
Engineering, Technology & Applied Science Research Vol. 6, No. 5, 2016, 1187-1194 1187

www.etasr.com Faridi Masouleh et al.: Genetic-Firefly Hybrid Algorithm to Find the Best Data Location in a Data Cube

A Genetic-Firefly Hybrid Algorithm to Find the Best
Data Location in a Data Cube

M. Faridi Masouleh
Information Technology
Management Department

Science and Research
Branch

Islamic Azad University
Tehran, Iran

m.faridi@srbiau.ac.ir

M. A. Afshar Kazemi
Information Technology
Management Department

Science and Research
Branch

Islamic Azad University
Tehran, Iran

m.afsharkazemi@yahoo.com

M. Alborzi
Information Technology
Management Department

Science and Research
Branch

Islamic Azad University
Tehran, Iran

Mahmood_alborzi@yahoo.com

A. Toloie Eshlaghy
Information Technology
Management Department

Science and Research
Branch

Islamic Azad University
Tehran, Iran

toloie@gmail.com

Abstract—Decision-based programs include large-scale complex
database queries. If the response time is short, query
optimization is critical. Users usually observe data as a multi-
dimensional data cube. Each data cube cell displays data as an
aggregation in which the number of cells depends on the number
of other cells in the cube. At any given time, a powerful query
optimization method can visualize part of the cells instead of
calculating results from raw data. Business systems use different
approaches and positioning of data in the data cube. In the
present study, the data is trained by a neural network and a
genetic-firefly hybrid algorithm is proposed for finding the best
position for the data in the cube.

Keywords-database; data cube; genetic algorithm; firefly
algorithm; neural network

I. INTRODUCTION

Business Intelligence (BI) is a vast category of methods,
applications and technologies of gathering data, accessing
information, and analyzing a large amount of data for getting
knowledge in the organization to make effective business
decisions and made Information Technology (IT)
measurements powerful. Typical BI technologies include
business rule modeling, ETL (Extraction, Transformation and
Load) tools, data profiling, data warehousing and online
analytical processing, and data mining. The focus of BI is to
fully utilize massive data to help organizations gain
competitive advantages. Decision support systems are
increasingly used in business. They provide access to data that
has been locked in a database and convert it into useful
information. Many organizations and companies are
developing integrated decision support systems known as data
warehouses, where users can carry out analysis. As operational
databases update the state of their information, data warehouses
typically store the history of that information. As a result, data
warehouses tend to grow over time.

 Users of decision support systems are generally
reluctant to identify behaviors instead of searching for an
independent record. Queries in a decision support system build

aggregation. The size of the data warehouse and complexity of
the queries can produce long queries that require much time for
completion. This causes delays that are not acceptable in most
decision support system environments because it reduces the
efficiency of the system.

 Data cube analysis is a powerful tool for analyzing
multi-dimensional data. Cube analysis allows users to simply
explore data by calculating the aggregate size of all possible
groups as defined by their new dimensions. A number of
techniques have been used to design effective methods to
calculate the cube. Technically, a cube is a multi-dimensional
redundancy plan relationship that calculates all SQL-grouped
operators and aggregates their results in n-dimensional space to
answer OLAP queries. This aggregation is calculated in
derivative summary tables or multi-dimensional arrays and
mathematical tools are required to estimate the aggregation
sizes. Because an aggregation is generally quite large,
indexing, which adds redundancy, is deemed necessary to
speed up the inquiry [42, 43, 44].

II. OLAP

Online analytical processing (OLAP) is rooted in systems
such as IRI Express, Comshare, and Essbage. Unlike statistical
databases that hold census data and economic information,
OLAP collects everyday commercial transactions data, such as
that for sales or health. The main objective of OLAP is to
enable analysts to build a mental image of the underlying data
by exploring different perspectives at various stages of
generalization and interaction [39]. As a component in
decision support systems, OLAP interacts with other
components such as data warehouses and data mining to assist
business analysts in the decision-making. Data warehouses
collect data from multiple data sources, such as transactional
databases, across an organization. The data is cleaned and
converted to a sustainable format before being collected in the
data warehouse. Subsets of the data in the warehouse are
extracted to meet the specific needs of the organization. Unlike
transactional databases, where data is continuously updated, the

Engineering, Technology & Applied Science Research Vol. 6, No. 5, 2016, 1187-1194 1188

www.etasr.com Faridi Masouleh et al.: Genetic-Firefly Hybrid Algorithm to Find the Best Data Location in a Data Cube

data collected in a warehouse updates itself; this is only
possible by data sources in cyclic form.

 OLAP and data mining both allow analysts to
discover knowledge about the data in a warehouse. Data
mining algorithms automatically generate such knowledge in a
pre-defined state, such as by classification or collaborative laws
[2, 3]. OLAP does not produce knowledge directly, but relies
on human analysis to interpret the results of the query. OLAP is
more flexible than data mining because analysts can access
different patterns and trends rather than a specific set of
knowledge. OLAP and data mining can be combined to enable
analysts to obtain data mining results from various sectors of
the data and in the generalization stages [9, 39]. In a typical
session of OLAP, analysts count aggregated queries about the
underlying data. OLAP can obtain data in a few seconds, even
if the query has a very long record. The results allow analysts
to collect large amounts of data to determine general patterns
and trends. Based on their observations about an exception to a
pattern, analysts can collect smaller amounts of data in greater
detail to fill in parts. This process can be repeated in different
parts of the data using data segmentation until the mental
imagery is satisfied. OLAP system needs are determined in
ways such as the FASMI test and Codd law. Some
requirements are unique to OLAP. To enable OLAP for an
interactive process, the system must first effectively respond to
queries. OLAP often relies on large-scale pre-computing,
specialized indexing, and storage to improve performance.

In the next step, analysts are allowed to explore the data
from different perspectives and stages of generalization to
organize and generalize the data into multiple dimensions and
hierarchies. The data cube model described below is a popular
abstract model for this purpose [9]. The data to be analyzed by
OLAP is collected in the data warehouse using the
communication model and are organized using stellar models
measuring dimension and other features. Each dimension has a
table that displays contributions to dimension hierarchically.
The table of dimensions could have redundancies which can be
eliminated by dividing each dimension into other tables. The
result is called a snowflake model.

ROLAP and MOLAP are popular architectures of OLAP.
ROLAP provides a front tool that translates the multi-
dimensional queries in the corresponding SQL queries for
processing within a relationship. OLAP is lightweight and is
scalable to large datasets, but its effectiveness is limited
because intra-relational optimization methods are not designed
for multi-dimensional queries. OLAP does not rely on the
relational model, but focuses on a multi-dimensional view.
MOLAP can achieve better performance by visualization and
improvement of a multi-dimensional view, although it requires
significant storage for visualization and is not always scalable
[2, 4, 23].

III. DATA CUBE

A data cube is an SQL operator that supports OLAP
functions such as histograms and subsidiary operations.
Histograms are aggregations at the calculation level. Even if
such tasks are possible using standard SQL queries, they
become too complicated. The number of sets needed for the

number of dimensions is exponential. A complex query could
produce results during the explorations of the base table which
result in weak performance. Because a subtotal of all queries is
common for OLPA queries, a new operator can be arbitrarily
determined to collect subtotals as a data cube. Users of the
system want the data cube to offer a summary of the data in
detail from different aspects.

A data cube comprises reciprocal table generalization that
occurs in multiple approaches. At first, a data cube is n-
dimensional. It is divided into eight parts, each of which is
called a cube. The first cube is a three-dimensional cube known
as the nucleus. The Next Tuesday cube contains data in which
all values are 2D surface values. The next three cubes contain
all values and 2D levels. The next three cubes are one-
dimensional. The last cube has a single value and a
dimensionless point [1, 11, 16]. The second generalization
approach is the aggregation function. This aggregation will be
discussed with SUM. In general, any aggregation function can
be used with a custom value to build data cubes. This function
can be divided into distributive, algebraic, and comprehensive
categories. I is a set of values and },...,2,1{)(pnppIP  is
part of I. The aggregation function of F() is distributive if the
function of G is }.1:)(({)(nipFGIF i  Under these
circumstances, distributive SUM, SOUNT, MIN, and MAX are
easy to examine. After generalization of function G() to one,
the vector of m is restored and algebraic aggregation shows
characteristics similar to the distributive sample of

}1:)(({)(nipFGIF i  . The third approach is
dimensional hierarchy. For a data cube, each dimension has
two stages of weak hierarchy. Each dimension can have many
features. Dimension features can create a weak hierarchical
network. Features on the base table have lower bounds on the
network and all queries have higher bounds. The network
structure plays an important role in most data cube approaches
[25, 35].

 Core cube visualization is necessary because this
cannot be achieved by calculating other items. If any cube with
all values has a value comparable to the core cube, it is not
necessary to visualize the core cube because responding to a
query using the cube incurs the same cost as the core cube.
Many greedy algorithms have been proposed to position data in
data cube [16, 25]. Even if all data cubes must be calculated,
the network structure can be used to improve the efficiency of
calculations. For example, if calculation is based on ordering
records, then core cubes can be ordered in three ways. Every
choice leads to simplification of the calculation to one cube
with all values, because that cube can be calculated without
additional ordering, although calculation of the two other cubes
will require a core cube to be re-ordered. Based on the
estimated cost, the algorithms available as the optimal choice
for ordering each cube and the choices leading to construction
of calculation pipelines again reduce the size of the cube
ordered [11, 12, 25]. Data warehouse users work in a graphical
environment and data is displayed as a data cube in multi-
dimensional form. Dimensions are usually 2D or 3D, but
higher dimensions can also be generated to increase
information exploration. The values in each cell of a data cube
contain a measuring value [4, 23, 30, 35].

Engineering, Technology & Applied Science Research Vol. 6, No. 5, 2016, 1187-1194 1189

www.etasr.com Faridi Masouleh et al.: Genetic-Firefly Hybrid Algorithm to Find the Best Data Location in a Data Cube

IV. RELATED WORK

Effective calculations and multi-dimensional aggregation in
a data cube have been studied by many researchers. A data
cube has been classified as an aggregation of generalizations by
a relational operator based on subsidiary data cubes with
distributive, algebraic and comprehensive categories [10]. A
greedy algorithm has been developed to provide a partial cube
for data cube calculations [35, 36]. A calculation method has
been developed based on piece processing to effectively
organize large multi-dimensional arrays [32]. Several
guidelines have been suggested for effective calculation of
multidimensional aggregations for ROLAP servers [31]. A
model has been developed based on multi-path array
aggregation piece processing for data cube calculations in
MOLAP [40]. A method has been also been developed to
calculate scattered data cubes [18]. After iceberg queries were
developed [25, 26], the BUC method, a scalable method with
the ability to calculate iceberg cubes head downward, was
introduced [16, 17]. The H cube method was also developed
for calculating iceberg cubes with complex measurements
using H-tree structure [12]. The star cube method was
introduced for calculation of an iceberg cube with a dynamic
star tree structure [7]. The MM cube is an effective method of
calculating the iceberg cube using factorized network space
[41]. A shell-piece method based on data cubes is very
effective for OLPA multi-dimensional data processing [23].

Apart from these studies on data cube models, the smart
dwarf method has been suggested for the calculation of a
declined data cube and is known as the condensed model [38].
Calculation of compression data cubes (dwarf cubes) uses a
smart cube structure that summarizes the semantics of a data
cube [21]. The same method was also developed in a QC tree
structure [22]. An aggregation-based approach known as a
closed cube or cube C has been developed [8] to close
calculation in a closed cube using a new algebraic method of
measurement. Studies have been conducted on calculations
using compressed data cubes by estimation, including the
quasi-cubic [6] and the wavelet cube [13] methods.
Compressed cubes for estimation in continuous dimensions
[14] have been applied using the linear logarithm models [5] to
a compressed data cube.

V. NEURAL NETWORK AND EVOLUTIONARY ALGORITHMS

Everything is done in an environment directly or indirectly
and is a collection of decisions. It is important at the beginning
of a decision to have sufficient knowledge of the issue
investigated to make appropriate decisions. Evolutionary
algorithms have been used to identify environments. In the
present paper, two algorithms are used to comprehend the
issues to facilitate knowledge [37].

A. Neural Networks
The perceptron network is a well-known neural network

and its multilayer state is a widely-used neural network.
Perceptron networks probably had the greatest effect on early
neural networks. The perceptron learning rule is stronger than
those such as the Hebbian rule. With reasonable assumptions,
this method of learning by repetition converges to correct

weights. Convergence means that network learning leads to
estimation of weights that allow it to produce correct output
values for each education input pattern and similar patterns.
Moreover, the performances of neural networks are related to
the choice of the neurons count, architecture of networks and
learning algorithms [28, 44].

The perceptron learning rule is supervised learning in
which a stimulus, response, input, optimal output, pattern, and
pattern class are available. Learning error occurs; hence, in
practice, at each step the learning error must be used to set
network parameters such that the learning error becomes less
when the same input is applied again. The perceptron learning
rule is generated for one-layer neural networks consisting of
neurons with a conversion function with a two-value limit
threshold [20, 32, 37]. Normally, primary perceptrons have
three layers: sensory neurons, connecting units, and the
response unit forming an approximate retina model. Although
these networks are only taught weights between the second and
third layers, the activation function for each connecting unit is
a binary step function with an optional, but fixed, threshold
value. The signal sent from the connecting units to the output
unit is a binary signal and)(inyfy  is the perceptron output
with the activation function:




















in

in

in

in
yif

yif
yif

yf
1

0

1

)(

This function determines the network output in addition to
the usual outputs of +1 (belonging to the category or group)
and -1 (not belonging to the category or group) and includes
the area between θ and –θ in which a decision will not be made
[34, 37]. The unit weights connected to the response or output
units are set using the perceptron learning rule. In the
perceptron training rule, the network computes the output unit
response for each input learning vector and then determines
whether or not an error has occurred for the model. Here, an
error occurs when the output calculated by the network does
not equal the target value. Learning this rule is similar to
learning the Hebbian rule, except that the weights only alter
when the network response for the input contains an error.

The perceptron network does not identify the difference
between errors when the calculated network output is 0 (area
without decision) and the target value is -1 or when the
calculated output value is +1 and the target value is -1. The
learning rule changes the direction of network weights such
that the response becomes equal to the target value. Only the
weights on the joints of connecting units that send non-zero
signals to the output unit will be changed, because these signals
have caused the error. In the perceptron training rule, if an error
occurs in the training input pattern, the weights vary as:

taxoldwneww iii )()(

where t represents the target value as +1 or -1 and a is the
learning rate and determines the speed of the weights. In this
network, if no error occurs, the weights will not change and
training will continue until no further error occurs.

Engineering, Technology & Applied Science Research Vol. 6, No. 5, 2016, 1187-1194 1190

www.etasr.com Faridi Masouleh et al.: Genetic-Firefly Hybrid Algorithm to Find the Best Data Location in a Data Cube

An optimization algorithm which supplies the best training
dataset for appropriate Artificial Neural Networks is proposed
in this study like [24,44] that updates weights and bias and the
trained net is added as input dataset for genetic algorithm. The
perceptron learning rule convergence theorem states that if
there are weights that allow the network to produce the correct
answer for all training patterns, then the perceptron learning
method uses these values when setting weights. This means
that the perceptron network will be able to solve the problem or
learn the desired categorization. In addition, the network will
use these weights several times with a limited number of
training repetitions [23, 44].

B. Genetic Algorithm
In genetic algorithms, every solution is displayed as a

binary string and the measurement of the related fitness
function. A genetic algorithm solves a problem by first
randomly generating a population of chromosomes. Second,
the fitness of each chromosome in the population is assessed
and, third, new chromosomes are created by random mating
and mutation of some bits. Fourth, less fit members are
excluded from the current population and, fifth, new
chromosomes are evaluated and included in the population.
Finally, the third to fifth steps are repeated until population
convergence occurs, which is also the termination condition.
The fitness of the total population increases as the number of
people in the population increases; however, the number of fit
people, or more fit people, is equal at t and t-1. The population
is considered for evolution rather than an individual or
components. A set of chromosomes makes up the population.
The effect of genetic operators on the population is to form a
population with the same number of chromosomes. The fitness
function provides an indicator for independent functioning in
the work area. Fenestration and linear normalization are terms
within the fitness function [20, 27, 29, 33, 37].

Reproduction takes place in two stages when parental
chromosomes are duplicated in bits of a child’s chromosomes
and functions alter the chromosomes of each child. The major
operators are intersection, mutation, and inverse mutation.
Intersection is the strongest supporter of genetic algorithms and
is usually associated with high probability. Mutation is less
important than intersection and less likely to occur. As the
parameters change and simulation advances, mutation become
more important and population change decreases [14].
Intersection is the driving force behind a genetic algorithm
which uses reproduction. Initially, a genetic algorithm uses a
random number generator to select a random point in each
parent at an intersection where a genetic algorithm occurs [14,
15, 27]. Mutation causes searches in untouched spaces and it
can be deduced that the most important task of mutation is to
avoid convergence to the local optimum. When a member of
the new population arises, each gene will mutate if possible.
Inversion is used in the genetic algorithm because it is
biologically plausible. It can be said that in inversion, one
chromosome can be selected at any time and then two points
are randomly selected and their locations reversed. There are
different strategies for selecting people from a population for
reproduction. The selection operator selects a number of

chromosomes from a population for reproduction and the more
fit chromosomes are more likely to be selected [15, 33, 37].

C. Firefly Algorithm
The firefly algorithm is inspired by observation of actual

fireflies. Fireflies are social insects that live in colonies and
their behavior tends toward survival of the colony rather than
survival of a small fraction of them. One of the most important
and interesting behaviors of fireflies is finding food, especially
how to find the shortest path between a food source and their
nest. The firefly algorithm is a swarm intelligence method; the
difference between this algorithm and fireflies in nature is
memory. The most important features of this algorithm are its
high convergence speed, flexibility, high error tolerance, and
its insensitivity to initial values [15]. The similarity of the data
placement in a data cube with a firefly algorithm and the
parameters used to select the appropriate position for data and
suggest the best location prompted the use of this algorithm in
the present study [19].

Two very important factors in the firefly algorithm are
variation in light intensity and formulation of attractiveness.
For simplicity, it is always assumed that the attractiveness of a
firefly is determined by its brightness, which is associated with
target function coding. For maximum optimization problems,
brightness I is selected for fireflies in position)()(xfxI  . β
attractiveness is a common point that can be seen by fireflies
and there is no difference in distance ijr for fireflies i and j.

Note that the light intensity decreases as the distance from its
own resources increases. In the simplest case, the light intensity
of I(r) differs according to inverse square law and is defined as
[4, 19]:

2
)(

r
IrI s

where sI is the intensity at the source. For a given media, a
constant light absorption coefficient is considered with variable
γ where the brightness intensity I differs at distance r. This
relation is defined as:

 reII  0

where 0I is the main brightness intensity. To avoid the

singularity at r = 0 in relation 2/ rIs , the effect of inverse
square law and absorption is Gaussian and defined as:

2

0)(reIrI 

Firefly attractiveness develops as intensity that can be
observed by fireflies and β attractiveness of fireflies can be
defined as:

2
0

re  

where 0 attractiveness in r = 0.)1/(1 2r is faster than the
power function for calculation and is generally defined as:

Engineering, Technology & Applied Science Research Vol. 6, No. 5, 2016, 1187-1194 1191

www.etasr.com Faridi Masouleh et al.: Genetic-Firefly Hybrid Algorithm to Find the Best Data Location in a Data Cube

2
0

1 r





To implement the project, attractiveness function β(r), is
assumed to be a uniform reduction function such as:

)1(,)(0   mer
mr

The distance between two fireflies (or equipment) i and j in

ix and jx is similar to a Cartesian distance:

  


d
k kjkijiij xxxxr

1
2

,,)(

where kix , is the kth location coordinate component of ix and

the ith firefly. In the 2D state, it can be expressed as:

   22
jijiij yyxxr 

The motion of firefly i is attractive for firefly j as expressed
by:

iji
r

ii xxexx ij 





)(
2

0

The second part of relation (11) represents the
attractiveness of the firefly where α is a random parameter and

iÎ is the vector of random numbers drawn from the Gaussian

or uniform distribution [15].

To use this algorithm, first an n-member population of
fireflies in different locations is randomly generated. All
fireflies initially have the same amount of light and with each
iteration a light update phase and a location update phase are
carried out. The location of the fireflies is the randomly-placed
location and the purpose of the light is for best placement of the
data. The amount of light for each firefly in each iteration is
determined by its location fitness value. The fitness value is the
value added to the light in each iteration. Firefly light for each
update can be expressed as:

))(()1()1()(txjtipt ii  

where)((txj i is the new value of firefly light when used

again,)1()1( tp i is the fitness of firefly i in iteration t of
the algorithm and p and  are constants with which to model
the gradual decline and its effect on light.

 Relation 13 is used to detect the position of other
pieces of data in the neighborhood as:

 





)(
)()(

)()(
)(

tNk ik

ij
ij

i
tt

tt
tp




where)(tNi is the set of fireflies in the neighborhood of
firefly i at time t. The distance between fireflies i and j at time t

uses the Euclidean distance)(tdij Discrete-time movement of

fireflies with probability p is expressed as:






















)()(

)()(
)()1(

txtx

txtx
stxtx

ij

ij
ii

where operator ||…|| shows the Euclidean norm r, s is its step-
size movement. The term)(txt is an m-dimensional vector of
firefly location over time t. A neighbor is assigned to each

firefly i in which radial range i
dr is naturally dynamic.

Updating of the neighbors is achieved as:

 |)(|()(,0max,min{)1(tNntrrtr it
i
ds

i
d  

where  is a constant parameter and tn controls the number
of neighbors.

VI. PROPOSED METHOD

In this project, a data set containing information from a
printing company was used. This data warehouse contained
information such as user name, company ID, company name,
company address, company phone number, company-enabled
state, and company ads. User name, company ID, and company
name are used as location dimension features. Company
address, company phone number, company-enabled state, and
company ads are used as time dimension features.

Other pieces of data contain information about orders by
these companies, including ID, user name, user ID advertised,
company ID, order name, color of ordered item, requested size
(X and Y), material used for ordered item, order date, enabled
or disabled state, confirmed or unconfirmed order state, send
order to user, and change of order by user. ID, user name, user
ID advertised, and company ID are used as location dimension
features. Order name, color of ordered item, requested size (X
and Y), material used for ordered item, order date, enabled or
disabled state, confirmed or unconfirmed order state, send
order to user, and change of order by user are used as time
dimension features.

As like [28] we use the genetic algorithms techniques and
firefly algorithm to optimize finding best location for data in
data cube. The data was to consider being genetic algorithm
inputs and the initial population totaled 1000. The initial
population of the firefly algorithm was set at 700. The values
were inserted experimentally and the population distribution in
the environment was very effective because the area was very
large. Determination of the initial population was based on trial
and error. Reduction of data size was done using the genetic
algorithm and placement improvement was done using the
firefly algorithm. The proposed algorithm was written as a
pseudo-code. Algorithm 1 gives the output (S) set by testing
the MLP as input for optimized placement and algorithm 2
receives this input and makes a hybrid genetic-firefly algorithm
to find the appropriate place for data in the data cube.

Engineering, Technology & Applied Science Research Vol. 6, No. 5, 2016, 1187-1194 1192

www.etasr.com Faridi Masouleh et al.: Genetic-Firefly Hybrid Algorithm to Find the Best Data Location in a Data Cube

Algorithm 1. MLP for optimizing data place.

Input: Dataset

Output: (S)

1. Define weights and bias for MLP;

2. Learn dataset with MLP;

3. If error_occurs in learning of MLP

4. Update weights and bias

5. End

6. Test dataset with MLP;

7. Use output (S) from testing of MLP as input for
optimized placement

Algorithm 2. Genetic algorithm and firefly algorithm as a
hybrid algorithm for data cube.

Input: Output (S) from MLP (algorithm 1)

Output: Place data in data_cube

1. Use the output (S) from testing of MLP as input for
optimized placement;

2. Initialize the parameters for both genetic and firefly
algorithms;

3. Generate main_population_size from the dataset for
the genetic algorithm;

4. Use the fitness function for the genetic algorithm;

5. While generating for genetic from 1 to n do:

6. Use genetic fitness function;

7. Create new_population;

8. Evaluate each individual;

9. While new_population < main_population_size do:

10. Select parents from new_population using roulette
wheel method;

11. Use genetic crossover;

12. Use genetic mutation;

13. Place offspring into new_population;

14. Endwhile

15. main_population_size new_population;

16. Lighting from new_generation for new population for
firefly generated;

17. Define new firefly (component or population) for
firefly algorithm;

18. Define distance beyond firefly (component or
population);

19. Lighting for attractiveness of firefly;

20. Move firefly (component or population) for
attractiveness with light;

21. Place data in data_cube

22. Endwhile

VII. SIMULATION RESULTS

Applying the optimization algorithm to the Genetic-firefly
hybrid algorithm, the initial population of genetic algorithm
totaled 1000 and firefly algorithm totaled 700. User name,
company ID, and company name are used as location
dimension features. Company address, company phone
number, company-enabled state, and company ads are used as
time dimension features. As it shown two dimensions are
defined for this simulation; one “location” and the other “time”.
Simulation was done in a MATLAB environment using the
observational method. At first step weights and bias are defined
for multi-layer perceptron and learning with MLP occurred. If
errors occurred in learning, weights and bias are updated. At
the end in this phase, test dataset are tested. The data was first
inserted into the data cube environment sporadically as shown
in Figure 1. Now this phase output is as input for optimized
algorithm. Parameters for both genetic and firefly algorithms
initialize. The mail population size from dataset generate for
genetic algorithm. Fitness function is used in this level and new
population has been created and evaluated. In this part with
using “Roulette Wheel” method, parents from new population
are selected. Crossover and mutation in genetic algorithm
occurs and offspring is placed into new population. The best
data position was as shown in Figure 2. Firefly algorithm
applies in new population and generated lighting. Distance
beyond firefly population is defined. Component for
attractiveness with light are moved and placed in data cube.
Figure 3 shows the reduction of dimensions over time
determined visually for the operation.

VIII. CONCLUSION

In this study, placement of data in the scalable space of a
data cube was done using a hybrid genetic-firefly algorithm.
The data was first inserted into the data cube environment
sporadically then the best data position was shown and the
reduction of dimensions made over time determined visually
for the operation. Dataset clustering was carried out with the
help of a perceptron multi-layer neural network and then the
hybrid genetic-firefly algorithm was used for placement to find
the best position for the data in the data cube. Decision-based
programs include large-scale complex database queries. If the
response time is short, query optimization is critical. Users
usually observe data as a multi-dimensional data cube. Each
data cube cell displays data as an aggregation in which the
number of cells depends on the number of other cells in the
cube. At any given time, a powerful query optimization method
can visualize part of the cells instead of calculating results from
raw data. Business systems use different approaches and
positioning of data in the data cube. In the present study, the
data is trained by a neural network and a genetic-firefly hybrid

Engineering, Technology & Applied Science Research Vol. 6, No. 5, 2016, 1187-1194 1193

www.etasr.com Faridi Masouleh et al.: Genetic-Firefly Hybrid Algorithm to Find the Best Data Location in a Data Cube

algorithm is proposed for finding the best position for the data
in the cube.

Fig. 1. Data in data cube.

Fig. 2. Best data position in data cube.

Fig. 3. Visualization of data dimensions for reducing dimensions of data

cube.

REFERENCES
[1] A. Nandi, C. Yu, P. Bohannon, R. Ramakrishnan, “Data cube

materialization and mining over mapreduce”, IEEE Transactions on
Knowledge and Data Engineering, Vol. 24, No. 10, pp. 1747-1759, 2012

[2] H. Cheng, Y. Lu, C. Sheu, “An ontology-based business intelligence
application in a financial knowledge management system”, Expert
Systems with Applications,Vol. 36, No. 2, pp. 3614-3622, 2009

[3] L. Ogiela, “Data management in cognitive financial systems”,
International Journal of Information Management, Vol. 33, No. 2, pp.
263-270, 2013

[4] H. K. Chow, K. L. Choy, W. B. Lee, F. T. Chan, “Design of a
knowledge-based logistics strategy system”, Expert Systems with
Applications, Vol. 29, No. 2 ,pp. 272-290, 2005

[5] D. Barbara, X. Wu, “Using loglinear models to compress datacubes”, In
Web-Age Information Management, Springer Berlin Heidelberg, pp.
311-323, 2000

[6] D. Barbará, M. Sullivan, “Quasi-cubes: exploiting approximations in
multidimensional databases”, ACM SIGMOD Record, Vol. 26, No. 3,
pp. 12-17, 1997

[7] D. Xin, J. Han, X. Li, B. W. Wah, “Star-cubing: Computing iceberg
cubes by top-down and bottom-up integration”, 29th International
Conference on Very Large Data Bases, Vol. 29, pp. 476-487, 2003

[8] D. Xin, Z. Shao, J. Han, H. Liu, “C-cubing: Efficient computation of
closed cubes by aggregation-based checking in data engineering”, 22nd
International Conference on Data Engineering, (ICDE), April 3-7, 2006

[9] E. F. Codd, S. B. Codd, C. T. Salley, Providing OLAP (on-line
analytical processing) to user-analysts: An IT mandate, Codd &
Associates, 1993

[10] S. Li, B. Lin, “Accessing information sharing and information quality in
supply chain management”, Decision Support Systems, Vol. 42 No. 3,
pp. 1641-1656, 2006

[11] M. Kamber, J. Han, J. Chiang, “Metarule-guided mining of multi-
dimensional association rules using data cubes”, 3rd International
Conference on Knowledge Discovery and Data Mining, Vol. 97, pp.
207-211, 1997

[12] J. Han, J. Pei, G. Dong, K. Wang, “Efficient computation of iceberg
cubes with complex measures”, In ACM SIGMOD Record, Vol. 30,
No. 2, pp. 1-12, ACM, 2001

[13] J. S. Vitter, M. Wang, B. Iyer, “Data cube approximation and histograms
via wavelets”, 7th ACM International Conference on Information and
Knowledge Management, pp. 96-104, 1998

[14] K. C. Lee, S. Lee, I. W. Kang, “KMPI: measuring knowledge
management performance”, Information and Management, Vol. 42, No.
3, pp. 469-482, 2005

[15] J. Brownlee, Clever Algorithms. Nature-Inspired Programming Recipes,
Jason Brownlee, 2011

[16] K. Beyer, R. Ramakrishnan, “Bottom-up computation of sparse and
iceberg cube”, In ACM SIGMOD Record ,Vol. 28, No. 2, pp. 359-370,
1999

[17] N. Wiwatwattana, H. V. Jagadish, L. V. Lakshmanan, D. Srivastava,
“X^3: A cube operator for xml olap”, IEEE 23rd International
Conference on Data Engineering, pp. 916-925, 2007

[18] K. A. Ross, D. Srivastava, “Fast computation of sparse datacubes”,
23rd International Conference on Very Large Data Bases, Vol. 97, pp.
25-29, 1997

[19] A. Kavousi-Fard, H. Samet, F. Marzbani, “A new hybrid modified
firefly algorithm and support vector regression model for accurate short
term load forecasting”, Expert Systems with Applications, Vol. 41, No.
13, 6047-6056, 2014

[20] K. J. Kim, I. Han, “Genetic algorithms approach to feature discretization
in artificial neural networks for the prediction of stock price index”,
Expert systems with Applications, Vol. 19, No. 2, pp. 125-132, 2000

[21] L. V. Lakshmanan, J. Pei, J. Han, “Quotient cube: How to summarize
the semantics of a data cube”, 28th International Conference on Very
Large Data Bases, pp. 778-789, 2002

Engineering, Technology & Applied Science Research Vol. 6, No. 5, 2016, 1187-1194 1194

www.etasr.com Faridi Masouleh et al.: Genetic-Firefly Hybrid Algorithm to Find the Best Data Location in a Data Cube

[22] L. V. Lakshmanan, J. Pei, J. Han, “QC-Trees: An efficient summary
structure for semantic OLAP”, 2003 ACM SIGMOD International
Conference on Management of Data, pp. 64-75, 2003

[23] C. K. M. Lee, W. Ho, G. T. Ho, H. C. Lau, “Design and development
of logistics workflow systems for demand management with RFID”,
Expert Systems with Applications, Vol. 38, No. 5, pp. 5428-5437, 2011

[24] D. Pelusi, “Designing neural networks to improve timing performances
of intelligent controllers”, Journal of Discrete Mathematical Sciences
and Cryptography, Vol. 16, No. 2-3, pp. 187-193, 2013

[25] Y. Yuan, X. Lin, Q. Liu, W. Wang, J. X. Yu, Q. Zhang, “Efficient
computation of the skyline cube”, 31st International Conference on Very
Large Data Bases, pp. 241-252, 2005

[26] M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani, J. D. Ullman,
“Computing Iceberg Queries Efficientl”, Internaational Conference on
Very Large Databases, New York, Stanford InfoLab, 1998.

[27] S. H. Min, J. Lee, I. Han, “Hybrid genetic algorithms and support vector
machines for bankruptcy prediction”, Expert Systems with Applications,
Vol. 31, No. 3, pp. 652-660, 2006

[28] D. Pelusi, “PID and intelligent controllers for optimal timing
performances of industrial actuators”, International Journal of
Simulation: Systems, Science and Technology, Vol. 13, No. 2, pp. 65-
71, 2012

[29] D. Pelusi, “Optimization of a fuzzy logic controller using genetic
algorithms”, IEEE International Conference on Intelligent Human-
Machine Systems and Cybernetics (IHMSC), Vol. 2, pp. 143-146, 2011

[30] R. T. Ng, A. Wagner, Y. Yin, “Iceberg-cube computation with PC
clusters”, In ACM SIGMOD Record, Vol. 30, No. 2, pp. 25-36, 2001

[31] S. Agarwal, R. Agrawal, P. M. Deshpande, A. Gupta, J. Naughton, R.
Ramakrishnan, S. Sarawagi, “On the computation of multidimensional
aggregates”, 22th International Conference on Very Large Data Bases,
Vol. 96, pp. 506-521, 1996

[32] S. Sarawagi, M. Stonebraker, “Efficient organization of large
multidimensional arrays”, 10th International Conference on Data
Engineering, pp. 328-336, 1994

[33] K. S. Shin, Y. J. Lee, “A genetic algorithm application in bankruptcy
prediction modeling”, Expert Systems with Applications, Vol. 23, No. 3,
pp. 321-328, 2002

[34] S. Haykin, Neural Networks, a comprehensive foundation, 2004

[35] V. Poosala, V. Ganti, “Fast approximate answers to aggregate queries on
a data cube”, IEEE 11th International Conference on Scientific and
Statistical Database Management, pp. 24-33, 1999

[36] V. Harinarayan, A. Rajaraman, J. D. Ullman, “Implementing data
cubes efficiently”, In ACM SIGMOD Record, Vol. 25, No. 2, pp. 205-
216, 1996

[37] A. Vellido, P. J. Lisboa, P. J., J. Vaughan, “Neural networks in
business: a survey of applications (1992–1998)”, Expert Systems with
Applications, Vol. 17, No. 1, pp. 51-70, 1999

[38] W. Wang, J. Feng, H. Lu, J. X. Yu, “Condensed cube: An effective
approach to reducing data cube size”, IEEE 18th International
Conference on Data Engineering, pp. 155-165, 2002

[39] X. Li, J. Han, H. Gonzalez, “High-dimensional OLAP: a minimal
cubing approach”, 30th International Conference on Very large Data
Bases, Vol. 30, pp. 528-539, 2004

[40] Y. Zhao, P. M. Deshpande, J. F. Naughton, “An array-based algorithm
for simultaneous multidimensional aggregates”, In ACM SIGMOD
Record, Vol. 26, No. 2, pp. 159-170, 1997

[41] Z. Shao, J. Han, D. Xin, “MM-Cubing: Computing iceberg cubes by
factorizing the lattice space in scientific and statistical database
management”, IEEE 16th International Conference on Scientific and
Statistical Database Management, pp. 213-222, 2004

[42] C. W. Choo, “The knowing organization: How organizations use
information to construct meaning, create knowledge and make
decisions”, International journal of information management, Vol. 16,
No. 5, pp. 329-340, 1996.

[43] P. K. Dey, S. O. Ogunlana, “Selection and application of risk
management tools and techniques for build-operate-transfer projects”,

Industrial Management and Data Systems, Vol. 104, No. 4, pp. 334-346,
2004

[44] J. A. Johannessen, B. Olsen, B., J. Olaisen, “Aspects of innovation
theory based on knowledge-management”, International Journal of
Information Management, Vol. 19, No. 2, pp. 121-139, 1999

[45] D. Pelusi, R. Mascella, “Optimal control algorithms for second order
systems”, Journal of Computer Science, Vol. 9, No. 2, pp. 183-190,
2013

