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ABSTRACT 

Air pollution constitutes a significant global challenge in both public health and the environment, 

particularly for countries undergoing industrialization and transitioning from low- to middle-income 

economies. This study aims to investigate the feasibility and effectiveness of a real-time air quality 

prediction system based on data collected from Internet of Things (IoT) sensors to help people and public 

institutions track and manage atmospheric pollution. The primary objective of this study was to investigate 

whether an IoT-based approach can provide accurate and continuous real-time air quality forecasting. The 
standard dataset provided by the Indian government was analyzed using regression, traditional Long-

Short-Term Memory (LTSM), and bidirectional LSTM (BLSTM) models to evaluate their performance on 
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multivariate air quality features. The results show that the proposed BLSTM model outperformed the 
other models in minimizing RMSE errors and avoiding overfitting. 

Keywords-Internet of Things; air pollution; LSTM; health controllers 

I. INTRODUCTION  

As the world faces numerous challenges in the field of 
public health, the widespread issue of atmospheric pollution 
remains a central concern due to its pervasive impact and cross-
border implications [1-2]. Atmospheric pollution, characterized 
by the presence of harmful substances, such as particulate 
matter, nitrogen dioxide, and sulfur dioxide, originates from 
various sources, including industrial emissions, vehicular 
exhaust, and biomass burning. These pollutants are linked to a 
wide range of health problems, from respiratory to 
cardiovascular diseases and cancers, contributing to an 
estimated 11.65% of global mortality rates. Despite ongoing 
efforts to mitigate these effects, traditional monitoring and 
control mechanisms often lack real-time responsiveness and 
localized accuracy. In recent decades, the world has 
experienced significant economic advances and urban growth. 
However, these developments have also been accompanied by 
serious environmental challenges, such as air pollution. This 
escalating environmental crisis has adversely affected public 
health and exacerbated the severity of climate change [3]. 
Furthermore, the increasing number of vehicles, industrial 
operations, and other sources of combustion engines has 
intensified the environmental health crisis. Government bodies 
play a key role in mitigating these problems, as they strive to 
combat air pollution by implementing national and global 
policies and regulations that promote sustainable growth [4]. 
However, effective management of these environmental issues 
requires a unified approach from all participants. This includes 
government entities, organizations, industrial sectors, 
corporations, local communities, and individuals. The 
investigation of air quality has become a focal point in recent 
years [5]. The World Health Organization (WHO) has 
identified air pollution as a major factor in global disease 
proliferation, responsible for more than 7 million premature 
deaths each year [6-7]. These data underscore the immediate 
need to reduce exposure to air pollution and protect public 
health, and, as a consequence, air quality monitoring devices 
have gained significant attention, as they can measure 
temperature, humidity, and air pollution levels. 

In an era marked by rapid industrialization and 
urbanization, the rising levels of atmospheric pollution 
represent an urgent call to action [8]. This study underscores 
the gravity of the situation, emphasizing the need for 
comprehensive strategies to mitigate air pollution and its 
adverse health impacts. This involves stringent regulations on 
industrial and vehicular emissions, promoting renewable 
energy sources, and raising public awareness of the health risks 
associated with poor air quality [9]. The rapid escalation in air 
pollution, driven by intense industrialization and urban 
expansion, urgently calls for immediate countermeasures [10]. 
This study illuminates the critical nature of this issue and 
advocates for the creation of comprehensive strategies to 
reduce air pollution and its harmful health consequences. These 
strategies involve strict control over industrial and vehicular 

emissions, endorsement of renewable energy sources, and 
raising public awareness regarding the health risks associated 
with poor air quality. Indoor air pollution alone accounts for 
roughly 4.1% of global mortality rates. In 2019, the death toll 
from indoor air pollution exceeded 600,000. A viable solution 
to this problem lies in the realm of Internet of Things (IoT) 
monitoring systems [11]. Equipped with cutting-edge sensor 
technology, these systems can persistently track and collect 
data on a variety of indoor or outdoor air quality indicators, 
such as levels of pollutants like CO2, CO, particulate matter, 
and volatile organic compounds. Once these data are collected, 
they can be transmitted to a cloud-based platform for 
processing and interpretation. When applying machine learning 
and predictive analysis algorithms to these data, it becomes 
feasible to generate instant information on air quality and 
project future patterns [12]. 

In recent years, the advent of IoT technologies combined 
with advanced machine learning models has opened new 
avenues to address air quality concerns. In [13], sensor data 
were used to perform time-series prediction on air quality 
parameters and pollutants by applying linear regression. In 
[14], a systematic review of deep learning models was 
conducted for time-series air quality forecasting. In [15], 
supervised models were used to predict the concentration of air 
pollutants in multiple locations of a city by using spatial-
temporal relationships. In [16], air pollution in India, which is 
exacerbated by rapid urbanization and transportation 
development, was investigated. This study noted a discrepancy 
between current air quality monitoring systems and actual 
pollutant exposure at ground level, where humans directly 
inhale vehicle emissions. This study presented a real-time 
monitoring system using sensors to detect key pollutants from 
vehicular emissions. Leveraging a deep learning-based LSTM 
algorithm, the system forecasts pollutant levels, assisting 
decision-making to improve air quality and allowing citizens to 
accordingly plan their activities. This study also compared 
predicted ground-level pollutants with ambient air quality 
levels, highlighting the system's practical value. In [17], a 
comparative study of various statistical and deep learning 
methods was conducted to forecast pollution trends of PM2.5 
and PM10. The results showed that auto-regressive and 
Seasonal Auto-Regressive Integrated Moving Average 
(SARIMA) outperformed deep-learning methods on a limited 
dataset in Kolkata, India. In [18], a predictive model for 
pollutant emissions was presented for an airport, based on the 
number of takeoff and landing cycles. In [19], various shallow, 
deep, and hybrid learning models were reviewed to determine 
their advantages and limitations. 

Recent studies have explored various IoT-based models for 
air quality monitoring, employing technologies ranging from 
simple sensor networks to complex machine learning 
algorithms. Although these approaches offer significant 
information, they often lack real-time prediction capabilities or 
do not adequately account for localized pollution sources. This 
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research gap underscores the need for a more dynamic and 
adaptable solution that is capable of providing accurate, real-
time air quality predictions. The current study seeks to bridge 
this gap by introducing a novel IoT framework enhanced with 
bidirectional LSTM models to offer a promising avenue for 
comprehensive and timely air quality monitoring. The main 
objective of this study is to offer a scalable solution that can 
adapt to varying environmental conditions, thus enhancing 
public health responses by integrating environmental 
monitoring with public health initiatives. 

II. MATERIALS AND METHODS 

A. Datasets 

This study used the dataset collected and distributed by the 
Central Pollution Control Board (CPCB) in conjunction with 
the Ministry of Environment, Forests, and Climate Change 
[20]. The specific dataset was created utilizing IoT and cloud 
technologies. The CPCB maintains an extensive database of 
pollution levels and closely collaborates with state pollution 
control boards and other government bodies to enact and 
monitor environmental legislation and regulations and increase 
public awareness of environmental issues. To collect real-time 
air quality data, the CPCB has deployed a network of IoT-
enabled sensors at diverse locations. The data collected are 
stored in a cloud-based time-series database, facilitating access 
to air quality information across different regions. The publicly 
accessible real-time Air Quality Index (AQI) data can be used 
to issue warnings and provide air quality evaluations for 
various areas. Moreover, these data can be exploited for 
research purposes and time series analysis. The dataset 
encapsulates 42,000 entries and 16 variables, which include 
meteorological attributes, such as Benzene, Toluene, Xylene, 
PM2.5, PM10, NO2, NO, NOX, NH3, CO, SO2, O3, 
AQI_Bucket, and AQI, along with City and Date. The data, 
collected on an hourly basis from various stations in different 
states, span five years, from January 1, 2015, to July 31, 2020. 
The real-time IoT-enabled dataset, stored in a cloud-based 
database, offers air quality information for diverse locations 
and is publicly accessible for research and time series analysis. 
This study utilized a computing environment powered by an 
AMD Ryzen 5 4500U@2.38GHz processor with 16GB of 
RAM. All experiments were run using Jupyter Notebook 
operating on Windows 11 Pro 64-bit. Python 3.6.5 was 
employed along with multiple open-source libraries, such as 
Pandas and NumPy. The setup also incorporated libraries, like 
Matplotlib, Statsmodel, and Sklearn, to optimize the 
experimentation process. 

B. Methodology 

Predicting air quality has become crucial in providing early 
warnings and managing urban air pollution. The objective is to 
forecast fluctuations in the PM2.5 air pollution index at specific 
monitoring points over a given timeframe. The observation 
period is set to one hour, a standard determined by terrestrial 
air quality monitoring stations. Figure 2 displays a 
representative example of air pollution data, such as PM2.5 
levels, between 2015 and 2020. The task of predicting PM2.5 
concentrations can be defined as follows: Given a certain time 
T, the objective is to predict the PM2.5 concentration values 

��,��� at time T+1 or ��,���  at time T+n, taking into account 
the historical air-quality time series data 
�	
 �  �	
�,��� ∈ 0, � � 1,2,3 … �� from the past [21]. AQD 
stands for historical air quality-related data, O represents the 
total observation points, and AQD encompasses not only 
PM2.5, but also other air quality-related time series data, such 
as pressure, temperature, and wind speed. 

 
Fig. 1.  Air pollution data between 2015 and 2020. 

 
Fig. 2.  Average weather pressure, humidity, temperature, and windfall 
between 2014 to 2019. 
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As noticed in Figure 2, air quality data typically contain 
real-valued PM2.5 pollutants, while some datasets may also 
include CO2 and PM10. Alongside pollutant data, 
meteorological observation data play a significant role in 
determining air quality. For example, high wind speed tends to 
decrease PM2.5 concentration, elevated humidity often 
exacerbates air pollution, and high atmospheric pressure 
generally leads to better air quality. These characteristics are 
vital for predicting air quality. The crux of air quality 
prediction lies in how to process and capture the spatial-
temporal features of the aforementioned air quality data items. 
Looking at the PM2.5 data for a month's observation data 
points, e.g. from 01/01/2010 to 01/31/2010, it is evident that 
there is contextual information among the observation points in 
the PM2.5 and wind speed time series. The historical state 
exerts some influence on the evolution of future trends. In other 
words, adjacent data points and periodic intervals of air quality 
time series data typically exhibit a strong correlation with each 
other. 

C. Overview of the Deep Air Quality Forecasting Framework 

The proposed deep-learning architecture is a modified 
Bidirectional LSTM (BLSTM) model, designed to capture the 
spatial-temporal dependencies of air quality-related time series 
data. Given the correlations among local trend characteristics 
and the long-term dependencies of multivariate air quality time 
series data, particularly PM2.5, the time series data are 
interrelated with other air quality data, and these factors are 
intrinsically interconnected. Figure 3 offers a visual 
representation of this deep air quality forecasting framework. 
This study focuses on the BLSTM for Air Quality Forecasting 
(BL-AQF) model to process multiple one-dimensional time 
series data and effectively grasp the spatial-temporal 
characteristics of various air quality indicators. 

The primary phase of this study encompassed sequential 
training models to extract local trend attributes and potential 
spatial associations from multistation air quality readings. The 
model does not analyze the features of each time series in 
isolation. Instead, it simultaneously processes all the time series 
data collected from each monitoring point spread across 
various stations. Subsequently, the extracted features, 
comprising the local trend features of each station data and the 
potential spatial correlation features of multistation data, from 
numerous one-dimensional CNNs are concatenated and fed 
into a specific BLSTM. This BLSTM learns spatial-temporal 
dependency features from both past and future contexts, 
concurrently using time series in both forward and backward 
directions [22].  

The computational components of a typical BLSTM are: 

�� �  ��������  !���ℎ�#�  $�%  (1) 

&� �  ����'���   !�'�ℎ�#�  $'�   (2) 

(� �  ����)���  !�)�ℎ�#�  $)%  (3) 

*̃� �  �,-ℎ���.���   !�.�ℎ�#�  $.%     (4) 

*� �  &� ∙  *�#�   ��  ∙  *̃�   (5) 

ℎ� �  (� ∙ �,-ℎ �*��      (6) 

In the equations, the input gate determines the influx of new 
information into the memory cell. The symbol ft stands for the 
forget gate, dictating the volume of data to be removed. 
Meanwhile, ot serves as the output gate, deciding the measure 
of data to be relayed either to the subsequent step or directly to 
the output. *̃�  functions as a neuron equipped with a self-
repeating cell akin to RNNs. The memory cell within the 
LSTM block denoted st, is an aggregation of two components. 
The initial segment is derived from the prior internal memory 
state st-1 and the forget gate ft. The subsequent part is 
determined by the element-wise product of the self-repeating 
state *̃�  and the input gate [23]. A limitation of conventional 
LSTMs is their ability to harness only the antecedent context of 
sequential data [24]. In contrast, BLSTM can interpret time 
series information in a dual-directional manner deploying two 
distinct hidden layers. Subsequently, the data from both 
directions are merged and advanced to the output stage. Put 
differently, BLSTM cyclically assesses time series data in two 
directions: the forward layer goes from t = 1 to T, while the 
backward layer operates in reverse form, from t = T to 1. 

 

 
Fig. 3.  Architecture of the AQI monitoring system. 

III. RESULTS AND DISCUSSION 

A. Understanding the Influence of Traditional Machine 

Learning in Air Quality Forecasts 

Linear regression, a foundational statistical method, plays a 
pivotal role in air quality projections by drawing a clear 
correlation between factors, such as temperature variations, 
wind dynamics, and moisture levels with air quality index and 
offering an intuitive way to predict future atmospheric 
conditions. Its straightforward nature and easy-to-follow logic 
have cemented its status among environmental analysts. 
Beyond the linear approach, the Decision Tree (DT) offers a 
structured method to dissect data based on specific criteria. For 
example, it can evaluate air quality differences that stem from 
fluctuating temperatures. This approach excels in highlighting 
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intricate connections and dependencies among various 
environmental elements. Not only does the tree-like 
representation bring clarity, but also enhances the 
comprehensibility of the model logic. Building upon the 
foundation of DT, Random Forest (RF) introduces an ensemble 
technique that amalgamates insights from numerous trees. This 
collective approach mitigates the typical pitfalls of individual 
trees, such as oversensitivity to data discrepancies. When 
predicting air quality, it ensures a balanced and comprehensive 
understanding, harnessing the insights of multiple evaluations 
for a more refined prediction. 

The Mean Squared Error (MSE) of the linear regression 
was 4.963×10-34 while R2 was 1.0. The MSE for linear 
regression, being extraordinarily close to zero, and the R2 value 
indicate almost perfect predictions that match the actual data. 
Although this might seem impressive, such perfect scores can 
be indicative of overfitting, where the model might be too 
closely tailored to the training data and may not perform as 
well on new unseen data. For DT, MSE was 2.914×10-7 and R2 
was 0.9983. DT had a slightly higher MSE compared to linear 
regression. However, its MSE is still very low, indicating good 
prediction accuracy. The R2 value is slightly less than 1, 
indicating that the model explains approximately 99.83% of the 
variance in the dependent variable. This is an excellent score, 
but the model might be complex and could risk overfitting, 
given the nature of DT. For RF, MSE was 2.05986×10-7 and R2 
was 0.99988. RF, being an ensemble method, combines 
multiple DTs to produce predictions. Its MSE is lower than that 
of the DT, exhibiting higher accuracy. The R2 value is very 
close to 1, suggesting that the model explains approximately 
99.99% of the variance in the dependent variable. This model 
seems to provide a balanced trade-off between complexity and 
accuracy. 

However deep-learning algorithms are better for AQI 
prediction due to: 

 Complex relationships: Air quality is influenced by a 
variety of factors, including pollutants, weather patterns, 
industrial activities, and more. Deep learning can capture 
intricate, nonlinear relationships among these variables 
more effectively than shallow algorithms 

 Feature extraction: Deep learning models, especially neural 
networks, can automatically extract and learn important 
features from raw data, removing the need for manual 

feature engineering, which can be required for shallow 
models. 

 Handling large datasets: Air quality datasets can be vast, 
containing data from multiple sensors over long periods. 
Deep learning models excel when trained on large datasets, 
allowing them to generalize better. 

 Temporal dependencies: RNNs and LSTM networks, 
subsets of deep learning, are well suited for time-series 
data, such as air quality indices, as they can remember past 
information to influence future predictions. 

 Regularization techniques: Deep learning models come 
with a variety of regularization methods, like dropout, 
which can prevent overfitting, especially when dealing with 
complex datasets. 

B. Results for LSTM-based AQI Prediction 

Figure 4 illustrates that RMSE in both the training and 
validation sets decreases as the number of epochs increases for 
LSTM. This suggests that the model is learning and refining its 
predictions with more training. Over the epochs, the RMSE 
values seem to be stabilizing, indicating that the model is 
reaching a point of convergence. The gap between the training 
and validation RMSE appears minimal, suggesting that the 
model generalizes well and does not overfit the training data. 
Concerning MSE, both the training and validation MSE values 
seem to be decreasing as the number of epochs increases. This 
trend reaffirms that the model is improving its predictions with 
continued training. Similarly to the RMSE plot, the MSE 
values appear to stabilize as the epochs progress, suggesting 
model convergence. Since RMSE is the square root of MSE, 
the trends observed here are consistent with those seen in the 
RMSE plot. Considering Mean Absolute Error (MAE), both 
the training and validation values decrease as the epochs 
increase, further supporting the assertion that the model is 
making progress and refining its predictions. As with the 
previous two metrics, the MAE values seem to level off as the 
epochs progress, indicating that the model might be reaching an 
optimal state. The small gap between the training and 
validation curves suggests good model generalization. All three 
metrics (RMSE, MSE, MAE) demonstrate a decreasing trend 
over the epochs, which is a clear sign that the LSTM model is 
learning and enhancing its predictive capabilities with each 
training epoch. 

 

 
Fig. 4.  RMSE, MSE, and MAE results for LSTM-based evaluation. 
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Fig. 5.  RMSE, MSE, and MAE of the BLSTM model. 

C. Results for BLSTM AQI Prediction 

Figure 5 provides a visual representation of the model's 
performance across epochs in terms of RMSE for both training 
and validation. Both the training and validation RMSE values 
rapidly decline during the initial epochs, indicating that the 
model is learning and improving its prediction accuracy. After 
the rapid decrease, the RMSE values for both training and 
validation start to stabilize. This suggests that the model is 
converging and that further training might not yield significant 
improvements in prediction accuracy. There is a noticeable gap 
between the training and validation RMSE values, but it does 
not appear to significantly widen as training progresses. This is 
a positive sign, as it suggests that the model is not overfitting 
the training data. The model shows good generalization, since 
the validation RMSE is relatively close to the training RMSE, 
and there is no significant divergence between them over the 
epochs. Stabilization of the RMSE values indicates that the 
model may have reached its optimal performance for the given 
architecture and data. In conclusion, the BLSTM model 
appears to perform well for multistep AQI forecasting based on 
the provided RMSE values. Further domain-specific insights 
and comparisons with actual AQI values would provide a more 
comprehensive evaluation. 

Figure 6 compares the performance of both the BLSTM 
and the regular LSTM models across epochs. In Epoch 1, 
BLSTM starts with a training RMSE of 0.1749 and a validation 
RMSE of 0.0857, while LSTM starts with a training RMSE of 
0.2446 and a validation RMSE of 0.1496. BLSTM starts with a 
better initial performance compared to LSTM. Both models 
show a rapid decrease in RMSE during the initial epochs, 
indicating learning and improvements in prediction accuracy. 
Throughout the epochs, the BLSTM model consistently 
achieves a lower RMSE than the regular LSTM for both 
training and validation, showcasing its superior performance. 
After the initial rapid decrease, the RMSE values for both 
models begin to stabilize. This indicates that the models reach a 
point of convergence, where further training might not 
significantly improve RMSE. BLSTM seems to stabilize at a 
lower RMSE value compared to LSTM, further emphasizing its 
efficiency for this task. The gap between the training and 
validation RMSE for both models is relatively small, 
suggesting good generalization capabilities on unseen data. 
However, the BLSTM's validation RMSE remains consistently 
lower, indicating potentially better generalization for this 
specific task. BLSTM consistently outperforms regular LSTM 
in terms of RMSE across all epochs for both training and 

validation. This can be attributed to its ability to leverage both 
past and future context in sequence data, making it particularly 
effective for time series predictions, such as AQI forecasting. 
Both models demonstrate a converging trend as training 
progresses, with BLSTM demonstrating a more favorable 
trajectory. Both models exhibit good generalization, but the 
BLSTM shows a slight edge in this dataset, given its 
consistently lower validation RMSE. Overall, for air quality 
prediction, BLSTM appears to be a more suitable choice than 
regular LSTM, on the basis of the RMSE values provided. 

 

 
Fig. 6.  Comparative performance of LSTM and BLSTM for AQI 
prediction. 

Figure 7 reveals that the actual and predicted values appear 
to be in close alignment for most of the data points. This 
suggests that the BLSTM model has captured the underlying 
patterns and trends in the data quite well. There are certain 
points where the predicted values deviate from the actual 
values. These deviations, however, appear to be minimal and 
not too frequent, indicating that the model performance is 
generally consistent. The model seems to capture both the 
peaks and troughs of the actual data, suggesting that it has 
learned the seasonality or cyclic behavior, if any, present in the 
dataset. In many sections of the chart, the actual and predicted 
curves overlap, which is a strong indicator of the model's 
accuracy in those intervals. BLSTM appears to perform quite 
effectively for the AQI prediction task, as the close alignment 
between the actual and predicted values signifies a high degree 
of accuracy. The ability of the model to capture major trends, 
peaks, and troughs in the data emphasizes its robustness. 

 



Engineering, Technology & Applied Science Research Vol. 14, No. 2, 2024, 13796-13803 13802  
 

www.etasr.com Mullangi et al.: Assessing Real-Time Health Impacts of outdoor Air Pollution through IoT Integration 

 

 
Fig. 7.  Actual vs predicted time series data results by BLSTM. 

IV. CONCLUSIONS 

This study introduces a groundbreaking IoT-based 
framework that uses BLSTM for precise prediction of air 
quality. The findings demonstrate a significant improvement in 
prediction accuracy over traditional methods, avoiding 
overfitting and underscoring the potential of integrating 
advanced machine learning techniques with IoT technologies 
for air pollution monitoring. The application of this study 
extends beyond academic interest, offering tangible benefits for 
urban planning, public health strategies, and environmental 
protection initiatives. By providing accurate real-time air 
quality data, the proposed BLTSM model supports informed 
decision-making, allowing timely interventions that can 
mitigate the adverse health impacts of air pollution and 
improve the quality of life in urban environments. Looking 
ahead, the integration of the proposed IoT framework with 
smart city infrastructure represents an exciting avenue for 
research and development. Such advances could lead to the 
creation of highly adaptive and responsive environmental 
monitoring systems, capable of predicting and managing air 
quality issues more effectively. Furthermore, exploring the 
model's performance across a broader range of environmental 
conditions will be critical to ensure its applicability and 
reliability on a global scale. The limitations of this study are 
particularly based on the need for extensive data collection and 
validation in diverse environmental settings. Future research 
should aim to address these challenges, seeking to refine and 
expand the model's capabilities to ensure its effectiveness and 
scalability. In conclusion, this research contributes a novel 
approach to the challenge of air quality prediction, highlighting 
the synergy between IoT technologies and machine learning. 
Continuous advances in this field grow the potential for 
impactful real-world applications, offering a beacon of hope for 
addressing the global issue of air pollution. 
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