
Engineering, Technology & Applied Science Research Vol. 14, No. 4, 2024, 14961-14969 14961  
 

www.etasr.com Assiri & Aljahdali: Software Vulnerability Fuzz Testing: A Mutation-Selection Optimization Systematic … 

 

Software Vulnerability Fuzz Testing: A 

Mutation-Selection Optimization Systematic 

Review 
 

Fatmah Yousef Assiri 

Software Engineering Department, College of Computer Science and Engineering, University of Jeddah, 

Saudi Arabia 

fyassiri@uj.edu.sa  

 

Asia Othman Aljahdali 

Cybersecurity Department, College of Computer Sciences and Engineering, University of Jeddah, Saudi 

Arabia 

aoaljahdali@uj.edu.sa (corresponding author) 

Received: 14 April 2024 | Revised: 6 May 2024 | Accepted: 14 May 2024 

Licensed under a CC-BY 4.0 license | Copyright (c) by the authors | DOI: https://doi.org/10.48084/etasr.6971 

ABSTRACT 

As software vulnerabilities can cause cybersecurity threats and have severe consequences, it is necessary to 
develop effective techniques to discover such vulnerabilities. Fuzzing is one of the most widely employed 

approaches that has been adapted for software testing. The mutation-based fuzzing approach is currently 

the most popular. The state-of-the-art American Fuzzy Lop (AFL) selects mutations randomly and lacks 

knowledge of mutation operations that are more helpful in a particular stage. This study performs a 

systematic review to identify and analyze existing approaches that optimize the selection of mutation 

operations. The main contributions of this work are to draw attention to the importance of mutation 

operator selection, identify optimization algorithms for mutation operator selection, and investigate their 

impact on fuzzing testing in terms of code coverage and finding new vulnerabilities. The investigation 

shows the effectiveness and advantages of optimizing the selection of mutation operations to achieve higher 
code coverage and find more vulnerabilities. 

Keywords-software testing; software security; fuzz testing; vulnerabilities; mutation operator selection 

I. INTRODUCTION  

Nowadays, many software developers depend on open-
source libraries when implementing software. Software 
vulnerabilities in such libraries can cause cybersecurity threats 
and have severe consequences [1]. The software testing phase 
requires considerable time, effort, and cost, particularly when 
there are many faults [2]. Therefore, there is a need to develop 
effective techniques to discover software security flows. 
Fuzzing is one of the most popular methods that has been 
adapted for software testing, such as kernel testing [3], 
firmware testing [4], and protocol fuzzing [5]. Fuzz testing is 
an automated software testing approach used to generate 
random data called "fuzz" that is used as a test case to discover 
vulnerabilities in the software under testing. Figure 1 illustrates 
the general fuzzing process, which consists of three main 
components: the test case generator, the executor, and the 
monitor. The generator is responsible for generating a new test 
case and providing the executor with new inputs. The executor 
runs the target programs utilizing these inputs. The monitor 
component tracks the execution to detect new defects or 
crashes. The objective of any fuzzer is to discover software 

defects [6]. The monitor collects specific run-time information, 
such as path coverage information, and passes it to the 
generator to guide its test-case generation process. When the 
target program crashes or reports errors, the bug detector 
module collects and analyzes related information to decide 
whether a bug exists. Eventually, vulnerabilities are filtered 
from all reported bugs through a bug filter [7]. 

There are general systematic reviews of fuzz testing, 
focusing on unifying the process and identifying gaps and 
solutions [7, 8 9, 10]. Other reviews shed light on studies that 
apply machine learning algorithms [11, 12], and some studies 
aimed to review fuzz testing on IoT firmware [13]. This work 
is a novel systematic review that focuses on optimization 
methods for mutation operator selection in mutation-based 
fuzzing, covering the period between 2017 and 2022. The main 
contributions of this paper are: 

 Draw attention to the importance of mutation operator 
selection in fuzzing testing. 

 Identify optimization algorithms for mutation operator 
selection in mutation-based fuzzing.  
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 Investigate the impact of optimization algorithms on fuzz 
testing in terms of code coverage and finding new 
vulnerabilities compared to the state-of-the-art AFL. 

 Recommend potential future work. 

 

 
Fig. 1.  Fuzzing process. 

II. BACKGROUND 

A. Fuzz Testing Types 

Concerning input generation, fuzzing can be divided into 
generation-based and mutation-based. Generation-based 
fuzzing creates the test case from scratch and requires 
knowledge of the specifications that describe the file format or 
the network protocol. This category encompasses several 
works, including the use of constraint logic programming [14, 
15]. Mutation-based fuzzing starts with a seed set (corpus) as a 
baseline and then mutates existing inputs to obtain new test 
cases. The seed is mutated utilizing mutation operations, 
including bit flip, byte flip, arithmetic increments, decrements 
of integers, etc. Examples of such fuzzers are AFL [16] and 
BuzzFuzz [17]. One of the advantages of mutation-based 
fuzzing is that it does not require knowledge of the software or 
protocol under testing. Thus, it is easier to start and widely 
employed. There are three main types of fuzzing depending on 
the use of the program source code: white-box, gray-box, and 
black-box. White-box fuzzers generate test cases by analyzing 
the internal program specifications and its execution. It utilizes 
the symbolic execution technique to enumerate interesting 
program paths using program analysis. Existing white-box 
fuzzing tools include KLEE [18] and SAGE [19]. Gray-box 
fuzzers produce seed input by obtaining some information 
about the internal specification code of the program under test 
and its executions through lightweight static analysis and 
dynamic information to gather information such as code 
coverage. Seeds are then mutated to generate new test case 
inputs. Generated test case inputs that cover new control 
locations are added to the seed corpus. Thus, code coverage is 
increased. Examples of such fuzzers include AFL, LibFuzzer, 
and Honggfuzz. Black-box fuzzing generates inputs without 
any knowledge of the program under test but observes its 
input/output. It is also called "data-driven" testing. Many 
fuzzers fall into this category, including [20, 21]. Table I shows 
examples of each fuzzing type. 

TABLE I.  EXAMPLES OF WHITE-BOX, GRAY-BOX, AND 
BLACK-BOX FUZZING 

Fuzz tones White-box Gray-box Black-box 

Generation-

based 

Spike, Sulley, 

Peach 
  

Mutation-

based 
Miller 

AFL, Driller, Vuzzer, 

TaintScope, Mayhem 
SAGE, Libfuzzer 

 

B. Fuzz Testing and Optimization 

There are two methods to optimize fuzz testing: seed 
selection and mutation selection. Seeds are the inputs to the 
fuzzer that are deployed to create inputs to test the Software 
Under Test (SUT). Seeds are valid inputs in the space of inputs 
for SUT. An unlimited number of seeds can be used. However, 
the best seeds are those that generate test inputs and provide 
better code coverage, thus detecting system vulnerabilities. As 
selecting seeds can be a tedious process, optimization 
algorithms are applied to select seeds that lead to better test 
inputs. Particle Swarm Optimization (PSO) has been employed 
to improve seed selections in target-oriented fuzzing by 
computing the distance between the executed block and the 
target block where the suspected vulnerable point is located 
[22]. Control flow and function call graphs are statistically 
generated to compute the distance. Then, PSO and the format 
of all created inputs are changed to generate better inputs that 
are closer to the target point. This approach generates more 
inputs that reach the target point. 

In [23], a multi-objective optimization model, MooFuzz, 
was developed to select the optimal seed set applying a non-
dominated sorting algorithm. The main components of 
MooFuzz are the static analyzer, feedback collector, seed 
scheduler, and power scheduler. Static analyzers mark 
suspected locations and collect risk information, such as path 
risk and path frequency. Then, the feedback collector adjusts 
seed risk values to guide the seed scheduler, which uses the 
optimization model to prioritize seeds. Finally, the power 
scheduler assigns energy to seeds based on feedback 
information. A high-quality seed is more likely to be mutated 
and should be given more energy. Seed selection has been 
improved using heuristics to generate seeds that lead to valid 
test inputs to detect problems in newly visited regions [24]. The 
first heuristic collects both coverage information and execution 
information, and the second heuristic creates a string dictionary 
consisting of string constants that guide the fuzzer to create 
valid inputs. The performance of this approach is competitive 
with that of other fuzzers in terms of bug detection. On the 
other hand, mutation-selection optimization efficiently selects 
mutation operators by applying optimization algorithms. 
Mutation operations are implemented by the fuzzer to change 
the seeds to generate test cases that can detect anomalies in the 
system. This study investigates the effectiveness of mutation 
operation optimization methods to improve the fuzzing 
process. 

III. RELATED WORKS 

This study searched for secondary studies (reviews) that 
focused on mutation operation selection optimizations. Review 
papers concentrating on fuzz testing in general, such as [7, 9, 
10, 12, 25], were excluded. Related papers should cover 
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methods and techniques to improve the selection of mutation 
operators in fuzz testing. Search engines were engaged, adding 
the terms "survey" or "review" to the search terms. There were 
no systematic review papers found on the selected topic. 

IV. METHOD 

This systematic literature review is based on well-
established guidelines for conducting systematic reviews [26]. 
The process started by identifying and evaluating secondary 
studies that discuss the topic of mutation-selection 
optimizations for fuzz testing. Then, related surveys were 
analyzed to identify gaps and limitations. Based on the 
identified research gap, a set of research questions was 
developed to serve as the objectives of the review. The search 
engines and online libraries used to locate the relevant primary 
studies were identified and then a set of queries was defined to 
perform the search and the backward snowballing process was 
followed in the study identification process. Furthermore, 
inclusion and exclusion criteria as well as the quality 
assessment criteria used were defined for the primary studies. 

V. RESEARCH QUESTIONS 

The Research Questions (RQs) for this review were as 
follows:  

 RQ1: What mutation operations are applied in studies of 
gray-box fuzzing optimization?  

 RQ2: What techniques are utilized to optimize mutation 
operation selection? 

 RQ3: How optimization methods affect the fuzzing process 
in terms of code coverage and newly discovered 
vulnerabilities compared to the state-of-the-art AFL? 

VI. RESEARCH METHODOLOGY 

The search involved research articles published between 
2017 and 2022 in well-known libraries and top conferences. 
Then, a set of criteria was developed to include and exclude 
research articles. Data were selected based on title and abstract 
screening and then based on full-text screening. Finally, data 
were extracted from all relevant articles. 

A. Source Material and Search Strategy 

Well-known libraries and some of the top 10 conferences 
for computer security and software engineering were examined 
to identify eligible studies. The data sources were: IEEE 
Xplore, ACM Digital Library, Springer Link, Security 
Symposium (USENIX), International Conference on Software 
Engineering (ICSE), European Symposium on Research in 
Computer Security (ESORICS), ACM ASIA Conference on 
Computer and Communications Security (ASIACCS), IEEE 
Symposium on Security and Privacy (IEEE S&P), International 
Symposium on Software Testing and Analysis (ISSTA), and 
the International Conference on Software Testing, Verification, 
and Validation (ICST). Furthermore, references to candidate 
studies were reviewed for any other articles that may be 
missed. To perform the search, the respective search engines 
and online libraries were queried by combining key search 
terms using the Boolean expression "and" and incorporating 

other synonyms utilizing "or". The following search terms were 
put into service for the identification of primary studies:  

 Fuzzing AND optimization, gray box fuzzing AND 
optimization, mutation fuzzing AND optimization  

 (Mutation OR gray box) AND optimization  

  (Mutation fuzzing OR Gray-box fuzzing) AND 
(optimization OR optimizing) 

 Mutation fuzzing AND (assessment OR assessing) OR 
(evaluation OR evaluating) 

 Software fuzzing AND optimization, software fuzzing 
AND mutation 

 Software fuzzing AND mutation AND (assessment OR 
assessing) OR (evaluation OR evaluating).  

As search capability limitations in some engines did not 
allow to follow the criteria, the terms "fuzzing," "fuzz," and 
"Fuzzer" were used. 

B. Inclusion and Exclusion Criteria 

The application of a set of inclusion and exclusion criteria 
is critical to filter related studies and keep the research focused 
on its main objectives. As this study focuses on optimizing 
mutation selection in fuzz testing, the following criteria were 
defined for inclusion: 

 Studies that focus on the evaluation of mutation-based 
fuzzy selection 

 Studies that use mutation-based fuzzing 

 Studies applying optimization methods for better mutation 
selection 

 Peer-reviewed articles published between 2017 and 2022. 

The exclusion criteria were: 

 Studies on fuzzing approaches that did not use mutation-
based fuzzing (e.g., generation-based fuzzing) 

 Studies that focused on seed selection optimization 

 Studies with a primary focus on the points mentioned in the 
inclusion criteria but not yet published in a scientific 
conference proceeding or a journal. 

C. Study Selection 

After collection, the list of papers was finalized by 
removing duplicates. Each paper's title, abstract, and 
introduction were then screened to determine their suitability as 
primary or secondary papers following the criteria. Due to the 
use of different terminology, it was difficult to decide whether 
to entail each paper. Thus, the introduction and the proposed 
approach section were screened. Finally, 105 papers were 
involved, 88 of which were primary papers. Figure 2 portrays 
their distribution per year and source. 
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Fig. 2.  Distribution of search results per data source. 

D. Data Extraction and Quality Assessment 

Data were extracted from the selected papers through full-
text screening based on the research questions. For each paper, 
information on the mutation operators, optimization 
algorithms, dataset used, and evaluation results was collected in 
terms of coverage and finding new vulnerabilities. 

VII. RESULTS AND DISCUSSION 

Of the 88 primary papers, 56 were excluded. Eight of them 
could not be accessed through the selected institution, and the 
rest were outside the scope of this study. The selected articles 
were summarized based on the optimization method depicted 
in Figure 3. 

The first group encompassed machine learning, deep 
learning, and reinforcement learning algorithms to optimize the 
selection of mutation operations. The study in [27] extends 
AFL by learning the probability distribution of its mutation 
operators on a program-by-program basis. In general, AFL 
randomly selects the operators to generate new inputs. The 
distribution of the sampling mutation operators was calculated 
using training programs, which significantly improved AFL 
performance. Additionally, Thompson sampling was applied, 
which is a bandit-based optimization approach that fine-tunes 
the mutator distribution. In [28], a neural network was applied 
to guide the selection of a position in the file whose value 
should be replaced by another random value. This approach 
found bugs in the PDF parser that were not detected before and 
covered more instructions than other random approaches. 
However, it also missed more instructions. In [29], a neural 
network was also deployed to develop an optimizing fuzzing 
process called NEUZZ, which learns the behavior of the 
program branching. Then, a gradient-guided optimization 
technique was developed to determine the bytes with the 
highest gradient values to mutate them, creating mutated inputs 
that detect more bugs of different types compared to other well-
known fuzzers. DeepHunter is another fuzz-testing framework 
that employs deep neural networks [30]. The idea is to use a 
metamorphic mutation strategy to generate valid inputs with 
the same semantics as the original seed. It depends on domain 
knowledge to develop a mutation strategy that allows for 
generating semantic-preserved tests with few false positives. 
Fuzz testing was also addressed as a reinforcement problem 
adopting the Markov decision process to select mutation 
operators that improve a defined reward value to maximize 

code coverage and/or processing time [31-33]. MCMSFuzzer 
[33] optimizes the selection of mutation location, mutation 
intensity, and mutation algorithm. 

 

 
Fig. 3.  The taxonomy of fuzz testing. 

The second group applied optimization algorithms, such as 
particle swarm and ant colony optimizations, to further 
optimize the selection. MOpt is an optimized mutation 
selection strategy that applies PSO to find mutation operators 
that will maximize the effectiveness of fuzzers in terms of 
discovering vulnerabilities and execution time [34]. It was 
implemented on top of a well-known fuzzer, discovering more 
crashes, some of them being unique. PSO was also put into 
service for fuzzing Wi-Fi devices [35], providing a higher 
probability of mutation operators to maximize a cost function. 
Some fuzzing techniques focus on a recently changed code, as 
it was observed that such a code has more problems than the 
old code [36]. Ant colony optimization was applied at the byte 
level to assign higher probabilities to the code with higher 
impact to generate better-mutated inputs.  

Feedback approaches, such as evolutionary algorithms, 
have been applied to optimize mutation operation selection. 
VUzzer is an evolutionary fuzzer that creates a feedback loop 
based on the control and data flow features of previous 
executions to determine where and how to mutate the input to 
create new/better inputs [37]. It deploys crossover to generate 
new inputs from the initial seeds and then mutate the input 
bytes. Knowledge-based evolutionary algorithms were 
developed to generate mutated inputs to detect more 
vulnerabilities. LearnAFL [38] is based on the equivalence 
class-based format generation theory, which learns the format 
of valid inputs and guides the random mutation process to 
create valid inputs that can execute new deep paths and 
successfully detect more unique faults. PerfFuzz [39] employs 
multidimensional feedback to produce inputs that exercise 
distinct locations in a program with a longer execution path, 
and it was implemented on top of AFL. To speed up the 
process and discover more paths, an interruptible mutation 



Engineering, Technology & Applied Science Research Vol. 14, No. 4, 2024, 14961-14969 14965  
 

www.etasr.com Assiri & Aljahdali: Software Vulnerability Fuzz Testing: A Mutation-Selection Optimization Systematic … 

 

method was followed in [40], which monitors the mutation 
input execution status and mutates those that execute more 
paths. A locality method was also proposed to determine the 
mutations that cause a significant change. 

The SIVO fuzzer [41] uses parameterization and 
optimization engines, which dynamically select among 
different strategies to optimize their parameters for the target 
program based on the observed coverage. In [42], power 
scheduling was proposed to prioritize mutations, performing 
AST at the node level to identify nodes that help with bug 
detection. Mutation operators change the AST by replacing 
subtrees and combining bit-flip arithmetic mutations. An 
energy value is assigned to each node reflecting its rarity and 
influence, guiding the fuzzer to the most important mutations. 
In [43], a validity-based power scheduling technique was 
developed to assign higher energy to valid inputs, which 
doubled the energy for inputs with a validity of 50% and more. 
Granularity-aware mutator scheduling was proposed in [44]. 
This approach works by dynamically assigning ratios to 
different mutation operators, implemented in the AFL. It 
overcomes the limitations of AFL, which randomly selects 
mutators and deterministically specifies the number of each 
mutator, lacking the knowledge of mutators that are more 
helpful at a particular stage. 

FairFuzz [45] implements a mutation mask strategy that 
optimizes mutation operation selection to reach locations that 
were not previously executed. It starts by selecting inputs that 
execute rare locations. Then, to generate mutated input, the 
mask strategy applies three mutation operators to a specified 
position. The byte position is selected from a pool of positions 
that will execute target locations. This strategy increased the 
percentage of mutated inputs that cover the target location. In 
[46], a mutation fuzzer was proposed that utilized forward 
dynamic slicing to identify program instructions influenced by 
a particular input byte. This information is employed to limit 
the mutation to only a subset of input bytes. The evaluation 
indicated that focused AFL improved bug discovery compared 
to vanilla AFL. In [47], a selection mutation algorithm was 
suggested based on a partition weight table to improve the 
fuzzing process to detect security issues in the NGAP protocol 
of the core 5G network. This approach calculates the 
probability of triggering anomalies in the target network before 
and after applying the proposed algorithms. The calculation 
demonstrates an increase in the probability of discovering 
anomalies. In [48], a new fuzzer was proposed to increase 
branch coverage based on context that explores different 
internal states. CMFuzz [49] is another context-aware adaptive 
mutation scheme that employs a contextual bandit algorithm 
(LinUCB) to select optimal mutation operators for various seed 
files. CMFuzz accomplishes this by dynamically extracting and 
encoding file characteristics, allowing mutation-based fuzzers 
to perform context-aware mutations. This study implemented 
CMFuzz on top of several fuzzers, including PTfuzz, AFL, and 
AFLFast, called CMFuzz-PT, CMFuzz-AFL, and CMFuzz-
AFLFast, respectively. 

Other approaches recommended the optimization of 
mutation selection. The TIFF prioritized mutation [50] infers 
the type of input by tagging each offset with a basic type. 

Types are inferred by identifying the data structure and 
performing a dynamic taint analysis, which produces high-
quality inputs to discover memory-corruption bugs. In [51], a 
gray-box fuzzing approach (AFLCAI), which applied an 
optimization strategy for nondeterministic mutation, was 
introduced . AFLCAI uses an effector map mechanism to 
approximate metadata and improve code coverage through 
heuristic-guided mutation. JQF [52] is a Java platform to 
perform gray-box fuzz testing. In this approach, practitioners 
write QuickCheck-style test methods with formal parameters. 
JQF tests the bytecode of the target program using inputs 
generated in a coverage-guided fuzzing loop. Fuzz testing has 
been deployed to improve the security of autonomous vehicle 
systems. In [53], VulFuzz was presented, which is a fuzz 
testing framework that applies a weighting method to prioritize 
fuzz testing to the most vulnerable components engaging 
vulnerability metrics. As demonstrated in some studies, there 
are several advantages to the randomness of mutation 
selections. However, random strategies can damage the initial 
seeds. In [54], a hybrid mutation strategy was proposed that 
combined the random mutation strategy with a restricted 
mutation strategy. The restricted strategy applies to seeds that 
cover rare locations and the random strategy applies to other 
seeds. As a result, more branches are covered, leading to more 
crashes.  

A. RQ1: What Mutation Operations are Applied in Studies of 

Gray-Box Fuzzing Optimization? 

Mutation operators are one of the main components of fuzz 
testing. However, little attention has been paid to the group of 
selected operators. The literature review showed that mutation 
operators were not the focus of most studies, as operators were 
not mentioned at all in some studies. On the other hand, other 
studies built their approaches based on the state-of-the-art tool 
AFL, which consists of 11 operators including, but not limited 
to, byte flipping, inserting, deleting, replacing, and arithmetic 
increment and decrement. Several approaches are used to 
mutate seeds, including bit flipping, arithmetic mutation, and 
block-based mutation. Some fuzzers flip a fixed number of bits, 
while others randomly decide the number of bits to flip. 
Additionally, some fuzzers calculate the mutation ratio to 
determine the number of bit positions to flip. AFL contains 
another mutation by performing arithmetic mutation on a 
selected byte sequence from the seed, and the result is used to 
replace the selected byte sequence. As an illustration, AFL 
chooses a 4-byte value from a seed and considers it an integer 
�, then replaces the value in the seed with � ± �, where � is a 
random integer such that 0 ≤ � < 35. Block-based mutation 
methodology works by inserting, deleting, replacing, or 
randomly permuting a randomly generated block into a random 
position of a seed [10]. 

However, some fuzz tests, such as AFL, are context-
insensitive. In [48], some other approaches applied fuzzing to 
the AST. Thus, mutation operators that mutate the AST by 
inserting and replacing subtrees were applied, and other fuzzers 
added new operators that rearranged bytes [55]. In summary, 
most of the existing research focused on inserting, deleting, and 
replacing bytes or sequences of bytes by selecting random 
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values within a specified range. Table II summarizes the 
primary studies in terms of the optimization approach. 

TABLE II.  SUMMARY OF PRIMARY STUDIES.  

Approach References  

ML and DL ML [27], ANNs [28–30], Reinforcement [31–33] 

Optimizer PSO [34, 35], ACO [36] 

Feedback 
Evolutionary algorithm [37, 38], Multidimensional 

feedback [39], Parameter optimization [40, 41] 

Scheduler 
Power scheduling [42], Validity-based power scheduling 

[43], Granularity-aware scheduling [44] 

Masking Mask strategy [45] 

Slicing Forward dynamic slicing [46], Partition weight [47] 

Context-aware Context-aware [48], Contextual bandit algorithm [49] 

Other 

Heuristic mutation [51], Quick check test [52], 

Vulnerability metrics [53], Input type inference using 

dynamic taint analysis [50], Hybrid mutation [54] 

 

B. RQ2: What Techniques are Utilized to Optimize Mutation 

Operation Selection? 

A few studies have employed neural networks and Markov 
decision processes to guide the selection of mutation operations 
with better coverage and to detect more bugs. A neural network 
has been used to learn the probability distribution and behavior 
of the program branches to guide the selection process. 
Additionally, Thompson sampling has been deployed to fine-
tune the mutator distribution. Well-known optimization 
algorithms, such as particle swarm and ant colony optimization 
have been utilized. These algorithms have been implemented to 
compute different probabilities and give a higher probability to 
the mutation operators that generate better-mutated input to 
detect anomalies and find more bugs. 

Several mutation strategies have been followed to enhance 
the effectiveness of fuzzer tools in terms of finding more 
vulnerabilities by executing rare branches. Domain knowledge 
has been used to develop a mutation strategy that generates 
semantic-preserved input tests. Additionally, granularity-aware 
scheduling has been deployed to assign ratios to different 
mutation operations. A hybrid mutation strategy combined 
random mutation with a restricted mutation strategy. A 
multidimensional feedback mutation maximized execution 
counters for all program locations and then generated inputs 
that exercised distinct locations in a program. A mutation mask 
creation algorithm was applied to produce input, targeting rare 
branches in the code. An effector map mechanism has been 
employed to approximate metadata and improve both branch 
and path coverage. A selection mutation algorithm based on a 
partition weight table was applied to further improve the 
fuzzying process. Forward dynamic slicing and the 
interruptible mutation method were put into service to limit the 
mutation to a subset of the input bytes. The grammar-aware-
trim strategy using AST employed this technique to create 
valid inputs. Additionally, the equivalence classes-based-
format generation theory has been adopted to learn the format 
of valid inputs and guide the random mutation process to 
generate valid inputs that execute new paths to detect unique 
faults. 

C. RQ3: How Optimization Methods Affect the Fuzzing 

Process in Terms of Code Coverage and Newly Discovered 

Vulnerabilities Compared to the State-of-the-Art AFL? 

This section evaluates the studies mentioned based on their 
code coverage and newly discovered vulnerabilities. Code 
coverage is a measure that describes the degree to which the 
source code of a program has been tested. The basic coverage 
criteria are function, statement, and edge coverage, where edge 
coverage subsumes statement coverage. Software 
vulnerabilities cause system crashes, and adversaries could 
exploit them to cause serious security problems.  

SIVO improved branch coverage by 20% over the best 
fuzzer and 180% over the AFL. It found more bugs compared 
to other fuzzers in 18 programs and found unique 
vulnerabilities in 11 benchmark programs. FairFuzz increased 
branch coverage faster than baseline AFL, and increased 
coverage by 10.6% in programs with nested condition 
structures. TIFF detected bugs much faster than existing 
solutions while increasing code coverage. In real-world 
applications, TIFF discovered bugs in half the time of state-of-
the-art fuzzers. PerfFuzz generated inputs targeting the most-hit 
program branches from 5 to 69 times more than the existing 
solutions. Without affecting the running speed, AFLCAI 
increased branch coverage by 3.79%, while the new path was 
increased by 9.90%. Tuning the mutational operator 
distribution generated sets of inputs that yielded significantly 
higher code coverage and found more crashes faster and more 
reliably than both the baseline AFL and other AFL-based 
learning approaches. DeepHunter increased code coverage and 
discovered more bugs compared to AFL. JQF discovered 42 
unknown bugs in OpenJDK, Apache Commons, and the 
Google Closure Compiler. MCMSFuzzer achieved higher code 
coverage and demonstrated a high capacity level in detecting 
vulnerabilities. VUzzer generated fewer inputs and succeeded 
in finding more crashes compared to AFL. 

Tuning the mutational operator distribution generates inputs 
that lead to higher code coverage and more crashes faster than 
AFL and other AFL-based approaches. Mutation selection 
based on the partition weight table increases the probability of 
triggering anomalies compared to before using the algorithm. 
FairFuzz ran on nine different real-world benchmarks and 
achieved coverage above the confidence interval of other 
techniques. NEUZZ generated mutated inputs faster and 
accomplished higher edge coverage compared to the well-
known fuzzers. When applying granularity-aware mutator 
scheduling, 12 new bugs and three new vulnerabilities (CVEs) 
were discovered. CMFuzz-based fuzzers showed better code 
coverage and found more crashes. Using Thompson sampling 
and Epsilon-Greedy algorithms in PTfuzz, CMFuzz-PT 
outperformed Thompson-PT in terms of unique crashes and 
paths. Compared to Greedy-PT, CMFuzz-PT increased the 
number of unique crashes and paths by 1.11 and 1.05, 
respectively. Superion improved code coverage over AFL by 
16.7% in line coverage and 8.8% in function coverage and 
detected 31 new bugs. DeepFuzzer took more time to run but 
increased path coverage by 24%, branch coverage by 18%, and 
the number of unique triggered crashes by 123%. AFLTurbo 
discovered more paths than the baseline fuzzer and found 124 
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unique bugs, while AFL, AFL-Fast, and FairFuzz only found 8, 
4, and 20 bugs, respectively. 

Analyzing the previous studies in terms of code coverage 
and discovered vulnerabilities exhibited that SIVO, FairFuzz, 
TIFF, AFLCAI, MCMSFuzzer, DeepHunter, Superion, 
NEUZZ, and AFLTurbo improved code coverage and detected 
more bugs in the tested programs. In terms of execution time, 
TIFF found bugs faster than existing solutions, NEUZZ 
generated mutated inputs faster, and MOPT had a shorter 
execution time. However, DeepFuzzer took more time to run. 
Thus, it can be stated that all the above-mentioned studies 
succeeded in increasing code coverage and discovering more 
bugs in the tested programs compared to the state-of-the-art 
AFL and other existing tools. This confirms the effectiveness 
and advantages of optimizing the selected mutation operation 
to ameliiorate fuzz testing toward higher code coverage and 
spotting more bugs. 

VIII. FUTURE WORK 

 Many of the existing approaches compared their 
performance with that of the state-of-the-art AFL tool. 
However, it cannot be concluded which technique is the 
best since no control study has applied these approaches to 
the same set of data under the same experimental design. 
The field will be benefited from a comprehensive 
evaluation study that will highlight the best approach.  

 A few sets of algorithms, such as evolutionary, neural 
networks, particle swarm, and ant colony, were applied to 
optimize the selection of mutation operations. However, 
different algorithms can be investigated and their 
performance can be compared. 

 Implementing an open-source library that combines several 
optimization algorithms used with AFL will be helpful and 
will serve the needs of the industry. Additionally, it will 
help researchers carry out more studies in the area and 
develop more mature and optimized tools. 

 As observed, mutation operators play an important role in 
the fuzzing process. However, not much attention has been 
paid to the set of selected operators. More studies are 
needed to develop more mutation operators and explore 
their advantages for the entire fuzzing process. 

IX. THREATS TO VALIDITY 

One of the main threats to the validity of this study is the 
lack of coverage of all related articles. To mitigate this threat, 
well-established guidelines were followed to perform the 
systematic review [24]. This study was also expanded to cover 
well-known libraries and some of the top 10 conferences for 
computer security and software engineering. Another threat is 
related to the terms utilized in the search process. All possible 
terms for mutation-based fuzz testing, such as gray-box and 
mutation fuzzing were identified. In some datasets, the criteria 
could not be applied due to search engine limitations, so broad 
terms, such as "fuzzing," "fuzz," and "fuzzer" were employed 
to ensure the efficacy of the search process. To mitigate threats 
related to the screening process, inclusion and exclusion 
criteria were clearly identified and followed. 

X. CONCLUSIONS 

Fuzzing is one of the most widely used techniques to 
discover software vulnerabilities. The mutation-based fuzzing 
approach is one type of fuzzer. AFL selects mutation 
operations randomly and ignores the knowledge of mutators 
that would lead to interesting inputs. Although mutation 
operators are the core of generating inputs, little attention has 
been paid to the selection set of operators. As far as is known, 
there have been no previous studies that systematically 
evaluateed mutation operator selection optimization methods. 
Some algorithms have been proposed to improve the fuzzing 
process by optimizing the selection of mutation operations. 
This investigation demonstrates that all of the previously 
mentioned studies are comparable to each other, as all 
improved the code coverage of the tested program and 
discovered more bugs. However, DeepFuzzer takes more 
execution time than the others. In general, most of the proposed 
approaches either reduced execution times or maintained a 
steady speed. This area can be further improved by focusing on 
the set of selected operators and proposing new operators that 
could significantly affect the process. In addition, future studies 
could investigate different optimization algorithms to optimize 
the selection of operations. 
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