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ABSTRACT 

In today's rapidly evolving agricultural landscape, the integration of precision techniques and data-driven 

approaches has become essential, driven by technological innovations, such as the Internet of Things (IoT), 

Artificial Intelligence (AI), and cutting-edge aerial and satellite technologies. Precision agriculture aims to 
maximize productivity by closely monitoring soil health and employing advanced machine learning 

methods for precise data analysis. This study explores the evaluation of soil quality, placing particular 

emphasis on leveraging remote sensing technology to collect comprehensive data and imagery to analyze 

soil conditions related to olive cultivation. By harnessing cloud platforms integrated with satellite data, 

several analytical tools are made available, offering valuable insights for informed decision-making and 

operational efficiency across various sectors. Furthermore, this study introduces an AI-driven application 
tailored to predict the soil moisture levels. This application facilitates in-depth analysis, feature extraction, 

and the prediction of different vegetation indices using time-series satellite imagery. The study's findings 

highlight the exceptional accuracy achieved by the decision tree and extra tree regression models, with soil 

moisture estimation reaching approximately 91%, underscoring the importance and effectiveness of the 
proposed method in advancing agricultural practices. 
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I. INTRODUCTION  

For decades, aircraft and satellites have been capturing the 
data and imagery of the Earth's surface, atmosphere, and 
oceans, which can be used for various applications that include 
urban and earth environmental observations. In 1972, Landsat, 
the first American civil satellite designed to monitor the ground 
surface, was launched and has contributed to the advancement 
of civil space-based remote sensing [1]. The technological 
progress based on sensing methods is considered a key to the 
success of precision agriculture. Remote sensing is used to 
improve productivity, reduce man labor, and ensure effective 
irrigation planning [2]. The main goal of precision agriculture 
is to support farmers in managing their production smartly and 
efficiently. The most important variable in any agricultural 
cultivation is soil moisture, which provides information about 
the water content and vegetation indices enployed in precision 
agriculture. Remote sensing offers the advantage of collecting 
vital information on a large temporal and spatial scale that 
cannot be achieved with traditional technologies. 

Soil moisture plays an integral role in the proper growth of 
plants and crop yield production, since it not only serves as an 
agent of moisture restoration, but also as a temperature 
regulator for the plant. The need for different sources of 
moisture is explained through the process of thermoregulation. 
The plant evaporates up to 99 % of the water obtained and 
deploys between 0.2 and 0.5% of the remaining water to form a 

vegetative mass [3]. In 2010, the World Meteorological 
Organization [4] added soil moisture to the 50 Essential 
Climatic Variables (ECV) recommended for systematic 
observation. Soil moisture depends on various factors, which 
could be environmental, hydrogeological, and topological. 
Precise moisture measurements or predictions help to (1) make 
accurate plans for sowing dates, (2) monitoring the Soil 
Moisture Index (SMI), and (3) preventing financial losses for 
farmers. The use of vegetation indices in precision agriculture 
applications also provides many advantages to improve 
customer experience by saving costs [5].  

The most accurate way to measure soil moisture is through 
the use of moisture sensors that are directly installed in the soil. 
There are four methods to measure soil moisture:  
(1) gravimeter, (2) watermark sensors, (3) capacitance sensors, 
and (4) tension meters. Unfortunately, directed measurements 
suffer from different issues depending on the sensor type. 
These issues are generally related to sensing area coverage, soil 
conditions, calibration requirements, and accessibility 
difficulties [5]. All these shortcomings encourage the 
development of remote sensing approaches, as they allow data 
acquisition for soil moisture measurements without physical 
contact with a sensor [6]. Applying remote sensing approaches 
to measure soil moisture can be further improved using 
Artificial Intelligence (AI) algorithms. Therefore, the accuracy 
of the received data depends on the performance of the AI 
algorithm [7]. 
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The choice of using imagery to estimate moisture over 
traditional methods is multifaceted and has significant gains. 
Imagery, particularly from satellite sources, provides greater 
spatial coverage, allowing the monitoring of soil moisture 
levels in large agricultural areas cost-effectively and efficiently. 
Additionally, imagery-based approaches offer the ability to 
capture real-time or near-real-time data, enabling timely 
decision-making for agricultural practices such as irrigation 
management. Furthermore, remote sensing techniques can 
provide insights into soil moisture dynamics at various depths 
and spatial resolutions, providing a more comprehensive 
understanding of the soil moisture distribution compared to 
point measurements from traditional methods. This 
comprehensive spatial and temporal coverage improves the 
precision and accuracy of soil moisture estimates, thus 
facilitating optimized resource management and improved 
agricultural productivity. 

Weather stations that capture information on soil moisture 
during a long period are publicly available and provide exact 
time series datasets, which can be employed to validate 
machine learning models. The International Soil Moisture 
Network is an international corporation that aims to validate 
and improve global satellite products on this topic [8]. This 
study introduces an innovative AI-powered solution to 
precisely estimate soil moisture, which is a crucial key 
parameter for successful agricultural production. The proposed 
approach integrates in situ measurements with advanced 
satellite imagery processing and machine learning algorithms, 
with the overarching goal of achieving precise soil moisture 
estimates in expansive spatial areas. The proposed solution can 
provide farmers with reliable data that may enable them to 
strategically design irrigation plans and optimize water usage to 
improve crop growth. This system also explores various 
vegetation indices, offering farmers valuable insights at every 
stage of their production cycle. This holistic approach can 
revolutionize agricultural practices, enabling farmers to make 
informed decisions and sustainably maximize their yields. 

II. RELATED WORKS 

Various methods have been proposed to extract valuable 
data for soil moisture information. Remote sensing techniques 
and instruments, such as satellites and radars, can be mainly 
divided into the following three categories of sensing methods. 

1) Active Remote Sensing 

This method captures soil moisture information using 
electromagnetic microwave radiation with wavelengths ranging 
between 0.5 and 100 cm [9]. The NASA SAR sensor is an 
active sensor that is the most widely deployed for soil moisture, 
as it can collect relevant information at a high resolution based 
on the spatial variation of the soil moisture in the ground [10]. 
Two parameters are included in the operation process: the 
sensor and the soil. The sensor parameter results in a variation 
in signal backscatter. The variation in soil surface 
characteristics represents the soil parameter. These methods 
calculate the attenuation of the signal backscatter through the 
canopy and volume of vegetation. The relationship between 
soil moisture and radar backscatter indicates that the lower the 
soil moisture content on the soil surface is, the stronger the 

radar backscatter [11] is considered. Many methods are 
adopted for active soil moisture sensors, but the most important 
ones are the backscattering models [12-14], statistical analysis 
techniques [15-16], and neural networks [17-18]. 

B. Passive Remote Sensing 

Soil moisture information can also be modeled by utilizing 
passive sensors [19]. This approach defines the global 
distribution of soil moisture by capturing soil moisture 
information independently of the presence or absence of 
vegetation canopy. These sensors have the advantage of 
providing many important properties, such as the normalized 
difference vegetation index, research on the importance of 
these indices, and the relationship between them and many soil 
and environmental parameters. The universal triangular 
relationship method, the brightness model, and the statistical 
analysis technique are the most used approaches for this kind of 
sensing [20]. 

C. Combined Active and Passive Remote Sensing 

With the increasing development of remote sensor 
instruments and space technologies, many methods integrate 
active and passive remote sensing approaches. The purpose is 
to mitigate their weaknesses and emphasize their strength. 
Active and passive remote sensing techniques aim to obtain a 
higher spatial resolution from active sensors and a higher 
temporal resolution with passive sensors to improve the 
accuracy of soil moisture estimation [20]. This approach is 
supported by the development of space applications that 
incorporate multisensory instruments and use their data in one 
system. In 2014, NASA launched the Soil Moisture Active, 
Passive (SMAP) mission [21], which is widely employed to 
obtain global soil moisture data with high temporal resolution 
and improved spatial resolutions that can even reach 3 km per 
pixel mark. 

The most widely followed methods for this type of sensing 
are combined microwave algorithms, statistical analysis 
techniques, and neural networks. In [22], a satellite-derived 
system for soil properties was introduced to produce a 
preseason prediction. The prediction was based on the 
Normalized Difference Vegetation Index (NDVI). This is the 
most commonly utilized vegetation index in remote sensing, as 
it measures the photosynthetically active biomass in plants and 
provides a good idea of their health. In addition, it is 
implemented throughout the whole crop production season, and 
it also gives the most accurate insight in the middle of the 
season to monitor active crop growth. This system achieved 
valid results by exempting the need for high-resolution remote 
sensing data. In [23], a method was proposed to detect diseases 
in cotton through soil quality parameters using a support vector 
machine-based regression system. The model classified five 
cotton leaf diseases engaging a Raspberry Pi board with soil 
sensors, achieving a detection accuracy of about 83%. In [24], 
the role of intelligent agriculture was investigated by collecting 
information on productive crop management. A novel 3D 
drone mapping model was presented to address agriculture 
problems, using the wireless sensors based-IoT with ΑΙ 
intelligence algorithms to provide precision agriculture. 
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This study presents a smart precision agriculture system to 
detect soil moisture based on machine learning approaches. 
Satellite-captured soil quality data could replace traditional 
local soil moisture detection approaches, covering large areas 
and supporting high-precision agriculture. 

III. PROPOSED MODEL 

The proposed model employed the public dataset captured 
by the Landsat satellite. The Landsat program is a collaborative 
effort between the United States Geological Survey (USGS) 
and NASA and represents a long-standing initiative in satellite-
based Earth observation. Its primary function involves 
providing detailed imagery of the Earth's surface, which holds 
significant value across a range of fields including agriculture, 
forestry, urban planning, and environmental surveillance. 
Operating along a specific orbital path, Landsat satellites 
capture comprehensive images of the planet's surface at regular 
intervals every 16 days. These images, referred to as 
multispectral data, encompass a wide spectrum of light 
wavelengths, thereby enabling researchers to conduct detailed 
analyses of the various earthly features and phenomena. 
Landsat data are publicly accessible, fostering widespread use 
and substantially contributing to the investigation of global 
environmental dynamics over extensive periods [1]. Figure 1 
shows the training approach of the model, which consists of 
four steps. 

 

 
Fig. 1.  Training model. 

Train split is a technique for measuring the performance of 
a machine learning algorithm in any supervised learning 
problem and can be used for classification and regression tasks. 
Train split separates the dataset into two subsets. The first 
subset is the training set utilized to fit the model. The second 
set is the test set, which is not involved in the training of the 
model but instead serves the model with unknown inputs to 
make predictions and compare them to the actual values. 
Figure 2 briefly explains the training and test procedures for a 
dataset. 

 

 
Fig. 2.  Train-test split for soil moisture. 

The size of the train and test sets is the most crucial 
parameter for the train test split configuration. The size of the 
training set depends on a few factors, including the 
computational cost in the training phase and the evaluation 
phase. In this case, the test and split methods were 
implemented using the scikit-learn library, particularly the 
train_test_split method with the following arguments: 

x: Dataset containing the spectral indices after the feature 
selection procedure 

y: Corresponding soil moisture values 

Test_size: 0.2, meaning the dataset split is 80% for training 
and 20 % for testing 

random_state: 0 to get the same training and testing set 
during different executions 

After cleaning the data, only 69 samples were left out of the 
80. The training set contained 80% of the dataset (55 samples) 
and the test set contained 14 samples. Every model is 
represented by a set of parameters. Training a machine learning 
model involves selecting the best hyperparameters for the 
learning algorithm to employ and learn to accurately map the 
input data (independent variables) to labels or targets 
(dependent variable). Due to the complexity of choosing the 
best hyperparameters for the proposed model, the grid search 
technique was adopted to automatically customize and 
optimize the proposed model. This technique was employed 
from the scikit-learn Python module for hyperparameter tuning. 
The first step is to define the search space, which can be 
illustrated as an n-dimensional volume. For each 
hyperparameter value, a point in the search space is a vector 
with a specific value. The optimization procedure aims to 
discover a vector that gives the model the best after-learning 
performance, such as maximum accuracy or least error. Some 
optimization algorithms are applied to achieve this task 
although the most well-known ones are random search and grid 
search. The latter is implemented by defining a search space as 
a grid of parameters and exhaustively evaluating every position 
on the grid. 

The proposed model aims to estimate the soil moisture 
based on spectral indices. Then a set of predictors is defined. 
The main step is to choose the best model within the data. This 
is ensured by testing various models and comparing their 
results. During this step, many models, such as the regression 
models, are applied and evaluated according to scores based on 
the best hyperparameters, as illustrated in Figure 3. 

IV. RESULTS AND EXPERIMENTATION 

In the context of soil moisture prediction models, the 
physical meaning refers to how accurately the models reflect 
the actual moisture levels in the soil. This involves 
understanding how the predicted values align with the 
measured soil moisture data and how this information can be 
interpreted and used in practical applications. The training of 
the soil moisture dataset was implemented as a Python 
function. Then, the grid search optimization technique was 
applied to tune the hyperparameters of each model. The Python 
module responsible for this feature is called the sklearn model 
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section, and the method followed is called GridSearchCV. 
Table I depicts a comparison of the results of this study with 
those of previous studies based on the accuracy score. This 
allows for a comprehensive evaluation of the effectiveness of 

the proposed approach compared to existing methods. This 
table also defines the best values for the chosen 
hyperparameters to which the grid search technique was 
applied. 

 

 
Fig. 3.  Models' comparison procedure. 

TABLE I.  GRID SEARCH RESULTS 

Model Best score Best parameters 

Linear regression [25] 0.586132 
{'copy_X': True, 'fit_intercept': 

True} 

Decision tree [26] 0.909513 
{'criterion': 'squared_error', 

'splitter': 'best'} 

Support vector regressor 

[27] 
0.720655 

{'C':10, 'epsilon':0.2,  

'kernel': 'linear'} 

Ridge regression [28] 0.684230 
{'alpha':0.1, 'copy_X': True, 

'fit_intercept':True} 

Random forest regressor 

[29] 
0.790572 

{'criterion': 'squared_error', 

'n_estimators': 10} 

ElasticNet [30] 0.689741 
{'alpha': 0.001, 'copy_X': True, 

'fit_intercept': True} 

Extra trees regressor 

(proposed model) 
0.912985 

{'criterion': 'squared_error', 

'n_estimators': 100} 

 
The linear regression model has poor accuracy, with a score 

of 58%, due to multicollinearity in the dataset. The technique 
of regularization was applied to the linear model to overcome 
this issue. Two models were deployed for the regularization of 
the linear regression model by implementing the L1 and L2 
penalties, which are the ridge and ElasticNet models. The ridge 
model only uses the L2 penalty, while ElasticNet uses a 
combination of both penalties. As exhibited in the table above, 
both methods presented similar results with a score of around 
70%, which is an impressive improvement compared to the 
linear regression model. The best parameters for ElasticNet 
included the alpha hyperparameter with a value of 0.001, which 
means that the model practically used only the L2 penalty, 
which explains the similar result. Therefore, the L1 penalty 
does not present any benefit to the prediction. 

The support vector regressor exhibited slightly improved 
results compared to the ridge and ElasticNet models, scoring 
72%. The search space for the C coefficient and epsilon 
hyperparameters was chosen based on the best practices for this 
problem. The linear kernel reached the best result. The poly 

and RBF kernels were utilized to explain the similarity in the 
score compared to the other linear models, including ridge and 
ElasticNet. The random forest regressor had even better results, 
scoring 79% accuracy. The most challenging task was to 
choose the correct number of estimators (10, 50, 100). The 
performance of the random forest model was improved when 
deploying a massive number of estimators, but its 
computational complexity constitutes a major drawback. The 
decision tree and extra trees regression models produced a 
decent score of around 91% with the criterion squared_error. 
These models performed the same way except for the splitting 
step, with the decision trees employing the bootstrap technique, 
while the extra trees regressor used a random search. 

The results of the soil moisture prediction models reveal 
several noteworthy observations. Initially, the linear regression 
model demonstrated inadequate accuracy, attributed to the 
presence of multicollinearity in the dataset. However, 
significant improvements were observed when implementing 
the ridge and ElasticNet regularization models, both yielding 
comparable performance scores of approximately 70%. The 
ElasticNet model predominantly relied on the L2 penalty, 
indicating negligible benefits from the L1 penalty in terms of 
prediction accuracy. The support vector machine demonstrated 
a marginal enhancement over the regularization models, 
achieving a score of 72% due to meticulous hyperparameter 
selection via the grid search method, particularly favoring the 
linear kernel. The random forest regressor emerged as the best-
performing model, scoring 79%, despite the persistent 
challenge of determining the optimal number of estimators. 
Finally, the decision tree and extra trees regression models 
exhibited the highest accuracy scores, hovering around 91%, 
underscoring their efficacy in predicting soil moisture levels. 
These results underscore the importance of leveraging diverse 
machine learning algorithms and optimization strategies to 
refine soil moisture predictions, thus fostering advancements in 
agricultural practices and environmental stewardship. 
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In summary, regularization techniques were applied to 
address the multicollinearity issues in the linear regression 
model, resulting in similar improvements in performance for 
both the ridge and ElasticNet models. The support vector 
machine exhibited a slight improvement over the regularization 
models, with its hyperparameters optimized by grid search. The 
random forest regression model outperformed the previous 
models, albeit with the challenge of selecting the optimal 
number of estimators. Lastly, the decision tree and extra trees 
regression models demonstrated robust performance, achieving 
a high accuracy score of around 91%, using different splitting 
techniques. 

V. CONCLUSION 

This study sheds light on the critical role of the soil 
moisture and vegetation indices in agricultural management. 
Given the limited availability of data, various machine-learning 
models were employed to accurately estimate soil moisture. In 
particular, the model based on the extra tree regressor excelled 
in predicting vegetation indices using satellite imagery. Both 
the decision tree and the extra tree regressor models 
demonstrated remarkable accuracy in estimating soil moisture, 
achieving an impressive accuracy rate of approximately 91%. 
Looking ahead, further improvement and testing of the 
proposed model can be achieved by increasing the sample size 
for soil moisture data. By expanding the dataset, the model's 
predictive capabilities can be enhanced, leading to more robust 
and reliable results. Additionally, ongoing advances in remote 
sensing technology offer promising opportunities to refine the 
model's performance and amplify its applications in precision 
agriculture. 
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