
based on an RF algorithm. The results provided a projected 
spatial resolution of 6 km, considering evapotranspiration and 
meteorological data.  

GWL prediction, as among the drivers of water 
consumption, has been extensively considered using ML 
algorithms [9-17]. GWL is in mutual interaction with water 
demand/consumption, mainly in dry regions with extensive 
agricultural activities such as Hail City, Saudi Arabia. GWL is 
affected by several factors, including climatic conditions [9] 
and regional characteristics [10]. The groundwater depth 
usually exhibits fluctuations due to climate, water 
extraction/demand, surface water flows, and rainfall. The 
relationship between GWL and these factors is known to be 
highly nonlinear. The classic techniques usually fail to capture 
those complex relationships. In [11], ML methods were used to 
model these relationships, and the tested Deep Learning (DL) 
models provided good results, although they suffered from 
relatively limited datasets. Authors in [12] highlighted that the 
studied aquifer was in a critical situation and recommended 
urgent management actions. A new trending method to predict 
GWL consists of using ensemble DL methods [13], as the 
results have shown their superiority over single methods. 
Combined methods have also been investigated while using 
different techniques, sometimes from different categories, such 
as ML with wavelet transforms [14]. ML and DL have also 
been investigated in the domain of water prediction [15-17]. 
However, case studies from arid regions with scarce water 
resources and difficult climatic conditions, such as in the north 
of Saudi Arabia, were not adequately investigated. 

This study fills this research gap by investigating water 
consumption in the northern area of Saudi Arabia using 
different algorithms, including RF, GB, SVM, and LR. Similar 
frameworks to these methods can be found in [18-24]. The 
novel contributions of this study are that it is carried out for a 
special area with special characteristics, it also merges two 
datasets for efficient water consumption prediction, including 
water and weather data, and finally applies different ML 
algorithms to the merged datasets. 

III. PROPOSED SOLUTION APPROACH 

Figure 1 shows the proposed approach, which is broken 
down into five key steps: 

 Data collection: At this stage, data are collected from 
different sources [2-3]. The collected water data include 
historical observations of water consumption and historical 
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weather data. The quality of the data collected certainly 
affects the accuracy of the prediction process. 

 Data Processing: It is a critical step that cleans the data and 
transforms them into a suitable format for analysis. 
Preprocessing operations include finding missing values, 
normalization, and selecting relative features. Preprocessing 
also involves recognizing seasonal variations and 
timestamp conversion.  

 Data Split: In this phase, the data are divided into training 
and testing sets. The training data are used to train the 

investigated models, and the test data are used to test the 
accuracy of the prediction.  

 Apply Models: ML models are applied to the data. Each 
model requires specific data handling. This step is critical to 
evaluate the performance of the proposed models. 

 Evaluation of the models: In the last phase, the results are 
evaluated. Different evaluation methods were chosen, such 
as MSE, R2, MAE, EVS, MAPE, and MedAE. 

 

 
Fig. 1.  Proposed approach. 

This study used the following ML models. 

A. Random Forest (RF) Regressor 

RF is an ensemble learning technique mostly used for 
classification and regression tasks [18]. It constructs multiple 
trees during the training phase, based on the type of data, and 
gives a chance to avoid overfitting, which is common for 
individual decision trees. It does this by averaging over a 
multitude of decision trees. The algorithm is also suitable for 
complex and nonlinear data. It also provides valuable 
information about the feature's importance, leading to the 
selection of important and effective features. In addition, it can 
handle various data types, which makes it suitable for ML 
applications. 

B. Gradient Boosting (GB) Regressor 

GB is known for its computational efficiency and 
performance, proven in large- and complex datasets. It involves 
regularization (L1 and L2) that helps avoid overfitting. An 
important feature of GB is its efficient handling of missing 
data, which makes it robust for modeling without extensive 
preprocessing. Moreover, it has tree pruning, which limits tree 
growth during the learning process [19]. 

C. Linear Regression (LR) 

LR is an ML technique that is used to model the 
relationship between two variables by fitting a linear equation 
to the observed data. Some variables are considered 
explanatory, and another variable is considered the dependent 
variable. In this study, the water demand is considered the 
dependent variable, and the explanatory variables are the 
climatic conditions [25]. 

D. Support Vector Machines (SVMs) 

SVMs consist of a group of supervised learning methods 
that are usually used in classification and regression problems. 
SVMs are extended to nonlinear models of the generalized 
algorithm developed for linear regressions [20]. 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

The RF was designed with 100 estimators and a fixed 
random state for reproducibility. The RF model, as shown in 

Figure 2, showed reasonable results, with an R2 of 
approximately 0.694. This indicates that the model was able to 
explain 69.4% of the variance in water consumption. At the 
same time, MSE was 0.549 and MAE was 0.529, which are 
relatively low. In addition, a substantial portion of the variance 
in water consumption was shown through EVS, which was 
0.694. The MAPE of 3.05% indicates a lower prediction error, 
while the MSLE of 0.0016 and MedAE of 0.371 again confirm 
its accuracy. 

 

 
Fig. 2.  RF evaluation metrics. 

Figure 3 shows the results of the LR, indicating that it is a 
moderate fit to predict water consumption. LR had R2, MSE, 
MAE, EVS, MAPE, and MAE of 0.470, 0.951, 0.846, 0.470, 
4.89%, and 0.808, respectively. These results indicate that the 
model was able to explain nearly 47% of the variance in water 
consumption with a moderate level of accuracy. The results 
assume that the model accounts for a substantial portion of the 
variance in water consumption and offers a robust assessment 
of central prediction errors. The SVM results, shown in Figure 
4, indicate weak performance, as R2 was approximately 0.0039, 
indicating that the model captured only 0.39% of the variance 
in water consumption. This evaluation was also confirmed by 
MAE, EVS, MAPE, MSLE, and MedAE. The GB was 
configured similarly to the RF with 100 estimators. 
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Fig. 3.  LR evaluation metrics. 

 
Fig. 4.  SVM evaluation metrics. 

Figure 5 shows the GB loss curve, plotting MSE against the 
number of estimators for training and validation data. The 
figure suggests effective learning with increasing estimators. 
As the number of estimators continues to increase, the curve 
plateau indicates diminishing returns on error reduction, and 
the model is generalizing well and not overfitting. Figure 6 
presents the comparison between the actual and the predicted 
values from a GB model. The red (predicted) and blue (actual) 
points show the overall accuracy of the model. Figure 7 shows 
the performance of the GB model, showing an R2 score of 
0.596, indicating that it can account for approximately 59.63% 
of the variance in water consumption. Similarly, MSE equals 
0.724, implying that the model's predictions have a relatively 
moderate level of accuracy. Also, MAE of 0.711 and EVS of 
0.596 indicate that, on average, the model's predictions deviate 
by this amount from the actual values. Other measures confirm 
the given results. 

Table I summarizes the evaluation results of the considered 
algorithms. RF outperformed the other models in almost all 
metrics. GB follows closely behind, showing robust 
performance. LR and SVM lagged, with LR performing 
moderately, and SVM showed the worst results. Although RF 
shows the best results among the other models, its accuracy is 
still not up to the expected results. These results reflect the 
complexity of the prediction based on two different datasets 
that were not collected for water consumption. To the best of 
our knowledge, no previous study has combined weather and 

water data, especially in the northern areas of Saudi Arabia. 
However, this study is a step forward in the relationship 
between weather data and water use and consumption in 
different areas. 

 

 

Fig. 5.  GB loss curve. 

 
Fig. 6.  GB actual vs predicted values. 

 

Fig. 7.  GB performance metrics. 

TABLE I.  PERFORMANCE COMPARISON 

Algorithm 
MSE 

(lt2) 
R2(%) 

MAE 

(lt) 

EVS 

(unitless) 
MAPE(%) 

MedAE 

(lt) 

SVM 1.7864 0.0039 1.0929 0.0053 0.0634 1.0411 
RF 0.5489 0.6939 0.5288 0.6939 0.0305 0.3705 
LR 0.9506 0.4699 0.8461 0.4700 0.0489 0.8081 
GB 0.7240 0.5962 0.7111 0.5963 0.0411 0.6239 
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V. CHALLENGES AND LIMITATIONS 

Studying water consumption in areas such as northern 
regions of Saudi Arabia faces challenges such as data scarcity 
and quality, reliance on non-renewable groundwater, climate 
change, socioeconomic growth, technological and 
infrastructural limitations, and environmental concerns. This 
area has limited historical quality datasets, which hinder 
accurate modeling and forecasting of water usage. This study 
had to collect data from various sources to obtain enough for 
the investigation. Also, the combination of underground water 
and weather data demands careful resource management. 
Additionally, government policies and the need to balance 
ecological sustainability with human water use present 
complex challenges. The complexity of predicting water 
consumption is increased by the interplay of various external 
factors, making accurate forecasting challenging. 

VI. IMPLICATIONS OF THE FINDINGS FOR WATER 
RESOURCE MANAGEMENT POLICIES 

The results of this study can have a great impact on water 
resource management policies in northern Saudi Arabia, 
highlighting the critical role of predictive analytics in the 
formation of sustainable strategies. Using predictive analytics 
leads to a better understanding of patterns of water 
consumption and prediction of future demands. Therefore, 
policymakers could have results to make informed decisions. 
The results of this research identify the key factors driving 
water consumption in the region. Policies can target these 
factors to reduce water consumption and usage. Adaptive 
analytics could optimize the allocation of water resources. 
Therefore, policymakers can ensure that water distribution is 
managed more efficiently, decreasing wastage and ensuring 
water is available where and when it is most needed. Intelligent 
irrigation systems for agriculture could be developed, ensuring 
that water is used precisely and efficiently to meet crop needs 
without excess. Finally, the results of this study highlight the 
importance of integrating predictive analytics into long-term 
water resource planning and infrastructure development. 
Therefore, policymakers can better plan for the infrastructure 
of water storage and distribution. 

VII. CONCLUSION 

The results of this study underscore the potential of ML 
techniques, especially RF, in predicting water consumption in 
areas such as northern Saudi Arabia and Hail City. RF showed 
superior performance with the lowest MSE and the highest R2 
and EVS, indicating its ability to handle non-linear and 
interesting water usage patterns. However, SVM was unable to 
integrate and perform well in the given water and weather 
datasets. This study is one of the first that integrates weather 
data into water usage data in such areas, where weather and 
water consumption usage and sources are exceptional cases. 
This study could be extended to incorporate the interaction 
between climate conditions and agricultural activities or 
between underground water consumption and consumer 
behavior. Future research will focus on the use of different 
algorithms, including DL algorithms, to refine the prediction. 
Also, real-time analytics is expected to have more value than 
offline prediction. 
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