
Engineering, Technology & Applied Science Research Vol. 14, No. 4, 2024, 14961-14969 14961

www.etasr.com Assiri & Aljahdali: Software Vulnerability Fuzz Testing: A Mutation-Selection Optimization Systematic …

Software Vulnerability Fuzz Testing: A

Mutation-Selection Optimization Systematic

Review

Fatmah Yousef Assiri

Software Engineering Department, College of Computer Science and Engineering, University of Jeddah,

Saudi Arabia

fyassiri@uj.edu.sa

Asia Othman Aljahdali

Cybersecurity Department, College of Computer Sciences and Engineering, University of Jeddah, Saudi

Arabia

aoaljahdali@uj.edu.sa (corresponding author)

Received: 14 April 2024 | Revised: 6 May 2024 | Accepted: 14 May 2024

Licensed under a CC-BY 4.0 license | Copyright (c) by the authors | DOI: https://doi.org/10.48084/etasr.6971

ABSTRACT

As software vulnerabilities can cause cybersecurity threats and have severe consequences, it is necessary to
develop effective techniques to discover such vulnerabilities. Fuzzing is one of the most widely employed

approaches that has been adapted for software testing. The mutation-based fuzzing approach is currently

the most popular. The state-of-the-art American Fuzzy Lop (AFL) selects mutations randomly and lacks

knowledge of mutation operations that are more helpful in a particular stage. This study performs a

systematic review to identify and analyze existing approaches that optimize the selection of mutation

operations. The main contributions of this work are to draw attention to the importance of mutation

operator selection, identify optimization algorithms for mutation operator selection, and investigate their

impact on fuzzing testing in terms of code coverage and finding new vulnerabilities. The investigation

shows the effectiveness and advantages of optimizing the selection of mutation operations to achieve higher
code coverage and find more vulnerabilities.

Keywords-software testing; software security; fuzz testing; vulnerabilities; mutation operator selection

I. INTRODUCTION

Nowadays, many software developers depend on open-
source libraries when implementing software. Software
vulnerabilities in such libraries can cause cybersecurity threats
and have severe consequences [1]. The software testing phase
requires considerable time, effort, and cost, particularly when
there are many faults [2]. Therefore, there is a need to develop
effective techniques to discover software security flows.
Fuzzing is one of the most popular methods that has been
adapted for software testing, such as kernel testing [3],
firmware testing [4], and protocol fuzzing [5]. Fuzz testing is
an automated software testing approach used to generate
random data called "fuzz" that is used as a test case to discover
vulnerabilities in the software under testing. Figure 1 illustrates
the general fuzzing process, which consists of three main
components: the test case generator, the executor, and the
monitor. The generator is responsible for generating a new test
case and providing the executor with new inputs. The executor
runs the target programs utilizing these inputs. The monitor
component tracks the execution to detect new defects or
crashes. The objective of any fuzzer is to discover software

defects [6]. The monitor collects specific run-time information,
such as path coverage information, and passes it to the
generator to guide its test-case generation process. When the
target program crashes or reports errors, the bug detector
module collects and analyzes related information to decide
whether a bug exists. Eventually, vulnerabilities are filtered
from all reported bugs through a bug filter [7].

There are general systematic reviews of fuzz testing,
focusing on unifying the process and identifying gaps and
solutions [7, 8 9, 10]. Other reviews shed light on studies that
apply machine learning algorithms [11, 12], and some studies
aimed to review fuzz testing on IoT firmware [13]. This work
is a novel systematic review that focuses on optimization
methods for mutation operator selection in mutation-based
fuzzing, covering the period between 2017 and 2022. The main
contributions of this paper are:

 Draw attention to the importance of mutation operator
selection in fuzzing testing.

 Identify optimization algorithms for mutation operator
selection in mutation-based fuzzing.

Engineering, Technology & Applied Science Research Vol. 14, No. 4, 2024, 14961-14969 14962

www.etasr.com Assiri & Aljahdali: Software Vulnerability Fuzz Testing: A Mutation-Selection Optimization Systematic …

 Investigate the impact of optimization algorithms on fuzz
testing in terms of code coverage and finding new
vulnerabilities compared to the state-of-the-art AFL.

 Recommend potential future work.

Fig. 1. Fuzzing process.

II. BACKGROUND

A. Fuzz Testing Types

Concerning input generation, fuzzing can be divided into
generation-based and mutation-based. Generation-based
fuzzing creates the test case from scratch and requires
knowledge of the specifications that describe the file format or
the network protocol. This category encompasses several
works, including the use of constraint logic programming [14,
15]. Mutation-based fuzzing starts with a seed set (corpus) as a
baseline and then mutates existing inputs to obtain new test
cases. The seed is mutated utilizing mutation operations,
including bit flip, byte flip, arithmetic increments, decrements
of integers, etc. Examples of such fuzzers are AFL [16] and
BuzzFuzz [17]. One of the advantages of mutation-based
fuzzing is that it does not require knowledge of the software or
protocol under testing. Thus, it is easier to start and widely
employed. There are three main types of fuzzing depending on
the use of the program source code: white-box, gray-box, and
black-box. White-box fuzzers generate test cases by analyzing
the internal program specifications and its execution. It utilizes
the symbolic execution technique to enumerate interesting
program paths using program analysis. Existing white-box
fuzzing tools include KLEE [18] and SAGE [19]. Gray-box
fuzzers produce seed input by obtaining some information
about the internal specification code of the program under test
and its executions through lightweight static analysis and
dynamic information to gather information such as code
coverage. Seeds are then mutated to generate new test case
inputs. Generated test case inputs that cover new control
locations are added to the seed corpus. Thus, code coverage is
increased. Examples of such fuzzers include AFL, LibFuzzer,
and Honggfuzz. Black-box fuzzing generates inputs without
any knowledge of the program under test but observes its
input/output. It is also called "data-driven" testing. Many
fuzzers fall into this category, including [20, 21]. Table I shows
examples of each fuzzing type.

TABLE I. EXAMPLES OF WHITE-BOX, GRAY-BOX, AND
BLACK-BOX FUZZING

Fuzz tones White-box Gray-box Black-box

Generation-

based

Spike, Sulley,

Peach

Mutation-

based
Miller

AFL, Driller, Vuzzer,

TaintScope, Mayhem
SAGE, Libfuzzer

B. Fuzz Testing and Optimization

There are two methods to optimize fuzz testing: seed
selection and mutation selection. Seeds are the inputs to the
fuzzer that are deployed to create inputs to test the Software
Under Test (SUT). Seeds are valid inputs in the space of inputs
for SUT. An unlimited number of seeds can be used. However,
the best seeds are those that generate test inputs and provide
better code coverage, thus detecting system vulnerabilities. As
selecting seeds can be a tedious process, optimization
algorithms are applied to select seeds that lead to better test
inputs. Particle Swarm Optimization (PSO) has been employed
to improve seed selections in target-oriented fuzzing by
computing the distance between the executed block and the
target block where the suspected vulnerable point is located
[22]. Control flow and function call graphs are statistically
generated to compute the distance. Then, PSO and the format
of all created inputs are changed to generate better inputs that
are closer to the target point. This approach generates more
inputs that reach the target point.

In [23], a multi-objective optimization model, MooFuzz,
was developed to select the optimal seed set applying a non-
dominated sorting algorithm. The main components of
MooFuzz are the static analyzer, feedback collector, seed
scheduler, and power scheduler. Static analyzers mark
suspected locations and collect risk information, such as path
risk and path frequency. Then, the feedback collector adjusts
seed risk values to guide the seed scheduler, which uses the
optimization model to prioritize seeds. Finally, the power
scheduler assigns energy to seeds based on feedback
information. A high-quality seed is more likely to be mutated
and should be given more energy. Seed selection has been
improved using heuristics to generate seeds that lead to valid
test inputs to detect problems in newly visited regions [24]. The
first heuristic collects both coverage information and execution
information, and the second heuristic creates a string dictionary
consisting of string constants that guide the fuzzer to create
valid inputs. The performance of this approach is competitive
with that of other fuzzers in terms of bug detection. On the
other hand, mutation-selection optimization efficiently selects
mutation operators by applying optimization algorithms.
Mutation operations are implemented by the fuzzer to change
the seeds to generate test cases that can detect anomalies in the
system. This study investigates the effectiveness of mutation
operation optimization methods to improve the fuzzing
process.

III. RELATED WORKS

This study searched for secondary studies (reviews) that
focused on mutation operation selection optimizations. Review
papers concentrating on fuzz testing in general, such as [7, 9,
10, 12, 25], were excluded. Related papers should cover

Engineering, Technology & Applied Science Research Vol. 14, No. 4, 2024, 14961-14969 14963

www.etasr.com Assiri & Aljahdali: Software Vulnerability Fuzz Testing: A Mutation-Selection Optimization Systematic …

methods and techniques to improve the selection of mutation
operators in fuzz testing. Search engines were engaged, adding
the terms "survey" or "review" to the search terms. There were
no systematic review papers found on the selected topic.

IV. METHOD

This systematic literature review is based on well-
established guidelines for conducting systematic reviews [26].
The process started by identifying and evaluating secondary
studies that discuss the topic of mutation-selection
optimizations for fuzz testing. Then, related surveys were
analyzed to identify gaps and limitations. Based on the
identified research gap, a set of research questions was
developed to serve as the objectives of the review. The search
engines and online libraries used to locate the relevant primary
studies were identified and then a set of queries was defined to
perform the search and the backward snowballing process was
followed in the study identification process. Furthermore,
inclusion and exclusion criteria as well as the quality
assessment criteria used were defined for the primary studies.

V. RESEARCH QUESTIONS

The Research Questions (RQs) for this review were as
follows:

 RQ1: What mutation operations are applied in studies of
gray-box fuzzing optimization?

 RQ2: What techniques are utilized to optimize mutation
operation selection?

 RQ3: How optimization methods affect the fuzzing process
in terms of code coverage and newly discovered
vulnerabilities compared to the state-of-the-art AFL?

VI. RESEARCH METHODOLOGY

The search involved research articles published between
2017 and 2022 in well-known libraries and top conferences.
Then, a set of criteria was developed to include and exclude
research articles. Data were selected based on title and abstract
screening and then based on full-text screening. Finally, data
were extracted from all relevant articles.

A. Source Material and Search Strategy

Well-known libraries and some of the top 10 conferences
for computer security and software engineering were examined
to identify eligible studies. The data sources were: IEEE
Xplore, ACM Digital Library, Springer Link, Security
Symposium (USENIX), International Conference on Software
Engineering (ICSE), European Symposium on Research in
Computer Security (ESORICS), ACM ASIA Conference on
Computer and Communications Security (ASIACCS), IEEE
Symposium on Security and Privacy (IEEE S&P), International
Symposium on Software Testing and Analysis (ISSTA), and
the International Conference on Software Testing, Verification,
and Validation (ICST). Furthermore, references to candidate
studies were reviewed for any other articles that may be
missed. To perform the search, the respective search engines
and online libraries were queried by combining key search
terms using the Boolean expression "and" and incorporating

other synonyms utilizing "or". The following search terms were
put into service for the identification of primary studies:

 Fuzzing AND optimization, gray box fuzzing AND
optimization, mutation fuzzing AND optimization

 (Mutation OR gray box) AND optimization

 (Mutation fuzzing OR Gray-box fuzzing) AND
(optimization OR optimizing)

 Mutation fuzzing AND (assessment OR assessing) OR
(evaluation OR evaluating)

 Software fuzzing AND optimization, software fuzzing
AND mutation

 Software fuzzing AND mutation AND (assessment OR
assessing) OR (evaluation OR evaluating).

As search capability limitations in some engines did not
allow to follow the criteria, the terms "fuzzing," "fuzz," and
"Fuzzer" were used.

B. Inclusion and Exclusion Criteria

The application of a set of inclusion and exclusion criteria
is critical to filter related studies and keep the research focused
on its main objectives. As this study focuses on optimizing
mutation selection in fuzz testing, the following criteria were
defined for inclusion:

 Studies that focus on the evaluation of mutation-based
fuzzy selection

 Studies that use mutation-based fuzzing

 Studies applying optimization methods for better mutation
selection

 Peer-reviewed articles published between 2017 and 2022.

The exclusion criteria were:

 Studies on fuzzing approaches that did not use mutation-
based fuzzing (e.g., generation-based fuzzing)

 Studies that focused on seed selection optimization

 Studies with a primary focus on the points mentioned in the
inclusion criteria but not yet published in a scientific
conference proceeding or a journal.

C. Study Selection

After collection, the list of papers was finalized by
removing duplicates. Each paper's title, abstract, and
introduction were then screened to determine their suitability as
primary or secondary papers following the criteria. Due to the
use of different terminology, it was difficult to decide whether
to entail each paper. Thus, the introduction and the proposed
approach section were screened. Finally, 105 papers were
involved, 88 of which were primary papers. Figure 2 portrays
their distribution per year and source.

Engineering, Technology & Applied Science Research Vol. 14, No. 4, 2024, 14961-14969 14964

www.etasr.com Assiri & Aljahdali: Software Vulnerability Fuzz Testing: A Mutation-Selection Optimization Systematic …

Fig. 2. Distribution of search results per data source.

D. Data Extraction and Quality Assessment

Data were extracted from the selected papers through full-
text screening based on the research questions. For each paper,
information on the mutation operators, optimization
algorithms, dataset used, and evaluation results was collected in
terms of coverage and finding new vulnerabilities.

VII. RESULTS AND DISCUSSION

Of the 88 primary papers, 56 were excluded. Eight of them
could not be accessed through the selected institution, and the
rest were outside the scope of this study. The selected articles
were summarized based on the optimization method depicted
in Figure 3.

The first group encompassed machine learning, deep
learning, and reinforcement learning algorithms to optimize the
selection of mutation operations. The study in [27] extends
AFL by learning the probability distribution of its mutation
operators on a program-by-program basis. In general, AFL
randomly selects the operators to generate new inputs. The
distribution of the sampling mutation operators was calculated
using training programs, which significantly improved AFL
performance. Additionally, Thompson sampling was applied,
which is a bandit-based optimization approach that fine-tunes
the mutator distribution. In [28], a neural network was applied
to guide the selection of a position in the file whose value
should be replaced by another random value. This approach
found bugs in the PDF parser that were not detected before and
covered more instructions than other random approaches.
However, it also missed more instructions. In [29], a neural
network was also deployed to develop an optimizing fuzzing
process called NEUZZ, which learns the behavior of the
program branching. Then, a gradient-guided optimization
technique was developed to determine the bytes with the
highest gradient values to mutate them, creating mutated inputs
that detect more bugs of different types compared to other well-
known fuzzers. DeepHunter is another fuzz-testing framework
that employs deep neural networks [30]. The idea is to use a
metamorphic mutation strategy to generate valid inputs with
the same semantics as the original seed. It depends on domain
knowledge to develop a mutation strategy that allows for
generating semantic-preserved tests with few false positives.
Fuzz testing was also addressed as a reinforcement problem
adopting the Markov decision process to select mutation
operators that improve a defined reward value to maximize

code coverage and/or processing time [31-33]. MCMSFuzzer
[33] optimizes the selection of mutation location, mutation
intensity, and mutation algorithm.

Fig. 3. The taxonomy of fuzz testing.

The second group applied optimization algorithms, such as
particle swarm and ant colony optimizations, to further
optimize the selection. MOpt is an optimized mutation
selection strategy that applies PSO to find mutation operators
that will maximize the effectiveness of fuzzers in terms of
discovering vulnerabilities and execution time [34]. It was
implemented on top of a well-known fuzzer, discovering more
crashes, some of them being unique. PSO was also put into
service for fuzzing Wi-Fi devices [35], providing a higher
probability of mutation operators to maximize a cost function.
Some fuzzing techniques focus on a recently changed code, as
it was observed that such a code has more problems than the
old code [36]. Ant colony optimization was applied at the byte
level to assign higher probabilities to the code with higher
impact to generate better-mutated inputs.

Feedback approaches, such as evolutionary algorithms,
have been applied to optimize mutation operation selection.
VUzzer is an evolutionary fuzzer that creates a feedback loop
based on the control and data flow features of previous
executions to determine where and how to mutate the input to
create new/better inputs [37]. It deploys crossover to generate
new inputs from the initial seeds and then mutate the input
bytes. Knowledge-based evolutionary algorithms were
developed to generate mutated inputs to detect more
vulnerabilities. LearnAFL [38] is based on the equivalence
class-based format generation theory, which learns the format
of valid inputs and guides the random mutation process to
create valid inputs that can execute new deep paths and
successfully detect more unique faults. PerfFuzz [39] employs
multidimensional feedback to produce inputs that exercise
distinct locations in a program with a longer execution path,
and it was implemented on top of AFL. To speed up the
process and discover more paths, an interruptible mutation

Engineering, Technology & Applied Science Research Vol. 14, No. 4, 2024, 14961-14969 14965

www.etasr.com Assiri & Aljahdali: Software Vulnerability Fuzz Testing: A Mutation-Selection Optimization Systematic …

method was followed in [40], which monitors the mutation
input execution status and mutates those that execute more
paths. A locality method was also proposed to determine the
mutations that cause a significant change.

The SIVO fuzzer [41] uses parameterization and
optimization engines, which dynamically select among
different strategies to optimize their parameters for the target
program based on the observed coverage. In [42], power
scheduling was proposed to prioritize mutations, performing
AST at the node level to identify nodes that help with bug
detection. Mutation operators change the AST by replacing
subtrees and combining bit-flip arithmetic mutations. An
energy value is assigned to each node reflecting its rarity and
influence, guiding the fuzzer to the most important mutations.
In [43], a validity-based power scheduling technique was
developed to assign higher energy to valid inputs, which
doubled the energy for inputs with a validity of 50% and more.
Granularity-aware mutator scheduling was proposed in [44].
This approach works by dynamically assigning ratios to
different mutation operators, implemented in the AFL. It
overcomes the limitations of AFL, which randomly selects
mutators and deterministically specifies the number of each
mutator, lacking the knowledge of mutators that are more
helpful at a particular stage.

FairFuzz [45] implements a mutation mask strategy that
optimizes mutation operation selection to reach locations that
were not previously executed. It starts by selecting inputs that
execute rare locations. Then, to generate mutated input, the
mask strategy applies three mutation operators to a specified
position. The byte position is selected from a pool of positions
that will execute target locations. This strategy increased the
percentage of mutated inputs that cover the target location. In
[46], a mutation fuzzer was proposed that utilized forward
dynamic slicing to identify program instructions influenced by
a particular input byte. This information is employed to limit
the mutation to only a subset of input bytes. The evaluation
indicated that focused AFL improved bug discovery compared
to vanilla AFL. In [47], a selection mutation algorithm was
suggested based on a partition weight table to improve the
fuzzing process to detect security issues in the NGAP protocol
of the core 5G network. This approach calculates the
probability of triggering anomalies in the target network before
and after applying the proposed algorithms. The calculation
demonstrates an increase in the probability of discovering
anomalies. In [48], a new fuzzer was proposed to increase
branch coverage based on context that explores different
internal states. CMFuzz [49] is another context-aware adaptive
mutation scheme that employs a contextual bandit algorithm
(LinUCB) to select optimal mutation operators for various seed
files. CMFuzz accomplishes this by dynamically extracting and
encoding file characteristics, allowing mutation-based fuzzers
to perform context-aware mutations. This study implemented
CMFuzz on top of several fuzzers, including PTfuzz, AFL, and
AFLFast, called CMFuzz-PT, CMFuzz-AFL, and CMFuzz-
AFLFast, respectively.

Other approaches recommended the optimization of
mutation selection. The TIFF prioritized mutation [50] infers
the type of input by tagging each offset with a basic type.

Types are inferred by identifying the data structure and
performing a dynamic taint analysis, which produces high-
quality inputs to discover memory-corruption bugs. In [51], a
gray-box fuzzing approach (AFLCAI), which applied an
optimization strategy for nondeterministic mutation, was
introduced . AFLCAI uses an effector map mechanism to
approximate metadata and improve code coverage through
heuristic-guided mutation. JQF [52] is a Java platform to
perform gray-box fuzz testing. In this approach, practitioners
write QuickCheck-style test methods with formal parameters.
JQF tests the bytecode of the target program using inputs
generated in a coverage-guided fuzzing loop. Fuzz testing has
been deployed to improve the security of autonomous vehicle
systems. In [53], VulFuzz was presented, which is a fuzz
testing framework that applies a weighting method to prioritize
fuzz testing to the most vulnerable components engaging
vulnerability metrics. As demonstrated in some studies, there
are several advantages to the randomness of mutation
selections. However, random strategies can damage the initial
seeds. In [54], a hybrid mutation strategy was proposed that
combined the random mutation strategy with a restricted
mutation strategy. The restricted strategy applies to seeds that
cover rare locations and the random strategy applies to other
seeds. As a result, more branches are covered, leading to more
crashes.

A. RQ1: What Mutation Operations are Applied in Studies of

Gray-Box Fuzzing Optimization?

Mutation operators are one of the main components of fuzz
testing. However, little attention has been paid to the group of
selected operators. The literature review showed that mutation
operators were not the focus of most studies, as operators were
not mentioned at all in some studies. On the other hand, other
studies built their approaches based on the state-of-the-art tool
AFL, which consists of 11 operators including, but not limited
to, byte flipping, inserting, deleting, replacing, and arithmetic
increment and decrement. Several approaches are used to
mutate seeds, including bit flipping, arithmetic mutation, and
block-based mutation. Some fuzzers flip a fixed number of bits,
while others randomly decide the number of bits to flip.
Additionally, some fuzzers calculate the mutation ratio to
determine the number of bit positions to flip. AFL contains
another mutation by performing arithmetic mutation on a
selected byte sequence from the seed, and the result is used to
replace the selected byte sequence. As an illustration, AFL
chooses a 4-byte value from a seed and considers it an integer
�, then replaces the value in the seed with � ± �, where � is a
random integer such that 0 ≤ � < 35. Block-based mutation
methodology works by inserting, deleting, replacing, or
randomly permuting a randomly generated block into a random
position of a seed [10].

However, some fuzz tests, such as AFL, are context-
insensitive. In [48], some other approaches applied fuzzing to
the AST. Thus, mutation operators that mutate the AST by
inserting and replacing subtrees were applied, and other fuzzers
added new operators that rearranged bytes [55]. In summary,
most of the existing research focused on inserting, deleting, and
replacing bytes or sequences of bytes by selecting random

Engineering, Technology & Applied Science Research Vol. 14, No. 4, 2024, 14961-14969 14966

www.etasr.com Assiri & Aljahdali: Software Vulnerability Fuzz Testing: A Mutation-Selection Optimization Systematic …

values within a specified range. Table II summarizes the
primary studies in terms of the optimization approach.

TABLE II. SUMMARY OF PRIMARY STUDIES.

Approach References

ML and DL ML [27], ANNs [28–30], Reinforcement [31–33]

Optimizer PSO [34, 35], ACO [36]

Feedback
Evolutionary algorithm [37, 38], Multidimensional

feedback [39], Parameter optimization [40, 41]

Scheduler
Power scheduling [42], Validity-based power scheduling

[43], Granularity-aware scheduling [44]

Masking Mask strategy [45]

Slicing Forward dynamic slicing [46], Partition weight [47]

Context-aware Context-aware [48], Contextual bandit algorithm [49]

Other

Heuristic mutation [51], Quick check test [52],

Vulnerability metrics [53], Input type inference using

dynamic taint analysis [50], Hybrid mutation [54]

B. RQ2: What Techniques are Utilized to Optimize Mutation

Operation Selection?

A few studies have employed neural networks and Markov
decision processes to guide the selection of mutation operations
with better coverage and to detect more bugs. A neural network
has been used to learn the probability distribution and behavior
of the program branches to guide the selection process.
Additionally, Thompson sampling has been deployed to fine-
tune the mutator distribution. Well-known optimization
algorithms, such as particle swarm and ant colony optimization
have been utilized. These algorithms have been implemented to
compute different probabilities and give a higher probability to
the mutation operators that generate better-mutated input to
detect anomalies and find more bugs.

Several mutation strategies have been followed to enhance
the effectiveness of fuzzer tools in terms of finding more
vulnerabilities by executing rare branches. Domain knowledge
has been used to develop a mutation strategy that generates
semantic-preserved input tests. Additionally, granularity-aware
scheduling has been deployed to assign ratios to different
mutation operations. A hybrid mutation strategy combined
random mutation with a restricted mutation strategy. A
multidimensional feedback mutation maximized execution
counters for all program locations and then generated inputs
that exercised distinct locations in a program. A mutation mask
creation algorithm was applied to produce input, targeting rare
branches in the code. An effector map mechanism has been
employed to approximate metadata and improve both branch
and path coverage. A selection mutation algorithm based on a
partition weight table was applied to further improve the
fuzzying process. Forward dynamic slicing and the
interruptible mutation method were put into service to limit the
mutation to a subset of the input bytes. The grammar-aware-
trim strategy using AST employed this technique to create
valid inputs. Additionally, the equivalence classes-based-
format generation theory has been adopted to learn the format
of valid inputs and guide the random mutation process to
generate valid inputs that execute new paths to detect unique
faults.

C. RQ3: How Optimization Methods Affect the Fuzzing

Process in Terms of Code Coverage and Newly Discovered

Vulnerabilities Compared to the State-of-the-Art AFL?

This section evaluates the studies mentioned based on their
code coverage and newly discovered vulnerabilities. Code
coverage is a measure that describes the degree to which the
source code of a program has been tested. The basic coverage
criteria are function, statement, and edge coverage, where edge
coverage subsumes statement coverage. Software
vulnerabilities cause system crashes, and adversaries could
exploit them to cause serious security problems.

SIVO improved branch coverage by 20% over the best
fuzzer and 180% over the AFL. It found more bugs compared
to other fuzzers in 18 programs and found unique
vulnerabilities in 11 benchmark programs. FairFuzz increased
branch coverage faster than baseline AFL, and increased
coverage by 10.6% in programs with nested condition
structures. TIFF detected bugs much faster than existing
solutions while increasing code coverage. In real-world
applications, TIFF discovered bugs in half the time of state-of-
the-art fuzzers. PerfFuzz generated inputs targeting the most-hit
program branches from 5 to 69 times more than the existing
solutions. Without affecting the running speed, AFLCAI
increased branch coverage by 3.79%, while the new path was
increased by 9.90%. Tuning the mutational operator
distribution generated sets of inputs that yielded significantly
higher code coverage and found more crashes faster and more
reliably than both the baseline AFL and other AFL-based
learning approaches. DeepHunter increased code coverage and
discovered more bugs compared to AFL. JQF discovered 42
unknown bugs in OpenJDK, Apache Commons, and the
Google Closure Compiler. MCMSFuzzer achieved higher code
coverage and demonstrated a high capacity level in detecting
vulnerabilities. VUzzer generated fewer inputs and succeeded
in finding more crashes compared to AFL.

Tuning the mutational operator distribution generates inputs
that lead to higher code coverage and more crashes faster than
AFL and other AFL-based approaches. Mutation selection
based on the partition weight table increases the probability of
triggering anomalies compared to before using the algorithm.
FairFuzz ran on nine different real-world benchmarks and
achieved coverage above the confidence interval of other
techniques. NEUZZ generated mutated inputs faster and
accomplished higher edge coverage compared to the well-
known fuzzers. When applying granularity-aware mutator
scheduling, 12 new bugs and three new vulnerabilities (CVEs)
were discovered. CMFuzz-based fuzzers showed better code
coverage and found more crashes. Using Thompson sampling
and Epsilon-Greedy algorithms in PTfuzz, CMFuzz-PT
outperformed Thompson-PT in terms of unique crashes and
paths. Compared to Greedy-PT, CMFuzz-PT increased the
number of unique crashes and paths by 1.11 and 1.05,
respectively. Superion improved code coverage over AFL by
16.7% in line coverage and 8.8% in function coverage and
detected 31 new bugs. DeepFuzzer took more time to run but
increased path coverage by 24%, branch coverage by 18%, and
the number of unique triggered crashes by 123%. AFLTurbo
discovered more paths than the baseline fuzzer and found 124

Engineering, Technology & Applied Science Research Vol. 14, No. 4, 2024, 14961-14969 14967

www.etasr.com Assiri & Aljahdali: Software Vulnerability Fuzz Testing: A Mutation-Selection Optimization Systematic …

unique bugs, while AFL, AFL-Fast, and FairFuzz only found 8,
4, and 20 bugs, respectively.

Analyzing the previous studies in terms of code coverage
and discovered vulnerabilities exhibited that SIVO, FairFuzz,
TIFF, AFLCAI, MCMSFuzzer, DeepHunter, Superion,
NEUZZ, and AFLTurbo improved code coverage and detected
more bugs in the tested programs. In terms of execution time,
TIFF found bugs faster than existing solutions, NEUZZ
generated mutated inputs faster, and MOPT had a shorter
execution time. However, DeepFuzzer took more time to run.
Thus, it can be stated that all the above-mentioned studies
succeeded in increasing code coverage and discovering more
bugs in the tested programs compared to the state-of-the-art
AFL and other existing tools. This confirms the effectiveness
and advantages of optimizing the selected mutation operation
to ameliiorate fuzz testing toward higher code coverage and
spotting more bugs.

VIII. FUTURE WORK

 Many of the existing approaches compared their
performance with that of the state-of-the-art AFL tool.
However, it cannot be concluded which technique is the
best since no control study has applied these approaches to
the same set of data under the same experimental design.
The field will be benefited from a comprehensive
evaluation study that will highlight the best approach.

 A few sets of algorithms, such as evolutionary, neural
networks, particle swarm, and ant colony, were applied to
optimize the selection of mutation operations. However,
different algorithms can be investigated and their
performance can be compared.

 Implementing an open-source library that combines several
optimization algorithms used with AFL will be helpful and
will serve the needs of the industry. Additionally, it will
help researchers carry out more studies in the area and
develop more mature and optimized tools.

 As observed, mutation operators play an important role in
the fuzzing process. However, not much attention has been
paid to the set of selected operators. More studies are
needed to develop more mutation operators and explore
their advantages for the entire fuzzing process.

IX. THREATS TO VALIDITY

One of the main threats to the validity of this study is the
lack of coverage of all related articles. To mitigate this threat,
well-established guidelines were followed to perform the
systematic review [24]. This study was also expanded to cover
well-known libraries and some of the top 10 conferences for
computer security and software engineering. Another threat is
related to the terms utilized in the search process. All possible
terms for mutation-based fuzz testing, such as gray-box and
mutation fuzzing were identified. In some datasets, the criteria
could not be applied due to search engine limitations, so broad
terms, such as "fuzzing," "fuzz," and "fuzzer" were employed
to ensure the efficacy of the search process. To mitigate threats
related to the screening process, inclusion and exclusion
criteria were clearly identified and followed.

X. CONCLUSIONS

Fuzzing is one of the most widely used techniques to
discover software vulnerabilities. The mutation-based fuzzing
approach is one type of fuzzer. AFL selects mutation
operations randomly and ignores the knowledge of mutators
that would lead to interesting inputs. Although mutation
operators are the core of generating inputs, little attention has
been paid to the selection set of operators. As far as is known,
there have been no previous studies that systematically
evaluateed mutation operator selection optimization methods.
Some algorithms have been proposed to improve the fuzzing
process by optimizing the selection of mutation operations.
This investigation demonstrates that all of the previously
mentioned studies are comparable to each other, as all
improved the code coverage of the tested program and
discovered more bugs. However, DeepFuzzer takes more
execution time than the others. In general, most of the proposed
approaches either reduced execution times or maintained a
steady speed. This area can be further improved by focusing on
the set of selected operators and proposing new operators that
could significantly affect the process. In addition, future studies
could investigate different optimization algorithms to optimize
the selection of operations.

REFERENCES

[1] M. N. A. Khan, A. M. Mirza, R. A. Wagan, M. Shahid, and I. Saleem,
"A Literature Review on Software Testing Techniques for Smartphone

Applications," Engineering, Technology & Applied Science Research,
vol. 10, no. 6, pp. 6578–6583, Dec. 2020, https://doi.org/10.48084/

etasr.3844.

[2] W. Alkaberi and F. Assiri, "Predicting the Number of Software Faults

using Deep Learning," Engineering, Technology & Applied Science

Research, vol. 14, no. 2, pp. 13222–13231, Apr. 2024, https://doi.org/

10.48084/etasr.6798.

[3] D. Song et al., "PeriScope: An Effective Probing and Fuzzing
Framework for the Hardware-OS Boundary," in Proceedings 2019

Network and Distributed System Security Symposium, San Diego, CA,
USA, 2019, https://doi.org/10.14722/ndss.2019.23176.

[4] Y. Zheng, A. Davanian, H. Yin, C. Song, H. Zhu, and L. Sun, "FIRM-

AFL: High-Throughput Greybox Fuzzing of IoT Firmware via
Augmented Process Emulation," presented at the 28th USENIX Security

Symposium (USENIX Security 19), Santa Clara, CA, USA, 2019, pp.
1099–1114.

[5] S. Gorbunov and A. Rosenbloom, "AutoFuzz: Automated Network

Protocol Fuzzing Framework," International Journal of Computer

Science and Network Security, vol. 10, no. 8, pp. 239–245, 2010.

[6] X. Zhu, S. Wen, S. Camtepe, and Y. Xiang, "Fuzzing: A Survey for

Roadmap," ACM Computing Surveys, vol. 54, no. 11s, Jun. 2022, Art.
no. 230, https://doi.org/10.1145/3512345.

[7] H. Liang, X. Pei, X. Jia, W. Shen, and J. Zhang, "Fuzzing: State of the

Art," IEEE Transactions on Reliability, vol. 67, no. 3, pp. 1199–1218,
Sep. 2018, https://doi.org/10.1109/TR.2018.2834476.

[8] M. Zalewski, "American Fuzzy Lop: A Security Oriented Fuzzer."
Google, May 18, 2024, [Online]. Available: https://github.com/google/

AFL.

[9] C. Chen, B. Cui, J. Ma, R. Wu, J. Guo, and W. Liu, "A systematic
review of fuzzing techniques," Computers & Security, vol. 75, pp. 118–

137, Jun. 2018, https://doi.org/10.1016/j.cose.2018.02.002.

[10] V. J. M. Manès et al., "The Art, Science, and Engineering of Fuzzing: A
Survey," IEEE Transactions on Software Engineering, vol. 47, no. 11,

pp. 2312–2331, Nov. 2021, https://doi.org/10.1109/TSE.2019.2946563.

[11] J. Li, B. Zhao, and C. Zhang, "Fuzzing: a survey," Cybersecurity, vol. 1,
no. 1, Jun. 2018, Art. no. 6, https://doi.org/10.1186/s42400-018-0002-y.

Engineering, Technology & Applied Science Research Vol. 14, No. 4, 2024, 14961-14969 14968

www.etasr.com Assiri & Aljahdali: Software Vulnerability Fuzz Testing: A Mutation-Selection Optimization Systematic …

[12] Y. Wang, P. Jia, L. Liu, C. Huang, and Z. Liu, "A systematic review of
fuzzing based on machine learning techniques," PLOS ONE, vol. 15, no.

8, 2020, Art. no. e0237749, https://doi.org/10.1371/journal.pone.
0237749.

[13] C. Zhang, Y. Wang, and L. Wang, "Firmware Fuzzing: The State of the

Art," in Proceedings of the 12th Asia-Pacific Symposium on

Internetware, Singapore, Apr. 2021, pp. 110–115, https://doi.org/

10.1145/3457913.3457934.

[14] K. Dewey, J. Roesch, and B. Hardekopf, "Language fuzzing using
constraint logic programming," in Proceedings of the 29th ACM/IEEE

International Conference on Automated Software Engineering, Vasteras,
Sweden, Jun. 2014, pp. 725–730, https://doi.org/10.1145/2642937.

2642963.

[15] K. Dewey, J. Roesch, and B. Hardekopf, "Fuzzing the Rust Typechecker

Using CLP (T)," in 2015 30th IEEE/ACM International Conference on

Automated Software Engineering (ASE), Lincoln, NE, USA, Aug. 2015,

pp. 482–493, https://doi.org/10.1109/ASE.2015.65.

[16] M. Zalewski, "AFL: American Fuzzy Lop." [Online]. Available:
https://lcamtuf.coredump.cx/afl/.

[17] V. Ganesh, T. Leek, and M. Rinard, "Taint-based directed whitebox

fuzzing," in 2009 IEEE 31st International Conference on Software

Engineering, Vancouver, Canada, May 2009, pp. 474–484,

https://doi.org/10.1109/ICSE.2009.5070546.

[18] C. Cadar, D. Dunbar, and D. Engler, "KLEE: Unassisted and Automatic
Generation of High-Coverage Tests for Complex Systems Programs," in

8th USENIX Symposium on Operating Systems Design and

Implementation, San Diego, CA, USA, Dec. 2008, pp. 209–224.

[19] P. Godefroid, M. Y. Levin, and D. Molnar, "Automated Whitebox Fuzz

Testing," Network and Distributed System Security (NDSS), vol. 8, pp.
151–166, 2008.

[20] D. Aitel, "An Introduction to SPIKE, the Fuzzer Creation Kit."

[21] S. Hocevar, "Zzuf: Application Fuzzer." [Online]. Available:
https://github.com/samhocevar/zzuf.

[22] C. Chen, H. Xu, and B. Cui, "PSOFuzzer: A Target-Oriented Software

Vulnerability Detection Technology Based on Particle Swarm
Optimization," Applied Sciences, vol. 11, no. 3, Jan. 2021, Art. no. 1095,

https://doi.org/10.3390/app11031095.

[23] X. Zhao, H. Qu, W. Lv, S. Li, and J. Xu, "MooFuzz: Many-Objective
Optimization Seed Schedule for Fuzzer," Mathematics, vol. 9, no. 3, Jan.

2021, Art. no. 205, https://doi.org/10.3390/math9030205.

[24] Y. Fu, S. Tong, X. Guo, L. Cheng, Y. Zhang, and D. Feng, "Improving
the Effectiveness of Grey-box Fuzzing By Extracting Program

Information," in 2020 IEEE 19th International Conference on Trust,

Security and Privacy in Computing and Communications (TrustCom),

Guangzhou, China, Dec. 2020, pp. 434–441, https://doi.org/10.1109/
TrustCom50675.2020.00066.

[25] R. Shakya and A. Rahman, "A preliminary taxonomy of techniques used

in software fuzzing," in Proceedings of the 7th Symposium on Hot

Topics in the Science of Security, Jun. 2020, https://doi.org/10.1145/

3384217.3384219.

[26] B. Kitchenham, "Procedures for Performing Systematic Reviews," Keele
University, Technical Report TR/SE-0401, Jul. 2004.

[27] S. Karamcheti, G. Mann, and D. Rosenberg, "Adaptive Grey-Box Fuzz-
Testing with Thompson Sampling," in Proceedings of the 11th ACM

Workshop on Artificial Intelligence and Security, Toronto, Canada, Jan.
2018, pp. 37–47, https://doi.org/10.1145/3270101.3270108.

[28] P. Godefroid, H. Peleg, and R. Singh, "Learn&Fuzz: Machine learning

for input fuzzing," in 2017 32nd IEEE/ACM International Conference

on Automated Software Engineering (ASE), Urbana, IL, USA, Oct.

2017, pp. 50–59, https://doi.org/10.1109/ASE.2017.8115618.

[29] D. She, K. Pei, D. Epstein, J. Yang, B. Ray, and S. Jana, "NEUZZ:
Efficient Fuzzing with Neural Program Smoothing," in 2019 IEEE

Symposium on Security and Privacy (SP), San Francisco, CA, USA,
2019, pp. 803–817, https://doi.org/10.1109/SP.2019.00052.

[30] X. Xie et al., "DeepHunter: a coverage-guided fuzz testing framework

for deep neural networks," in Proceedings of the 28th ACM SIGSOFT

International Symposium on Software Testing and Analysis, Beijing,

China, Apr. 2019, pp. 146–157, https://doi.org/10.1145/3293882.
3330579.

[31] K. Böttinger, P. Godefroid, and R. Singh, "Deep Reinforcement

Fuzzing," in 2018 IEEE Security and Privacy Workshops (SPW), San
Francisco, CA, USA, 2018, pp. 116–122, https://doi.org/10.1109/

SPW.2018.00026.

[32] Z. Zhang, B. Cui, and C. Chen, "Reinforcement Learning-Based Fuzzing
Technology," in Innovative Mobile and Internet Services in Ubiquitous

Computing, 2021, pp. 244–253, https://doi.org/10.1007/978-3-030-
50399-4_24.

[33] H. Xu, B. Cui, and C. Chen, "Fuzzing with Multi-dimensional Control of
Mutation Strategy," in Innovative Mobile and Internet Services in

Ubiquitous Computing, Asan, Korea (South), 2022, pp. 276–284,
https://doi.org/10.1007/978-3-030-79728-7_27.

[34] C. Lyu et al., "MOPT: Optimized Mutation Scheduling for Fuzzers,"

presented at the 28th USENIX Security Symposium (USENIX Security
19), Santa Clara, CA, USA, 2019, pp. 1949–1966.

[35] M. E. Garbelini, C. Wang, and S. Chattopadhyay, "Greyhound: Directed

Greybox Wi-Fi Fuzzing," IEEE Transactions on Dependable and Secure

Computing, vol. 19, no. 2, pp. 817–834, Aug. 2022, https://doi.org/

10.1109/TDSC.2020.3014624.

[36] X. Zhu and M. Böhme, "Regression Greybox Fuzzing," in Proceedings

of the 2021 ACM SIGSAC Conference on Computer and

Communications Security, Aug. 2021, pp. 2169–2182, https://doi.org/
10.1145/3460120.3484596.

[37] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos,

"VUzzer: Application-aware Evolutionary Fuzzing," in NDSS

Symposium 2017, San Diego, CA, USA, Feb. 2017, https://doi.org/

10.14722/ndss.2017.23404.

[38] T. Yue, Y. Tang, B. Yu, P. Wang, and E. Wang, "LearnAFL: Greybox
Fuzzing With Knowledge Enhancement," IEEE Access, vol. 7, pp.

117029–117043, 2019, https://doi.org/10.1109/ACCESS.2019.2936235.

[39] C. Lemieux, R. Padhye, K. Sen, and D. Song, "PerfFuzz: automatically

generating pathological inputs," in Proceedings of the 27th ACM

SIGSOFT International Symposium on Software Testing and Analysis,

Amsterdam, Netherlands, Apr. 2018, pp. 254–265,
https://doi.org/10.1145/3213846.3213874.

[40] L. Sun, X. Li, H. Qu, and X. Zhang, "AFLTurbo: Speed up Path

Discovery for Greybox Fuzzing," in 2020 IEEE 31st International

Symposium on Software Reliability Engineering (ISSRE), Oct. 2020, pp.

81–91, https://doi.org/10.1109/ISSRE5003.2020.00017.

[41] I. Nikolić, R. Mantu, S. Shen, and P. Saxena, "Refined Grey-Box
Fuzzing with Sivo," in Detection of Intrusions and Malware, and

Vulnerability Assessment, 2021, pp. 106–129, https://doi.org/10.1007/
978-3-030-80825-9_6.

[42] J. Deng, X. Zhu, X. Xiao, S. Wen, Q. Li, and S. Xia, "Fuzzing With

Optimized Grammar-Aware Mutation Strategies," IEEE Access, vol. 9,
pp. 95061–95071, 2021, https://doi.org/10.1109/ACCESS.2021.

3093904.

[43] V. T. Pham, M. Böhme, A. E. Santosa, A. R. Căciulescu, and A.
Roychoudhury, "Smart Greybox Fuzzing," IEEE Transactions on

Software Engineering, vol. 47, no. 9, pp. 1980–1997, Sep. 2019,
https://doi.org/10.1109/TSE.2019.2941681.

[44] L. Situ, L. Wang, X. Li, L. Guan, W. Zhang, and P. Liu, "Energy

Distribution Matters in Greybox Fuzzing," in 2019 IEEE/ACM 41st

International Conference on Software Engineering: Companion

Proceedings (ICSE-Companion), Montreal, Canada, May 2019, pp. 270–
271, https://doi.org/10.1109/ICSE-Companion.2019.00109.

[45] C. Lemieux and K. Sen, "FairFuzz: a targeted mutation strategy for
increasing greybox fuzz testing coverage," in Proceedings of the 33rd

ACM/IEEE International Conference on Automated Software

Engineering, Montpellier, France, Jun. 2018, pp. 475–485,

https://doi.org/10.1145/3238147.3238176.

[46] U. Kargén and N. Shahmehri, "Speeding Up Bug Finding using Focused
Fuzzing," in Proceedings of the 13th International Conference on

Availability, Reliability and Security, Hamburg, Germany, May 2018,
pp. 1–10, https://doi.org/10.1145/3230833.3230867.

Engineering, Technology & Applied Science Research Vol. 14, No. 4, 2024, 14961-14969 14969

www.etasr.com Assiri & Aljahdali: Software Vulnerability Fuzz Testing: A Mutation-Selection Optimization Systematic …

[47] Y. Hu, W. Yang, B. Cui, X. Zhou, Z. Mao, and Y. Wang, "Fuzzing
Method Based on Selection Mutation of Partition Weight Table for 5G

Core Network NGAP Protocol," in Innovative Mobile and Internet

Services in Ubiquitous Computing, Asan, Korea (South), 2022, pp. 144–

155, https://doi.org/10.1007/978-3-030-79728-7_15.

[48] P. Chen and H. Chen, "Angora: Efficient Fuzzing by Principled Search,"
in 2018 IEEE Symposium on Security and Privacy (SP), San Francisco,

CA, USA, May 2018, pp. 711–725, https://doi.org/10.1109/SP.2018.
00046.

[49] X. Wang, C. Hu, R. Ma, D. Tian, and J. He, "CMFuzz: context-aware

adaptive mutation for fuzzers," Empirical Software Engineering, vol. 26,
no. 1, Jan. 2021, Art. no. 10, https://doi.org/10.1007/s10664-020-09927-

3.

[50] V. Jain, S. Rawat, C. Giuffrida, and H. Bos, "TIFF: Using Input Type

Inference To Improve Fuzzing," in Proceedings of the 34th Annual

Computer Security Applications Conference, San Juan, PR, USA, Sep.

2018, pp. 505–517, https://doi.org/10.1145/3274694.3274746.

[51] Z. Cai, H. Wang, and X. Qin, "A Heuristic Guided Optimized Strategy
for Non-Deterministic Mutation," in Proceedings of the 3rd

International Conference on Computer Science and Application

Engineering, Sanya, China, Oct. 2019, https://doi.org/10.1145/3331453.

3361295.

[52] R. Padhye, C. Lemieux, and K. Sen, "JQF: coverage-guided property-
based testing in Java," in Proceedings of the 28th ACM SIGSOFT

International Symposium on Software Testing and Analysis, Beijing,
China, Jul. 2019, pp. 398–401, https://doi.org/10.1145/3293882.

3339002.

[53] L. J. Moukahal, M. Zulkernine, and M. Soukup, "Vulnerability-Oriented
Fuzz Testing for Connected Autonomous Vehicle Systems," IEEE

Transactions on Reliability, vol. 70, no. 4, pp. 1422–1437, Oct. 2021,
https://doi.org/10.1109/TR.2021.3112538.

[54] J. Liang et al., "DeepFuzzer: Accelerated Deep Greybox Fuzzing," IEEE

Transactions on Dependable and Secure Computing, vol. 18, no. 6, pp.
2675–2688, Aug. 2021, https://doi.org/10.1109/TDSC.2019.2961339.

[55] J. Wang, B. Chen, L. Wei, and Y. Liu, "Superion: Grammar-Aware

Greybox Fuzzing," in 2019 IEEE/ACM 41st International Conference on

Software Engineering (ICSE), Montreal, Canada, May 2019, pp. 724–

735, https://doi.org/10.1109/ICSE.2019.00081.

AUTHORS PROFILE

Fatmah Assiri is an associate professor in Software Engineering with a

history of working in leading positions. He specializes in software quality and
has experience with data and machine learning. Served as a consultant for the

Entrepreneurship and Innovation Center of the University of Jeddah.
Participated as a mentor and judge at local and international events and was

invited speaker at many other events.

Asia Aljahdali is an associate professor in the Cybersecurity Department of
the University of Jeddah. She received her Ph.D. in computer science from

Florida State University in 2017 and an M.Sc. degree in information security
in 2013. She has worked at King Abdul-Aziz University as an assistant

professor. In 2020, in addition to her academic work, she worked as a
cybersecurity consultant for the Cybersecurity Administration at Jeddah

University. Her current research interests include data hiding, software
security, IoT security, and malware analysis.

