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ABSTRACT 

Ransomware has become a significant threat to individuals and organizations worldwide, causing 

substantial financial losses and disruptions. Early detection of ransomware is crucial to mitigate its impact. 

The significance of early detection lies in the capture of ransomware in the act of encrypting sample files, 

thus thwarting its progression. A timely response to ransomware is crucial to prevent the encryption of 

additional files, a scenario not adequately addressed by current antivirus programs. This study evaluates 

the performance of six machine-learning algorithms for ransomware detection, comparing the accuracy, 

precision, recall, and F1-score of Logistic Regression, Decision Tree, Naive Bayes, Random Forest, 

AdaBoost, and XGBoost. Additionally, their computational performance is evaluated, including build time, 

training time, classification speed, computational time, and Kappa statistic. This analysis provides an 

insight into the practical feasibility of the algorithms for real-world deployment. The findings suggest that 

Random Forst, Decision Tree, and XGBoost are promising algorithms for ransomware detection due to 
their high accuracy of 99.37%, 99.42%, and 99.48%, respectively. These algorithms are also relatively 

efficient in terms of classification speed, which makes them suitable for real-time detection scenarios, as 

they can effectively identify ransomware samples even in the presence of noise and data variations. 

Keywords-ransomware; early detection; machine learning; computational performance; cybersecurity   

I. INTRODUCTION  

Ransomware has rapidly become one of the most 
financially destructive cybersecurity threats of the decade. 
These attacks encrypt files and systems to extort massive 
amounts from victims by demanding ransoms for data 
recovery  [1]. Recent trends exhibit an exponentially growing 

threat as ransomware-related damages increased by an 
astonishing 93% from 2018 to 2019  [2]. The major incidents in 
2021 brought key healthcare networks, food supply 
infrastructure, and even law enforcement departments to their 
knees. Some estimates now shockingly indicate that a business 
falls prey every 14 seconds as new sophisticated malware 
families proliferate  [3]. The average recovery cost from an 
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attack has reached a crippling $1.85 million according to the 
2019 statistics  [4]. However, defensive solutions struggle to 
contain this growth trajectory as threat actors rapidly innovate 
exploits against incremental security advances. 

However, extensive research on fighting ransomware 
propagation contrasts with the relative study of early detection 
mechanisms  [5]. Legacy signature-dependent models are 
ineffective against novel attacks. But critically, studies reveal 
that more than 68% of infections exhibit substantial lateral 
movement within breached networks before diagnosis  [6]. 
Such activity spikes severely exacerbate financial bleeding and 
data loss. A Deloitte analysis identified that ransomware 
incidents averted in just 30 minutes after infiltration could have 
saved almost 95% of costs  [7]. Therefore, the prompt detection 
of behavioral anomalies indicating ransomware is essential to 
rapid response and damage mitigation. Recent innovations 
demonstrate the promising potential to identify ransomware 
using system API monitoring, registry tracking, file activity 
logs, and network traffic metadata  [8]. However, current tools 
remain limited to simulated environments, while practical, real-
world diagnostic capabilities are unverified  [9]. The challenge 
of collecting relevant data on the scale required for training, 
securing deployment infrastructure, obtaining ground truths, 
and maintaining high precision persists [10-12]. This study: 

 Evaluates six Machine Learning (ML) algorithms, namely 
Logistic Regression (LR), Decision Tree (DT), Naive 
Bayes (NB), Random Forest (RF), Adaptive Boosting 
(AdaBoost), and Extreme Gradient Boosting (XGBoost) for 
ransomware detection, revealing strengths and weaknesses 
in accuracy, precision, recall, ROC AUC, MCC, and F1-
score. Comparative analysis aims to discern the most 
effective algorithms for early detection in diverse 
ransomware scenarios. 

 Extends analysis beyond traditional metrics to include 
computational performance, such as model building time, 
training time, classification speed, and computational time, 
improving real-world implementation considerations. 

 Identifies Random Forest and XGBoost as superior choices 
for ransomware detection, offering exceptional accuracy 
and practical insights. 

The results can significantly augment organizational 
resilience against ransomware while alleviating financial and 
business operation impacts that cripple victims after attacks. 
This study makes seminal contributions to advance the 
empirical understanding of practical and deployable 
ransomware early warning solutions to meet a pressing need. 

II. LITERATURE REVIEW 

Several studies have identified gaps in the existing defense 
mechanisms, emphasizing the need for proactive and robust 
ransomware detection methods  [13-15]. These gaps underscore 
the urgency of developing more effective early detection 
methods and strategies, especially in the face of evolving 
ransomware tactics and the increasing the sophistication of 
attacks. Ransomware attacks have become a significant threat 
to individuals, businesses, and even national security, 
encrypting victims' data and demanding ransom for decryption 

keys. Ransomware employs advanced encryption techniques, 
making data recovery without the decryption key extremely 
challenging  [14]. The evolution of ransomware attacks requires 
robust early detection and prevention strategies to mitigate their 
impact. Early detection of ransomware is crucial in preventing 
data loss and financial repercussions. It involves identifying 
ransomware attempts before files are encrypted or systems are 
locked, allowing users or network administrators to take 
preemptive actions.  

ML algorithms have become pivotal in the fight against 
ransomware, offering a dynamic and adaptive approach to 
detect and mitigate threats before they inflict damage  [16]. 
These algorithms analyze huge datasets to learn and identify 
patterns indicative of ransomware activity, thus enabling early 
detection and response. In [17], the use of various ML 
algorithms for ransomware classification and detection was 
explored, highlighting their effectiveness in distinguishing 
between ransomware and benign software. A comprehensive 
survey in  [18] discussed ML algorithms trained specifically to 
detect ransomware encryption activity, underlining the 
promising results in identifying ransomware behaviors. In [19], 
the focus was on automated ransomware behavior analysis, 
detailing how pattern extraction from ransomware's operational 
behavior can facilitate early detection, suggesting that 
understanding ransomware's execution patterns is key to 
developing effective countermeasures. 

Another dimension of ransomware detection involves 
analyzing network traffic for signs of ransomware 
communication. In  [20], ML techniques were used to detect 
ransomware through Windows ransomware network traffic, 
indicating the potential of network behavior analysis to identify 
ransomware activities. In  [21], a hardware-assisted runtime 
detection technique called RanStop was introduced, which 
utilized hardware-level micro-architectural information to 
detect crypto-ransomware, showcasing the advantages of 
hardware-assisted approaches in bypassing software-level 
obfuscation tactics adopted by ransomware authors. In  [22], it 
was displayed the extent to which process memory analysis can 
be an effective strategy in ransomware detection. This 
approach relied on identifying abnormal memory patterns 
associated with ransomware encryption processes. In  [23], a 
feature selection technique was proposed based on redundancy 
coefficient gradual up-weighting and mutual information to 
improve the early detection of crypto-ransomware. This 
method emphasized the importance of selecting relevant 
features that contribute to the accuracy of the detection models. 

Although individual ML algorithms have manifested 
effectiveness in detecting ransomware, a comparative analysis 
reveals the nuanced advantages of different approaches. For 
instance, Decision Tree-based models, such as Random Forest, 
offer the benefit of interpretability, which is crucial for 
understanding the decision-making process behind 
classifications. Despite their promise, ML-based detection 
systems are not without challenges. The dynamic nature of 
ransomware means that detection models must be continuously 
updated to recognize new and evolving threats. Additionally, 
attackers are increasingly employing techniques such as 
adversarial ML to evade detection, creating a cat-and-mouse 
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game between defenders and attackers. While various detection 
techniques offer promising results, their effectiveness can vary 
based on the ransomware strain, the system architecture, and 
the operational environment. Despite advances in detection 
techniques, ransomware continues to evolve, presenting new 
challenges that require continuous research and development.  

III. RESEARCH METHODOLOGY 

The method followed to evaluate the performance and 
computational metrics of the different ML algorithms used for 
ransomware detection involves several steps, including data 
collection, preprocessing, feature engineering, model selection, 
and experimental implementation. 

A. Algorithms Used 

Logistic Regression (LR) is a statistical method for 
analyzing a dataset with one or more independent variables that 
calculate the probability of a given outcome. It is often 
employed in ML models for classification tasks, such as fraud 
detection. LR utilizes a logistic function to model the 
relationship between the independent variables and the target 
variable  [24]. The Decision Tree (DT) algorithm involves 
recursively partitioning the dataset based on the features to 
create a tree-like structure. The primary formula implemented 
in DT is the impurity measure, commonly the Gini index or 
information gain (entropy). DT aims to create a tree that 
effectively classifies instances based on feature values, making 
it a powerful tool for both classification and regression 
tasks  [25]. Naive Bayes (ΝΒ) is a probabilistic ML algorithm 
based on the Bayes theorem. It is particularly effective for 
classification tasks and is known for its simplicity and 
efficiency. The naive assumption is that the features are 
conditionally independent of the class label. Given an input 
vector x, the ΝΒ algorithm predicts the class label y by 
calculating the probability of each class given the input 
features. The Random Forest (RF) algorithm is based on 
decision trees and random sampling used for classification and 
regression tasks. It builds multiple decision trees during 
training and selects the best prediction from each tree to 
improve overall accuracy  [26]. Adaptive Boosting (AdaBoost) 
is an ensemble learning method that combines multiple weak 
classifiers to create a strong one. The algorithm assigns weights 
to instances and classifiers and adjusts them on the basis of 
classification errors. For a given input x, the AdaBoost 
algorithm predicts the class label y by aggregating the 
predictions from multiple weak learners. The final 
classification is determined through a weighted sum of weak 
classifier predictions. AdaBoost iteratively improves the 
performance of weak classifiers by assigning higher weights to 
misclassified instances. The final prediction is a weighted 
combination of weak classifier predictions. Extreme Gradient 
Boosting (XGBoost) is a powerful gradient-boosting algorithm 
that is particularly effective for regression and classification 
problems. It combines the concepts of gradient boosting and 
regularization to achieve high performance. The algorithm 
iteratively builds decision trees and optimizes the objective 
function by updating the leaf scores. XGBoost also introduces 
concepts such as feature importance and early stopping to 
enhance its performance. 

B. Dataset 

This study used the UGRansome dataset  [27], which is a 
key instrument for the identification of ransomware threats  [28-
29]. This dataset is distinctive in its inclusion of ransomware 
types not previously documented in other datasets  [29]. It 
encompasses a spectrum of infamous ransomware families, 
including Locky and CryptoLocker, along with the notorious 
WannaCry, and extends to cover sophisticated persistent cyber 
threats. The dataset comprises 207,533 samples. Each sample 
was characterized by 14 distinct features, providing a rich 
representation of the file's properties, as illustrated in Table I. 
This dataset was carefully selected due to its substantial sample 
size, enabling effective training, and testing of ML models. 
Furthermore, the well-defined features facilitated the extraction 
of meaningful insights from the data. This dataset offered 
several advantages in contrast to other datasets. First, it 
surpasses other ransomware datasets in terms of sample size, 
ensuring robust model training and evaluation. Second, unlike 
generic malware datasets, this dataset specifically focuses on 
ransomware, aligning with the specific objectives of this study. 
Third, compared to datasets intended for signature-based 
detection or dynamic analysis, this dataset was more suitable 
for the ML-based approach adopted in this study. 

TABLE I.  DATASET FEATURES DESCRIPTION 

Feature Description 

Time 
Quantitative column with integers indicating the timestamp 

of network attacks. 

Protocol 
Qualitative/categorical column representing the network 

protocol used (e.g., TCP, UDP) 

Flag 
Qualitative/categorical column indicating network 

connection status (e.g., SYN, ACK). 

Family 
Qualitative/categorical column describing network 

intrusion category. 

Clusters 
Quantitative column with integers denoting event clusters 

or groups. 

SeedAddress 
Qualitative/categorical column representing formatted 

ransomware attack links. 

ExpAddres 
Qualitative/categorical column indicating original 

ransomware attack links. 

BTC 
Numeric column with values related to Bitcoin transactions 

in attacks. 

USD 
Numeric column indicating financial damages in USD 

caused by attacks. 

Netflow Bytes 
Quantitative column with integers showing bytes 

transferred in network flow. 

IPaddress 
Qualitative column with IP addresses associated with 

network events. 

Threats 
Qualitative column representing the nature of threats or 

intrusions. 

Port 
Quantitative column indicating network port number in 

events. 

Prediction 
This is the target variable. It is a qualitative/categorical 

column indicating predictive model outcomes: Anomaly 

(A), Signature (S), and Synthetic Signature (SS). 

 

C. Data Preprocessing 

An examination suggested that the dataset contained no 
missing values or duplicate entries. This eliminated the need 
for extensive preprocessing, allowing the study to focus on 
extracting the most relevant information from the data. Two 
features, namely "Name" and "md5," were identified as traits 
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containing limited information for the classification task. 
Therefore, these features were removed from the dataset. The 
remaining features were all numerical, eliminating the need for 
any encoding or transformation. 

D. Dataset Split 

The train_test_split function from the Scikit-learn library 
was used to create a training set and a test set. This function 
randomly partitioned the dataset into two subsets, maintaining 
the original class distribution. The resulting training set 
consisted of 70% of the total samples (43,740 samples), 
whereas the test set consisted of the remaining 30% (18,745 
samples). A separate validation set was not created due to the 
implementation of 5-fold cross-validation. This technique 
allowed for the performance evaluation of the models to be 
more comprehensive and mitigated the impact of any potential 
biases in the data split. 

E. Performance Metrics 

Several quantitative metrics were deployed to evaluate the 
predictive performance of the models. Accuracy measures the 
overall fraction of correct predictions made by the model: 

Accuracy �  	
�� ������ 
� ��������
��

������ 
� �
����� ��������
��
    (1) 

Precision is given by the fraction of positive predictions 
that were positive. 

Precision �  	�

	�"#�
    (2) 

Recall is the fraction of actual positive cases that were 
correctly predicted. 

Recall �  	�

	�"#�
    (3) 

F1-score is the harmonic mean of precision and recall, 
providing a balance between the two metrics. It is the best at 1 
and the worst at 0. 

F1 � 2 ) �������
�)*���

�������
�"*���
   (4) 

The Receiver Operating Characteristic Area Under the 
Curve (ROC AUC) is a performance metric commonly applied 
to evaluate the ability of a classification model to distinguish 
between positive and negative classes across different 
thresholds. ROC AUC is calculated based on the True Positive 
Rate (sensitivity) and False Positive Rate. The formula for 
ROC AUC is: 

ROC AUC . TPR d1FPR23
4    (5) 

In discrete terms, the ROC AUC can be approximated as 
the area under the ROC curve, which is constructed by plotting 
the True Positive Rate (TPR - sensitivity) against the False 
Positive Rate (FPR) at various classification thresholds. 

ROC AUC 5  

21 ∑ 1TPR� 7 TPR� 7 12 ) 1FPR� 7 1 8 FPR�2
�93
�:3  (6) 

where N is the number of thresholds, TPRi is the True Positive 
Rate at the i-th threshold, and FPRi is the False Positive Rate at 
the i-th threshold. 

In practice, ROC AUC values range from 0 to 1. A higher 
value indicates better discrimination between positive and 
negative classes. A ROC AUC of 0.5 suggests a model 
performing no better than random chance, whereas a ROC 
AUC of 1.0 indicates perfect classification. 

The Matthews Correlation Coefficient (MCC) is a measure 
used in binary classification to assess the quality of a 
classification model. It considers True Positives (TP), True 
Negatives (TN), False Positives (FP), and False Negatives (FN) 
to provide a balanced evaluation even in the presence of class 
imbalance. MCC is given by: 

MCC � 	�)	�9#�)#�

<1	�"#�21	�"#�21	�"#�21	�"#�2
  (7) 

MCC ranges from -1 to +1, where +1 indicates a perfect 
prediction, 0 suggests no better than a random prediction, and  
-1 indicates total disagreement between prediction and 
observation. Higher MCC values generally imply better 
classification performance. 

IV. RESULTS AND DISCUSSION 

The models were evaluated using five-fold cross-validation 
and the average performance across all folds is reported. 

A. Performance Metrics 

The results, as noticed in Table II and Figure 1, provide a 
critical insight into the competence of various ML algorithms 
to thwart ransomware attacks. 

TABLE II.  . PERFORMANCE EVALUATION 

Algorithm Accuracy Precision Recall ROC AUC MCC F1 

LR 72.46% 72.55% 72.46% 86.31% 57.55% 72.46% 

DT 99.42% 99.42% 99.42% 99.59% 99.10% 99.42% 

NB 71.92% 73.56% 71.92% 86.83% 58.11% 71.46% 

RF 99.37% 99.37% 99.37% 99.99% 99.02% 99.37% 

AdaBoost 87.93% 87.96% 87.93% 85.15% 81.32% 87.94% 

XGBoost 99.48% 99.48% 99.48% 100.00% 99.19% 99.48% 

 

 

Fig. 1.  Performance evaluation. 

The LR exhibited moderate accuracy, precision, recall, and 
F1 scores (around 72%), but had a relatively high ROC AUC 
score, suggesting that it can distinguish between classes to a 
satisfactory extent. Its MCC is also moderate, indicating 
reasonable quality predictions. DT and XGBoost performed 
exceptionally well across all metrics, showing very high 
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accuracy, precision, recall, F1, and ROC AUC scores close to 
1. This suggests that they are excellent at classifying 
ransomware accurately. NB had lower performance metrics 
compared to DT and XGBoost, but similar to LR, which might 
imply that it struggles with this dataset or type of problem. RF 
also manifested excellent performance, comparable to that of 

DT and XGBoost, which is not surprising given that it is an 
ensemble method that typically performs well in classification 
tasks. AdaBoost fell between high-performing ensembles and 
more moderate LR and NB, with decent scores but not as high 
as those of  RF, DT, or XGBoost. 

 

   

   

Fig. 2.  Confusion matrices. 

TABLE III.  COMPUTATIONAL PERFORMANCE 

Algorithm Build Time Training Time Classification Speed Computational Time Kappa 

LR 1.879834 1.888065 0.000000 1.887005 0.724580 

DT 0.289654 0.286311 0.016478 0.300140 0.994096 

NB 0.056549 0.044288 0.013017 0.057103 0.719179 

RF 7.573886 7.330230 0.328042 7.717711 0.993693 

AdaBoost 4.435372 4.389565 0.203077 4.600153 0.879298 

XGBoost 9.407490 9.498313 0.046863 9.592122 0.994767 

 
B. Computational Efficiency 

This study extends to analyzing the computational 
performance of these algorithms, encompassing aspects, such 
as build time, training time, classification speed, overall 

computational time, and the Kappa statistic. Table III offers 
additional perspectives on the practical deployment of these 
algorithms. LR had the longest computational time, which 
included the training and classification speed, and a moderate 
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Kappa score, which measures the agreement of the predicted 
classification with the actual class. DT had a very low build 
and computational time, indicating that it was fast and had a 
very high Kappa score, suggesting strong agreement. NB 
demonstrated the shortest build and computational times, 
suggesting that it is the fastest algorithm among the evaluated 
ones but with a moderate Kappa score. RF took significantly 
longer in terms of build and computational times, which is 
expected given that it constructed multiple decision trees. 
AdaBoost and XGBoost had higher computational times, 
possibly due to the iterative nature of the boosting methods, but 
they both had very high Kappa scores. 

DT and XGBoost were the best-performing algorithms for 
this ransomware detection task, balancing computational 
efficiency with high classification performance. However, the 
choice of algorithm can also be influenced by the specific 
requirements of the task, namely the need for speed versus the 
need for accuracy. 

V. CONCLUSIONS 

This study significantly advances the cybersecurity domain, 
particularly in ransomware threat detection. The findings 
accentuate the exceptional performance of the DT algorithm, 
with RF and XGBoost outshining simpler models such as NB 
and LR. These advanced algorithms demonstrate a 
commendable trade-off between accuracy, computational 
efficiency, and resilience, positioning them as superior for 
deployment in real-world scenarios. They proficiently navigate 
the intricate and mutable data patterns that are characteristic of 
ransomware threats, a challenge that proves too complex for 
less sophisticated algorithms. The comprehensive analysis 
utilizing a realistic dataset of ransomware signatures reveals 
that the RF and XGBoost algorithms stand out, reflecting high 
scores in accuracy, precision, recall, and F1. Their robustness is 
further emphasized by the high TP rates and minimal FNs, 
highlighting their precision in flagging ransomware instances. 
On the contrary, NB was found to produce a higher rate of FPs. 
LR and AdaBoost, while showing competent performance, 
were not without limitations. This study underscores the critical 
role of early and accurate ransomware detection in reducing the 
potential damage inflicted by such cyber threats. 
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