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ABSTRACT 

Securing Internet of Things (IoT)-enabled Cyber-Physical Systems (CPSs) can be challenging because 

security solutions intended for typical IT/OT systems may not be as effective in a CPS setting. The goal of 

this study is to create a mechanism for identifying and attributing two-level ensemble attacks that are 

specifically designed for use against Industrial Control Systems (ICSs). An original ensemble deep 

representation learning model is combined with decision tree algorithm to identify assaults on unbalanced 

ICS environments at the first level. An attack attribution network, which constitutes a collection of deep 

neural networks, is formed at the second level. The proposed model is tested using real-world datasets, 

notably those pertaining to water purification and gas pipelines. The results demonstrate that the proposed 

strategy outperforms other strategies with comparable computing complexity and that the recommended 

model outperforms the existing mechanisms. 

Keywords-cyber-attacks; deep learning; threat detection; industrial control system; industrial IoT; cyber-

physical systems  

I. INTRODUCTION  

Cyber-Physical Systems (CPSs) are increasingly fusing 
IoT-connected devices, even in areas of critical infrastructure 
like dams and power plants [1-7]. The Industrial Control 
System (ICS), which is in charge of ensuring that the 
infrastructure is operating efficiently, commonly includes 
connected devices to the Internet of Things (IoT), sometimes 
referred to as Industrial IoT or IIoT in certain contexts. ICSs 
may also refer to Distributed Control Systems (DCSs), 
Programmable Logic Controllers (PLCs), and Modbus 
protocols in addition to Supervisory Control And Data 
Acquisition (SCADA) systems. On the other side, linking 
IoT or ICS to public networks expands their attack surfaces 
and the likelihood that hackers will target them. One famous 

example is the 2010 Stuxnet attack, which reportedly caused 
serious damage to Iranian centrifuges used for nuclear 
enrichment. An assault against Iranian centrifuges happened 
in 2010. Another illustration of this is the Illinois pump 
attack that occurred in 2011 and led to the shutdown of the 
state's water treatment facility.  

Physical behavior analysis and ensuring that system 
operations are always available require system-level security 
solutions. Unlike most IT and OT systems, which normally 
emphasize availability, integrity, and confidentiality, ICS 
security objectives are prioritized in the reverse order. ICS 
attacks have the potential to have detrimental effects. This 
highlights the value of having exceedingly strong security 
and safety processes in place to identify and prevent attacks 
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that target ICSs [8–10]. Attack identification and attribution 
methods based on anomalies and signatures are widely 
utilized. Hybrid-based detection and attribution systems have 
been created to solve the recognized limitations of signature-
based and anomaly-based detection and attribution 
techniques. Hybrid-based approaches are effective at 
identifying anomalous behavior, but they are unreliable since 
they cause distinctive Intrusion Detection System (IDS) 
typologies due to frequent network upgrades. Hybrid-based 
approaches can identify strange conducts well, but are 
unreliable. Traditional methods for the detection and 
attribution of attacks heavily rely on the study of network 
metadata, including things like transmission ports, traffic 
volume, packet intervals, and IP addresses. Recently, there 
has been a revived interest in attack detection and attribution 
techniques based on Deep Neural Networks (DNNs) or 
Machine Learning (ML). Numerous cyber-physical systems 
have been created as a result of the IoT proliferation, 
allowing industrial equipment and IT processes to transmit 
and receive data over the internet [11-13]. These systems 
rely on sensors to detect the condition of equipment and 
report their findings to a centralized server using an internet 
connection. However, these sensors can be vulnerable to 
attacks from malicious actors, leading to false reports being 
sent to the centralized server and incorrect actions being 
taken. In response to this threat, researchers have developed 
algorithms to detect attacks on IoT-enabled CPSs. However, 
the data are usually unbalanced (e.g. normal records are 
usually significantly more than attack records). This 
imbalance can lead to inaccurate predictions and detection 
failures [14-17]. To address this issue, researchers have 
proposed a novel technique that engages an autoencoder and 
DNNs to detect and attribute assaults from the IoT on CPSs 
[18]. The technique consists of two modules. The first one 
involves training an autoencoder on an imbalanced dataset 
and utilizing the extracted features to train a decision tree 
algorithm to predict attack labels. In the second module, a 
DNN is trained on known and unknown attacks to identify 
attack labels or classes [19, 20]. To test the effectiveness of 
this technique, the Secure Water Treatment (SWaT) dataset 
was utilized, which contains IoT request and response 
signatures associated with unique attack labels. The dataset 
includes various types of cyber-attacks, such as command 
injection, water level manipulation, and flow rate tampering 
[21-23]. 

CPSs are made possible by the IoT. However, protecting 
IoT-enabled CPS might be challenging since security 
protocols designed for standard IT/OT systems might not 
work as well in a CPS setting [24-26]. This study aims to 
provide a framework for categorizing and assigning 
responsibility for two-level ensemble attacks created 
specifically for usage in an ICS and designed for CPS. In an 
original ensemble deep learning method to detect attacks on 
unbalanced ICS settings at the first level, a decision tree 
algorithm and a representation learning model are used 
together. At the second level, a group of DNNs called attack 
attribution network is created. Real-world datasets are 
applied to test the suggested model, notably those about 

water purification and gas pipelines. The results demonstrate 
that the proposed model outperforms rivals’ tactics at a 
comparable degree of computer complexity. 

According to the mechanism put out in [1], the increasing 
frequency of cyber-physical system attacks in recent years 
raises questions about the ICS cyber security. The majority 
of the current ICS cyber security efforts are based on 
firewalls, data diodes, and other intrusion prevention 
techniques. However, it is possible that these strategies will 
not be enough to guard against the rising number of cyber 
threats posed by determined attackers. A defense-in-depth-
based cyber-attack detection system is currently being 
developed to raise the level of cyber security provided by 
ICS. Data from the host system, network traffic, and process 
parameter measurements will be used by this system. The 
latter also provides multiple levels of defense in order to buy 
the defenders some crucial extra time before the physical 
system is irreparably harmed. 

The model developed in [2] is based on the Stealthy 
Attack against Redundant Controller Architecture. The 
controller is a crucial component that must be present in an 
Industrial Cyber-Physical System (ICPS) to guarantee 
dependability and stability. Several businesses employ the 
redundant controller architecture technique, including those 
that use DCS, SCADA, and other common ICPSs. Power 
production, chemical industry, water treatment, and other 
crucial industrial processes are under their strict observation 
and control. Given that some mechanical failures are 
unpredictable, redundant controller architecture has been 
created and, to a large part, implemented. This structure, 
which was first recommended for ensuring dependability and 
safety, nevertheless, has the potential to increase the surface 
area vulnerable to cyberattacks. As a result, there is a chance 
that a hostile entity could use its design as a cover for stealth 
strikes. The vulnerability caused by the redundant controller 
design is analyzed, and a combined attack methodology that 
may be utilized covertly against systems that employ the 
redundant controller architecture is provided. 

Electric grids, water networks, and transport systems are 
all important metropolitan infrastructure that is frequently 
the target of cyber-attacks. A method for guaranteeing the 
cyber security of such critical urban infrastructure was 
devised in [4]. The network of linked objects that makes up 
these systems is referred to as the IIoT. An assault on key 
urban infrastructure IIoT would have a profoundly 
detrimental effect on society. SCADA systems are frequently 
used in IIoT control for critical urban infrastructure. 
Although it is vital to comprehend the cyber threat to the 
latter, there is currently no data-driven method for assessing 
the risk that SCADA software poses to IIoT devices. Using 
cosine similarity tests, this paper involves a comparison of 
SCADA systems to other types of control systems and it is 
found that SCADA, as a software subclass, carries particular 
risk characteristics for the IIoT. The widely held belief that 
the SCADA subclass of software is not vulnerable to attack 
is refuted based on the standard vulnerability score system 
risk criteria of exploitability and impact. In order to identify 
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SCADA risk metrics, a variety of statistical models were 
created. These models can be used to calculate the likelihood 
that a SCADA vulnerability will be exploited. Authors in [5] 
describe a method for the identification of data 
abnormalities. A developing trend in conventional industrial 
systems is the integration of the physical and cyber realms. 
The goal of this integration is to increase the adaptability and 
effectiveness of management, control, and supervision. The 
risk of security breaches has increased due to the deep 
integration of ICPSs. An essential component of the overall 
security protection offered is the initial protective barrier that 
attack detection generates. Contrarily, the majority of 
conventional systems focuses primarily on digital 
information and ignores any potential limitations that might 
result from the characteristics of the physical world. This 
study develops a zone partition-based strategy for the 
detection of anomalies in ICPSs. To ensure that important 
system states can be observed in several zones, an automatic 
zone division mechanism is created in the initial step of this 
process. Authors in [7] suggested an intrusion detection 
system similar to that in [6]. ICS relied on "air-gap" security 
measures until recently. As a result, every node of the ICS 
network was physically cut off from the Internet and all other 
networks. Businesses and professionals that use ICS 
networks benefit from connecting them to the internet. The 
protocols employed by ICSs, however, entail extremely few 
or no security measures because these systems were created 
for use in an environment with a high level of air-gapped 
security, which makes them vulnerable to a number of 
attacks. The described approach for detecting intrusions into 
network-attached ICSs employs network telemetry. With the 
aid of simulated PLC units, the newly developed IDS was 
able to distinguish between the machines used by an 
engineer and an attacker on the same network with an 
accuracy rate of 94.3% and between an engineer and an 
attacker on the Internet with a rate of 99.5%. 

The literature review agrees that cyber-physical systems 
are becoming more risky, emphasizing the need for ICS 
cyber security. Most research focuses on redundant 
controller topologies and covert attacks or on SCADA 
systems' IIoT concerns in important urban infrastructures. 
Further research demonstrates that ICPSs' integration of 
cyber and physical realms requires increased anomaly 
detection and that the transition from air-gapped to network-
attached systems demands unique intrusion detection to 
protect against sophisticated cyber-attacks. 

II. THE PROPOSED SYSTEM 

The increasing reliance on IoT-enabled CPSs, including 
operational IT and industrial machinery, has led to a growing 
concern about cyber-attacks targeting these systems. Attack 
detection and attribution in these systems can be challenging 
due to the imbalanced nature of the training data, where one 
class may contain significantly more samples than the other. 
Traditional machine learning algorithms often struggle to 
accurately detect attacks in such imbalanced datasets. This 
research study presents an original deep learning-based 
assault detection and attribution approach using a two-stage 

ensemble methodology that has been specifically created for 
imbalanced ICS data. 

Traditional sampling methods, such as over- and under-
sampling, might be ineffective when dealing with 
imbalanced datasets. In order to enable the DNN to handle 
unbalanced datasets, this research aims to introduce a novel 
deep representation learning approach that does not alter, 
produce, or remove any samples. Although the suggested 
framework has a complex design, the amount of training 
samples required (n) is comparable to that of other known 
DNN-based techniques. To evaluate the proposed 
framework's effectiveness, we used the SWaT dataset, which 
contains IoT request and response signatures associated with 
unique attack labels. The proposed framework demonstrated 
better recall and f-measure in detecting and attributing 
attacks than those exhibited by previous works. 

The proliferation of data volume has increased as a result 
of IoT technologies in CPSs, including industrial machinery 
and operational ITs. These systems use sensors to monitor 
the condition of equipment, which sends data to a centralized 
server using internet connections. However, there is a risk of 
malicious users hacking into these sensors and altering the 
transmitted data, which could result in false actions being 
taken. To address this problem, attack detection algorithms 
have been developed. However, these algorithms frequently 
are faced with imbalanced datasets that may lead to 
inaccurate predictions.  

The first part of the proposed technique involves 
implementing an autoencoder deep learning algorithm to 
extract features from an imbalanced dataset. The autoencoder 
is trained on the dataset, and then the extracted features are 
utilized to train a decision tree algorithm to predict whether 
an attack is labeled as known or unknown. Principal 
Component Analysis (PCA)'s reduced set of features is 
applied to train the decision tree. By using an autoencoder, 
we are able to extract meaningful features from the 
imbalanced dataset, which can then be employed to train a 
more accurate decision tree algorithm. The second 
component of the proposed technique puts into service a 
DNN algorithm to train on both known and unidentified 
threats. The DNN will recognize the attack label or class and 
attribute it if a record includes an attack signature. The 
ability to precisely identify both known and unidentified 
attacks using a DNN is crucial for spotting and avoiding 
cyber-attacks on CPS with IoT support. For the goal of 
locating and determining who is responsible for cyberattacks 
in IoT-enabled CPSs, the proposed technique has several 
advantages over the existing techniques. First, it avoids 
under- or over-sampling methods, which might produce 
incorrect predictions. Second, the proposed method enhances 
the decision tree algorithm's accuracy by employing an 
autoencoder to extract useful features from unbalanced 
datasets. Also, the proposed method utilizes a DNN to 
precisely identify both known and unidentified attacks, 
which is essential for spotting and avoiding cyberattacks in 
IoT-enabled CPSs. For imbalanced ICS data, assault 
detection and attack attribution is conducted adopting a 
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unique two-stage ensemble deep learning approach. An 
autoencoder and a DNN are utilized to accurately detect 
known and unidentified assaults and extract features, 
respectively. The SWaT dataset was used to test the 
suggested method, which performed better than other known 
methods that employed under- or over-sampling strategies. 
The proposed method could be utilized to identify and stop 
cyber-attacks in IoT-enabled CPSs due to its advantages over 
the current techniques. 

 

 

Fig. 1. The proposed architecture. 

A. Algorithm: Two-Stage Ensemble Deep Learning for IoT 
Cyber-Attack Detection and Attribution (2SDL-CA) 

1) Step 1: Data Collection 

Collect data from sensors and define the dataset D as a 
set of records:  

� = ���� , ��	|�� ∈ �, �� ∈ �0,1��  (1) 

where ��  represents a data vector of dimension n and �� 
represents labels (0 for normal, 1 for attack). 

2) Step 2: Data Preprocessing 

Split the dataset D into ������  (normal records) and 
������� (attack records):  

������ = ���� , ��	|��� , ��	 ∈ �, �� = 0�  (2) 

������� = ���� , ��	|��� , ��	 ∈ �, �� = 1�  (3) 

3) Step 3: Autoencoder Feature Extraction 

Utilize an autoencoder deep learning algorithm to extract 
features from the imbalanced dataset D. The autoencoder is 
trained on the dataset, and the extracted features are used as 
���� to train a decision tree: ���� = �� !"#$!%"&��	. 

4) Step 4: Decision Tree Training 

Train a decision tree algorithm (DT) employing the 
reduced features obtained from PCA:  

�'�����	 = (&)*+#% ,∑ ∑ .��/ − 1/23�/45�45 6 (4) 

where ����  contains the reduced features 7�  obtained 
through PCA, n is the number of features, m is the number of 
data points, ��/  is the value of feature i for data point j, and 

1/  is the mean value of feature i for all data points. 

5) Step 5: Decision Tree Prediction 

Use the trained DT to predict whether an attack is known 
or unknown for new data points. 

6) Step 6: Deep Neural Network (DNN) Training 

Train a DNN model (DNN) on both known and unknown 
threats:  

�88��	 = (&)*+#9.∑ :.�� , ;9���	2��45 2 (5) 

where D represents the entire dataset, m is the number of 
data points, θ represents the model parameters, L is the loss 
function, ��  is the true label, and ;9���	 is the predicted label 
for data point i. 

7) Step 7: DNN Prediction 

Use the trained DNN to identify the attack label or class 
and attribute it when a record includes an attack signature. 

8) Step 8: Evaluation and Testing 

Evaluate the proposed method's performance utilizing 
datasets. Performance metrics include precision (P), recall 
(R), F1-score (F1), and accuracy (ACC), which are computed 
based on the true labels �� . F1 is the harmonic mean of P and 
R, providing a balance between the two metrics. 

< = =�
=�>?�     (6) 

� = =�
=�>?@     (7) 

A1 = 3.�.C
�>C      (8) 

�DD = =�>=@
=�>=@>?�>?@    (9) 

where TP (True Positives) represents the number of correctly 
identified attacks, FP (False Positives) represents the number 
of normal instances incorrectly identified as attacks, FN 
(False Negatives) represents the number of actual attacks 
incorrectly classified as normal, and TN (True Negative) 
represents the correctly identified normal instances. The 
DNN Prediction Probability (Ppred) is: 

<E�FG��� = 1	 = H+)*!+%.∑ I/ , ��/ + K/45 2 �10	 

where n is the number of features, I/ symbolizes the weights 

associated with each feature, ��/ represents the j-th feature of 

data point I, b is the bias term, and sigmoid(⋅) is the sigmoid 
activation function. 

DNN Model Loss (L) is defined by: 

:.�� , ;9���	2 = − ,�� log ,<E�FG���	6 + Q�1 −
��	 log ,1 − <E�FG���	6R6    (11) 
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The loss function L measures the dissimilarity between 

true labels ��  and predicted probabilities <E�FG���	 for each 

data point. It is commonly used in binary classification 
problems. These complex formulas help assess the 
performance of the model through various metrics and 
describe the probability prediction generated by the DNN 
during testing. Partially connected components, inspired by 
dropout techniques, introduce random dropout of neurons 
during training. The fully connected layers integrate the 
high-level features extracted by the autoencoder. The output 
��  of a neuron in the fully connected layer is calculated 
adopting the parametric rectified linear unit (PReLU) 
activation function. The mathematical formulation for 
dropout during training is given by: 

��S� = �� ⊙ ,U(HV. 5
5WG��E�S�XYZ[

6  (12) 

U(HV~]"&#!�^^+�1 − %&!_!� ���F	  

�� = <�":`.∑ I�/. �/ + K�/ 2   (13) 

<�":`��	 = *(��0, �	 + (� . *+#�0, �	  (14) 

(�~`#+;!&*�0.01,0.1	  

where ⊙ represents element wise multiplication, I�/ 

represents the weight between the i-th neuron and the j-th 
input, �/  is the j-th input, K�  is the bias term for the i-th 

neuron, and (� is a learnable parameter. 

B. Attack Attribution Mechanism: 

The DNN is trained to recognize and attribute cyber-
attacks based on learned features. Let X represent the input 
features, Y denote the true labels, and Y’ signify the predicted 
labels. The training process involves minimizing a novel 
attack attribution loss function: 

:�����a	 = − 5
@ ∑ ∑ b����45 . ^!)�b′��	. �1 −@�45

�  &+K� +!#��	     (15) 

where Attributionic is a binary indicator (0 or 1) 
specifying whether an instance is attributed to a known 
attack class. The ensemble DNN excels in handling both 
known and unknown threats. By employing a one-vs-all 
approach, individual classifiers within the ensemble are 
specialized for different attack attributes. The final prediction 
is determined through a weighted combination of these 
individual predictions, promoting a comprehensive and 
nuanced attribution process. 

A+#(^ <&"%+$ +!# = H!; *(��∑ I� . D^(HH+;+"&��d	� 	 (16) 

where wi represents the weight associated with the i-th 
classifier D^(HH+;+"&�. 

C. Model Robustness 

Ensuring the robustness of the proposed model is crucial 
for practical deployment in ICS environments. To enhance 
model robustness, adversarial training techniques, such as 
the Fast Gradient Sign Method (FGSM), were incorporated 
during the training phase. Additionally, to improve model 
robustness, integrate methods like Layer-wise Relevance 

Propagation (LRP) were utilized to highlight important 
features contributing to the final decision. To strengthen the 
model's defenses against possible attacks, hostile instances 
are added to the training dataset through the process of 
adversarial training. Generating adversarial instances is a 
common application of the Fast Gradient Sign Method 
(FGSM). The definition of the adversarial loss function (Ladv) 
is: 

:�Ge�a	 = 5
@ ∑ *(�.0, ‖ a − g. H+)#.∇9i�a, �� , ��	2‖3 −@j4k

‖a‖32      (17) 

where θ represents the model parameters, N is the number of 
training samples, ϵ controls the magnitude of the 
perturbation, i�a, �� , ��	 is the model's loss function for the 
input xi and true label yi, ∇9i�a, �� , ��	 is the gradient of the 
loss with respect to the model parameters. 

LRP is a technique used to attribute the model's decision 
to input features, providing insight into feature importance. 
The relevance (Ri) for each input feature i is calculated 
applying the LRP formula. This recursive formula 
propagates relevance from the output layer to the input layer, 
highlighting the contribution of each feature to the final 
decision. To optimize model robustness, an integrated 

objective (:��Fl���FG) can be defined as a combination of 

the adversarial loss and the LRP-based loss: 

�� = ∑ �mn.Cn
∑ �moo/      (18) 

:��Fl���FG�a	 = p. :�Ge�a	 − q. :FrE��a	 (19) 

where α and β are hyperparameters controlling the trade-off 
for adversarial training, :FrE��a	  is the explainability loss 

derived from LRP, aij represents the connection weight 
between the i-th input and the j-th neuron in the preceding 
layer, and Rj is the relevance of the j-th neuron in the 
preceding layer. 

D. Computational Efficiency Considerations 

Efficiency is a critical factor for the practical deployment 
of the proposed ensemble DNN in large-scale ICS 
environments. Focus is placed on two aspects: model size 
reduction through weight pruning and knowledge distillation, 
and inference time reduction through model quantization. To 
reduce the model size by eliminating less significant weights, 
the pruning mask Mij is applied to the weight wij. To transfer 
knowledge from the ensemble DNN ( �88FsF�t�F ) to a 
smaller, distilled DNN (�88G�s����), the distillation loss is 
minimized during training: 

I�/
E�SFG = I�/. U�/    (20) 

:G�s���� = 5
@ ∑ ∑ '���45@�45 . log Qu ,vmw

= 6R  (21) 

where Mij is determined based on a predefined threshold, Tc 
is the softened target distribution from the ensemble model, σ 
is the softmax function, and T is the temperature parameter. 

Quantization reduces the precision of weights and 
activations, decreasing the memory footprint and speeding 
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up inference. The quantized weight I�/
xS���yFG

 is given in 

(22). The predicted inference time  E�FG  can be estimated 

using a linear regression model: 

I�/
xS���yFG = �!�#% ,zmn

∆ 6 . ∆   (22) 

 E�FG = p. |+7"��GF� + q. |+7"�ES� + }  (23) 

where Δ is the quantization step size, α, β, and γ are the 

regression coefficients, and |+7"��GF�  and |+7"�ES� 

represent the sizes of the model and input data, respectively. 

III. RESULTS AND DISCUSSION 

To implement the proposed technique, the SWaT dataset, 
which contains IoT request and response signatures, 
associated with unique attack labels was utilized. The dataset 
includes various types of cyber-attack labels, such as replay, 
denial-of-service, and false data injection attacks. The 
proposed technique was evaluated based on its ability to use 
the SWaT dataset to identify and attribute cyber-attacks. The 
findings demonstrate that the proposed method can reliably 
identify and attribute cyber-attacks even in the presence of 

imbalanced data. The proposed technique outperformed 
existing algorithms that used under- or over-sampling 
techniques, indicating its effectiveness.  

In Table I, Test Case ID is a unique identifier for each 
test case conducted in this study. Test Case Name provides a 
brief description of what is being tested each time. Test Case 
Description provides further details on the test case and its 
purpose. Test Step field outlines the steps taken to complete 
each test case. Test Case Status describes whether the test 
case was successful or not. Test Priority indicates the level of 
importance assigned to each test case. The first test case, 
Test Case ID 01, aimed to test whether the Personality 
Dataset was successfully uploaded into the system. Further 
operations could not be conducted until the dataset was 
successfully uploaded. This test case was assigned a high 
priority due to its importance in the study. The second test 
case, Test Case ID 02, aimed to test whether the 
preprocessed dataset was successfully uploaded into the 
system, which was the expected result. In this case, further 
operations could not be conducted until the dataset’s 
successful upload was achieved. This test case was also 
assigned a high priority due to its importance in the study. 

TABLE I. ACTIONS ON THE DATASET FOR THE PROPOSED MODEL 

Test Case 

Id 
Test Case Name Test Case Description 

Test Steps Test Case 

Status 

Test 

Priority Step Negative Positive 

01 
Upload SWaT 

dataset 

Check if the dataset has been 

uploaded to the system. 

Perhaps the dataset 

was not uploaded. 

Any further 

operations cannot 

be performed. 

Dataset uploaded. 

Further operations 

will be done. 

High High 

02 

Upload 

preprocessed 

dataset 

Check if the preprocessed 

dataset has been uploaded to 

the system. 

Perhaps the dataset 

was not uploaded. 

Any further 

operations cannot 

be performed. 

Dataset uploaded. 

Further operations 

will be done.  

High High 

03 
Run auto encoder 

algorithm 

Test whether auto encoder 

algorithm was run successfully 

or not. 

Is the encoder sent. 
The algorithm 

cannot be run. 

Further operations 

can be conducted. 
High High 

04 
Run decision tree 

with PCA 

Test whether decision tree was 

run successfully or not. 
PCA. 

Extended PCA 
cannot be 

performed. 

Further operations 

can be conducted. 
High High 

05 
Run DNN 

algorithm 

Verify run rule biased attack 

detector. 
Detection. 

DNN cannot be 

run. 

Further operations 

can be conducted. 
High High 

06 

Detection and 

attack attribute 

type 

Verify if the attack detecion 

graph was successfull or not. 
Attribute detection. 

Attribute 

detection cannot 

be done. 

Further operations 

can be conducted. 
High high 

07 Comparison graph 
Verify run rule biased attack 

detector. 

Without 

comparison. 

The graph cannot 

be done. 

Further operations 

can be conducted. 
High High 

08 Comparison table 
Verify if the attack detecion 

graph was successfull or not. 

Without 

comparison table. 

The table cannot 

be done. 

Further operations 

can be conducted. 
High high 

Test Case ID 03 tested the auto encoder algorithm success. 
The method was anticipated to run, but if the encoder was not 
supplied, it may not have achieved this target. Without fixing 
the algorithm, no more operations could be done. High priority 
was given to this test case also. All the test cases were 
completed and the findings were reported. The dataset is shown 
in Figure 2 as a graph with the name of the attack on the x-axis 
and the number of times that it was detected in the dataset on 
the y-axis. As it can be observed, the attacks have fewer 
records than the Normal class, which results in data imbalance. 
This issue can be corrected using DNN, Autoencoder, or 
Decision Tree. The dataset was then preprocessed to fill in any 
missing values, and then the option "Normalize Values Using 

MIN-MAX" was chosen to normalize the numbers. The result 
section of the current research presents the outcomes of the 
proposed methodology. The dataset was first normalized to 
convert all values between 0 and 1, and the total number of 
records in the dataset, along with the train and test split counts, 
were displayed on the screen. The Autoencoder algorithm was 
trained on the dataset, resulting in 90% accuracy. To further 
enhance accuracy, the Decision Tree algorithm was 
implemented with PCA, and the accuracy and precision values 
were improved. 

The graph in Figure 3 depicts the performance over time for 
the proposed and the existing method. The proposed method's 
performance exhibits an overall upward trend with some 
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fluctuations throughout the observation period, suggesting an 
increase in performance or output over time. On the other hand, 
the existing method also shows fluctuations but with a general 
trend that seems to plateau or increase less steeply compared to 
the proposed method. This representation implies that while 
both methods improve over time, the proposed method might 
offer a more pronounced enhancement in performance. 

 

 

Fig. 2. Attack instance count. 

 

Fig. 3. Effeciency comparison. 

In Figure 4, the efficiency of both methods is assessed over 
the same time span. This graph uses a percentage scale on the 
y-axis to measure efficiency, which might correspond to the 
effectiveness or resource utilization of the methods. The 
proposed method displays a dynamic pattern, with its 
efficiency percentage rising and falling sharply, indicating 
significant variability in its efficiency. The existing method, 
follows a similar trend with less pronounced peaks and troughs, 
which may suggest a more stable but less efficient 
performance. The comparison reflects that the proposed 
method has moments of high efficacy, possibly outperforming 
the existing method, but also periods where its effectiveness 
crucially drops. The DNN algorithm was then applied to the 
dataset, which resulted in 99% accuracy. The detection and 
attribute of attack types were performed on the uploaded test 
data. Various types of attacks were spotted, and the results 
were displayed in a text area. Overall, the proposed 
methodology proved to be effective in identifying and 

attributing attack types on the dataset. The normalization of the 
data, followed by the application of Autoencoder, Decision 
Tree with PCA, and DNN algorithms, resulted in high accuracy 
and precision values. The Comparison graph provides a visual 
representation of the encountered attacks, which could be 
useful in analyzing and understanding the data. Figure 5 and 
Table II display the precision, recall, accuracy, and F1 score for 
each considered algorithm. 

 

 
Fig. 4. Performance comparison. 

 
Fig 5. Algorithm performance comparison. 

IV. CONCLUSION 

Two-stage ensemble deep learning was used in this paper to 
offer a unique assault detection and attribution methodology for 
imbalanced ICS data. Deep representation learning converts the 
data to a higher-dimensional space for attack detection and 
Decision Tree was utilized to find plausible assault samples. 
This level can identify new assaults and survive skewed 
datasets. Multiple one-vs-all classifiers trained on different 
assault features are merged during attack attribution. The 
model is a complicated DNN with partially linked and 
completely connected components that can appropriately 
attribute cyber-attacks. As with earlier DNN-based 
methodologies, the proposed framework's training and testing 
phases are computationally intensive. This applies despite the 
framework's complex architecture. The proposed framework 
has greater recall and f-measure values than previous efforts 
and can swiftly recognize and attribute samples. 
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TABLE II. PERFORMANCE COMPARISON OF THE PROPOSED MODEL WITH EXISTING METHODS 

Algorithm Accuracy Precision Recall F1 score 

Auto encoder 90.091911764 73.168251465 74.120354616 73.598642216 

DT withPCA 90.459558826 86.654346153 74.235468468 73.895321646 

DNN 99.963512465 74.562458621 75.246864126 74.774652165 
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