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ABSTRACT 

In bioinformatics, protein secondary structure prediction plays a significant role in understanding protein 

function and interactions. This study presents the TE_SS approach, which uses a transformer encoder-

based model and the Ankh protein language model to predict protein secondary structures. The research 

focuses on the prediction of nine classes of structures, according to the Dictionary of Secondary Structure 

of Proteins (DSSP) version 4. The model's performance was rigorously evaluated using various datasets. 

Additionally, this study compares the model with the state-of-the-art methods in the prediction of eight 

structure classes. The findings reveal that TE_SS excels in nine- and three-class structure predictions while 

also showing remarkable proficiency in the eight-class category. This is underscored by its performance in 

Qs and SOV evaluation metrics, demonstrating its capability to discern complex protein sequence patterns. 

This advancement provides a significant tool for protein structure analysis, thereby enriching the field of 

bioinformatics. 

Keywords-protein secondary structure prediction; bioinformatics; nine-class protein prediction; transformer 

model; Ankh protein language model  

I. INTRODUCTION  

Proteins are made up of chains of amino acids. By altering 
their arrangement, 20 different types of acids can create a wide 
range of proteins. The primary structure of a protein is 
represented by one sequence, comprising the specific order in 
which the amino acids are arranged [1], and is referred to as 1D 
structure. Tertiary structures, often referred to as three shapes, 
are formed in living organisms through the interactions, among 
amino acids. These interactions play a crucial role in 
determining the function of proteins [2]. To fully comprehend 
the relationship between the tertiary structures of a protein, it is 
important to predict its secondary structure [3]. The use of 
efficient techniques to forecast protein structures has become 
essential in closing the disparity between the number of 
recognized protein sequences and the determined structures due 
to the limitations that experimental procedures entail, such as 

time requirements and the substantial costs involved [4]. These 
predictive models are instrumental in enhancing our 
comprehension of protein functions and may be utilized in 
applications like drug development and disease control [5]. 

Secondary structure in proteins refers to the folded patterns 
that occur within a chain of acids as a result of forces like 
hydrogen and van der Waals bonds. To precisely define 
structure, the Dictionary of Secondary Structure of Proteins 
(DSSP) was devised [6]. This program analyzes the coordinates 
of proteins with known structures to identify patterns of 
hydrogen bonding and geometric characteristics. DSSP assigns 
a type of secondary structure to each residue in the protein. The 
original classification consisted of eight classes: G (310 helix), 
H (α-helix), I (π-helix), B (isolated β-strand), E (extended 
strand), S (bend), T (turn), and L (irregular structure). These 
categories are often grouped into three group classes: H, G, I to 
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helix (H), (B, E) to strand (E), and T, S, L to coil (C). The 
latest iteration of DSSP, version 4.0, which was released in 
2021, marks a significant update in the field of protein 
secondary structure classification. This version extends the 
conventional eight types of secondary structures to include a 
ninth type, known as the poly-proline helix (P) [7]. The task of 
Protein Secondary Structure Prediction (PSSP) involves 
assigning classes of structures, such as alpha helices, beta 
sheets, and coils to each individual amino acid in a protein 
chain. For computational methods to predict a structure, it is 
necessary to represent acids as numeric vectors. One-hot vector 
approach uses 21-encoding for each amino acid in protein 
sequence, which includes the 20 standard amino acids that 
make up the proteins and 1 non-standard amino acid 
represented by X to indicate an unknown or unspecified amino 
acid. However, this method has shown limited accuracy, in 
prediction. Another used technique involves utilizing PSSM 
profile features [8] or HHM profile features [9]. These profile 
features incorporate information derived from analyzing 
sequence alignments obtained from a large protein sequence 
database. 

Creating Hidden Markov Models (HMMs) or Position 
Specific Scoring Matrices (PSSMs) for each template sequence 
can be a time-consuming process, especially when dealing with 
proteins that have no sequences. To overcome this hurdle, 
recent advancements have introduced novel protein 
representation techniques inspired by methods used in natural 
language processing [10-13]. These techniques involve the 
usage of pretrained protein language models, followed by fine 
tuning for specific tasks. These models can achieve 
performance even with limited task specific data available, 
where embedding from a language model pretrained on a large 
corpus of protein sequences effectively replaces evolutionary 
information. The implementation of this approach has 
demonstrated encouraging outcomes in several protein-related 
subsequent studies [4, 7, 14-19]. In the early stages of PSSP 
research statistical approaches were predominantly used. These 
methods focused on determining the likelihood of amino acids, 
in protein structures [20]. Initially these predictors were 
designed for a three-class secondary structure prediction due to 
training data availability and computational constraints of that 
time. However, the particular methods encountered challenges 
in achieving high Q3 accuracy because they struggled to 
extract information from primary protein structure sequences. 
To overcome this limitation and improve their performance, 
researchers started incorporating information and position 
specific scoring matrices into the prediction process. This 
advancement proved significant, leading to a Q3 accuracy 
exceeding 70% [21]. 

Various machine learning techniques have been used for 
performing coarse-grained prediction, including decision trees 
[22], support vector machines [23], Neural Networks (NN) 
[24], HMMs [25], probabilistic graph models [26], and k-
nearest neighbors [27]. The methodologies in this area 
primarily utilize a fixed-size sliding window approach. This 
method was employed to forecast the secondary structure 
category of the essential amino acid residue in a given 
sequence. JPred4 [28] and PSIPRED V3.0 [29] were notable 
among the initial prediction algorithms. These techniques laid 

the foundation for further progress in the field, demonstrating 
the effectiveness of machine learning in understanding and 
predicting protein structures. The increased availability of data 
has led to the dominance of sequence-to-sequence deep model 
predictions, which have achieved state-of-the-art performance. 
Innovations in this area include DCRNN [30], which uses 
cascaded Convolutional and Recursive NN to extract both 
multiscale local and global contextual features. Other 
significant contributions include multiscale chained 
convolutional architecture for improved eight-state prediction 
[31]. SPIDER3 [32] uses LSTM BRNNs to capture complex 
amino acid interactions, DeepACLSTM [33] integrates 
networks with LSTM units and utilizes specific dimensions in 
protein sequence feature vectors. MUFOLD SS [34] and 
SAINT [35] both employ Deep inception-inside-inception 
networks with MUFOLD SS emphasizing inception modules 
while SAINT incorporates self-attention mechanisms. SPOD 
1D [36] combines LSTM BRNN and ResNet models with 
residue contact maps for its predictions. NetSurfP 2.0 [37] 
employs convolutional and LSTM networks, while 
ShuffleNet_SS [5] focuses on a lightweight convolutional NN. 
Another important development is the introduction of the 
protein encoder [38]. This method employs a two-step process, 
beginning with an unsupervised autoencoder for feature 
extraction, followed by an ensemble of feature selection 
methods. A common element in earlier prediction models is 
their reliance on profile features, which are primarily obtained 
from Multiple Sequence Alignments (MSA). Nevertheless, the 
specific process, especially considering the rapidly expanding 
protein sequence databases, poses a significant time constraint. 
In response to this challenge, recent research has shifted toward 
leveraging embedding features extracted from pretrained 
protein language models. For instance, DML_SS [4] applies 
learning through a deep centroid model, for its predictions. 
SPOT 1D LM [19] synergizes embeddings from language 
models with one hot encoding techniques. LIFT SS [7] focuses 
on tuning pretrained protein language models.  

In the field of predicting protein secondary structures, it is 
interesting to note that most current predictors apart from 
LIFT_SS [7] rely on the eight class assignments of structures 
from the previous version of the DSSP program for their 
training and evaluation data. Notably, even subsequent studies 
published after the introduction of DSSP 4.0 have continued to 
rely on eight-class secondary structure information, rather than 
adopting the more recent nine-class secondary structure 
classification. This trend indicates that these methodologies are 
being trained and evaluated using potentially outdated labeling 
information. In this study, the latest edition DSSP 4, a 
comprehensive database for secondary structure sequences, 
was utilized. The use of DSSP 4 ensured the training and 
evaluation data were based on a detailed classification of 
protein structures. Additionally, the Ankh protein language 
model [39] was adopted for obtaining protein embeddings, 
leveraging its capability to accurately represent protein 
sequences and replace the need for more computationally 
intensive evolutionary information. TE_SS, a deep 
transformer-based model [40], specifically designed to discern 
complex relationships between distant and proximal amino acid 
sequences in proteins, is proposed. This model is specifically 
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designed to discern complex relationships between local and 
nonlocal amino acid sequences in proteins, processing 
sequential features in parallel, in contrast to existing models 
that extract features sequentially. The architecture of this model 
enables it to capture patterns and interactions within protein 
structures, enhancing the prediction of secondary structure. 

II. METHODS 

A. Dataset 

In this research, a collection of protein training data was 
generated using the PISCES server [38]. The latter is well 
known for creating curated lists of sequence subsets from the 
Protein Data Bank (PDB). To assess protein structure 
prediction algorithms, criteria and parameters related to 
sequence identity were applied. The PISCES server utilizes a 
filter based on predefined protein parameters. Subsequently it 
sends the resulting lists and sequence files directly to the email 
address provided. To ensure the dataset’s reliability and 
usefulness, the PISCES server was configured with settings, 
including a maximum resolution of 2.0 Å, an upper limit R 
value of 2.0 and a requirement that there will be no more than 
50% sequence identity between any pair of protein sequences. 
Initially the dataset suggested consisted of 16,225 proteins. 
However, 188 proteins from this collection were excluded 
because they lacked corresponding information. In addition, to 
maintain the integrity of the performed analysis and avoid data 
contamination, any proteins that overlapped with the proposed 
test dataset were eliminated.  Following these rigorous filtering 
criteria, a refined dataset, labeled as 16,037, consisting of 
16,037 proteins was successfully curated. This dataset was 
strategically partitioned, with 15,037 proteins designated for 
the training set and the remaining 1000 proteins allocated for 
validation purposes. 

This study involves datasets for secondary structure 
analysis of protein based on the 9-class classification provided 
by DSSP4. The DSSP software generates a DSSP file for each 
protein with an established structure, which contains detailed 
secondary structure information derived from the protein’s 
three-dimensional structural data recorded in the PDB database. 
In the performed methodology, the Biopython library was 
initially employed to retrieve the PDB file corresponding to a 
given protein chain. This file is accessed from the PDB website 
using the specific PDB ID and the chain ID of the protein 
chain. The occurrence of nonstandard amino acids in these 
files, including modified residues was observed. A notable 
example includes the representation of methionine (MET) and 
selenomethionine (MSE) by the one-letter code M. To address 
this issue, a conversion process in which the three-letter amino 
acid codes in the PDB file were translated to their one-letter 
equivalents, with nonstandard amino acids denoted as X, was 
implemented. This modified sequence is referred to as the 
target primary sequence. Subsequently, the identical DSSP file 
was acquired on the basis of the PDB file. Contiguous 
fragments of amino acid residues and their associated 
secondary structures were extracted from this file, guided by 
the chain ID and the residue sequence number. However, 
extracting a primary sequence from the DSSP file that exactly 
matches the target primary sequence in terms of sequence 
composition or length is often not feasible [6]. To accurately 

represent the sequence of protein structure, the primary 
sequence of interest is matched with the sequence obtained 
from the DSSP file. During this alignment process, any gaps 
that occur are filled with the letter X to indicate unassigned 
types of structures. To achieve this alignment, the Pairwise2 
alignment algorithm from the BioPython package was utilized 
[39]. 

Performance metrics for nine-class prediction were 
assessed on diverse datasets. Three editions of the CASP 
competition, namely CASP12, CASP13, and CASP14, were 
utilized. These datasets encompass a selection of 47, 41, and 33 
protein chains, respectively, carefully chosen to represent real-
world challenges in protein structure prediction. Additionally, 
the CB433 test data [4], a curated and filtered subset of the 
widely used CB513 dataset, comprising 433 protein structures 
was considered. Evaluating the proposed model fairly against 
existing models necessitates the use of datasets that adhere to 
the same 8-class system. For this purpose, two well-known test 
datasets, TEST2016 and TEST2018 [34], containing 1213 and 
250 protein sequences accordingly, were chosen. These are in 
line with the training and validation sets, which include 10029 
and 983 proteins, respectively. Across all four datasets, the 
maximum length of any protein sequence does not exceed 700. 
Additionally, the primary and secondary structure sequence 
data, which is the standard for these datasets, is also utilized. 

B. Embedding 

Pretrained models that focus on protein language (Protein 
Language Models-PLMs) have become a tool, in biological 
applications serving as a strong foundation for modeling 
protein related tasks. While most approaches rely on these 
models for extracting features, this study takes an approach by 
utilizing the Ankh model [39], which is a large unsupervised 
PLM. Ankh, built on a transformer-based architecture and has 
been trained on the BFD [41] and UniRef50 [42] dataset. It 
achieves state of the art performance while using less than 10% 
of the parameters compared to models. This impressive 
efficiency opens up possibilities for accessible and scalable 
protein modeling applications. One of the strengths of the Ankh 
model lies in its ability to extract high quality embedding 
features that represent proteins accurately. These features are 
representations of protein sequences that capture information 
about their structure, function and evolutionary relationships. 
To acquire the embedding feature of a specific protein chain 
using Ankh we input its sequence into the model encoder and 
retrieve its output. Each amino acid, in a protein sequence is 
assigned a 1536-feature vector through the output embedding, 
which captures its information. For every protein sequence L 
this model generates an embedding vector of size (L*1536). 
The embeddings acquired from the embedding process  were 
used as the input for the model. 

C. Model Architecture 

A novel model has been developed to predict protein 
structures. It heavily relies on transformer architectures. These 
transformers are great, at identifying both distant relationships 
within protein sequences by utilizing self-attention mechanisms 
and feed forward layers. The initial input for this model is a 
two-dimensional embedding, with (L, 1536) sequence 
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dimensions. This embedding is generated using the training 
Ankh model. Additionally, the model incorporates encoding for 
each amino acid in the sequence to enhance information 
representation. After that, a series of N transformer encoders 
process the input as shown in Figure 1. This approach 
demonstrates how effective the model is at capturing patterns, 
within protein sequences leading to accurate predictions of 
protein structures. 

 

 

Fig. 1.  Transformer-based model architecture for protein secondary 
structure prediction. 

1) Positional Encoding  

To ensure the proposed model effectively takes into 
account the nature of protein sequences, positional encoding 
was incorporated. This approach produces data on the precise 
locations of amino acids throughout the protein sequence. By 
combining positional encoding with amino acid embeddings, 
not only can this model comprehend the unique characteristics 
of each amino acid, but also their contextual relationships 
within the sequence. This approach is crucial for capturing the 
spatial details of amino acids, which are essential for accurately 
predicting protein secondary structure. Positional encoding 
(PESS) is defined as follows: 

PESS����,	
� �  sin�psn/10000	
/�
������� (1) 

PESS����,	
��� �  cos�psn/10000	
/�
������� (2) 

where psn  represents the position of an amino acid in the 
sequence and " is its dimension in the encoding space, whereas 
#"$�%�&'  refers to the dimensionality of the model [43]. In (1) 

the encoding for odd sequence positions is addressed, while (2) 
pertains to the encoding for even sequence positions. 

In (3) the positional encoding obtained from (1) and (2) is 
illustrated and added into the input embeddings. 

()$*
+ � ()$,
 - PESS   (3) 

where ()$*
+  is positionally encoded embedding for "  amino 
acid and ()$,
 is " amino acid's embedding obtained from the 
Ankh model. 

By including these data the suggested model acquires a 
comprehension of the protein’s arrangement, which improves 
its predictive abilities, for the secondary structure. 

2) Transformer Encoder in Protein Secondary Structure 
Prediction 

The transformer encoder is a component of the transformer 
architecture [43] used for processing sequences in parallel. It is 
composed of layers, each of which has two sublayers: the 
Position-Wise Feed Forward Network and the Multi Head Self 
Attention Mechanism. 

The key elements of the Transformer Encoder are: 

a) Multi-head Attention 

The multi head self-attention mechanism plays a role, in the 
encoder by allowing the model to evaluate and adjust the 
importance of segments within an input sequence. It creates 
three vector representations, i.e. query (Q), key (K), and value 
(V) for each input element. By measuring the similarity 
between Q and K, the attention scores are calculated to 
determine a sum of V vectors highlighting most relevant 
information. This process is performed across multiple heads 
enabling focus on different aspects of the sequence. The 
mathematical formulation, for this process is [43]: 

.//)0/"10 �2, 3, 4� � 516/$78 9:;<
=�>

? 4 (4) 

where =#;  serves as a scaling factor to ensure values for 
sequences. 

b) Feed–Forward Networks 

After the self-attention mechanism, the data pass through a 
feed-forward NN, which is applied to each position separately 
and identically. This network consists of fully connected layers 
with activation functions and is responsible for further 
transforming the representation. 

c) Layer Normalization 

Each sublayer of both self-attention and feed-forward 
networks in the transformer encoder has a residual connection 
around it, followed by layer normalization. The residual 
connections help mitigate the vanishing gradient problem, 
enabling the training of very deep models. 

d) Stacking of Layers 

The self-attention, multi-head attention, and feed-forward 
layers are stacked together, forming multiple encoder layers. 
Each layer builds upon the previous one, gradually extracting 
increasingly complex and higher-level representations of the 
sequence. 
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3) Convolution 1D Layer  

To further augment the model’s capability to extract 
informative features, a 1D convolutional layer follows the 
transformer encoder. This layer operates along the feature 
dimension, applying learnable filters to capture local patterns 
and dependencies within the feature space. Mathematically, the 
expression of the one-dimensional convolution operation can 
be formally articulated as: 

@ �  6�A ⊛  ( -  *�    (5) 

where Y is the output feature map, X is the input feature map, w 
is the convolutional filter, b is the bias term, ⊛ is the 
convolution operator, and f  is the activation function. 

4) Final Fully Connected Layer 

The architecture concludes with a fully connected layer, 
which serves as the classification component of the model. This 
layer translates the processed features into predictions of the 
protein's secondary structure. 

D. Evaluation Metrics 

To evaluate the effectiveness of the proposed approach, two 
employed metrics were utilized; Qs accuracy and Segment 
Overlap (SOV) [44]. Qs accuracy measures how the predicted 
secondary structure aligns, with the determined secondary 
structure specifically looking at the proportion of residues that 
match. Meanwhile, SOV assesses how closely the predicted 
and experimentally determined secondary structure segments 
resemble each other. In addition to these metrics, F1, Precision, 
and Recall were also employed to evaluate the proposed 
model’s performance on the selected test dataset. Qs accuracy 
quantifies the proportion of residues where the predicted 
secondary structure aligns with the findings. This metric plays 
a role in assessing a model’s ability to accurately classify types 
of secondary structures found in proteins. Precision is indicated 
by how residues are correctly predicted for their corresponding 
secondary structures. It expands on the conventional Q3 
accuracy measure S = (H, E, C) by categorizing secondary 
structures into nine categories: S = (H, G, I, P, B, E, T, S, L). 
To compute Qs we divide the number of correctly predicted 
residues, in state 5 (ns) by the total number of residues actually 
in state 5 (Ns), with s representing each state within the set S. 
This is formally represented in (6): 

2 C � DE
FE

 × 100  , 5 ∈  S   (6) 

To calculate the overall accuracy for per residue prediction 
all (ns) values for each state 5  in set S are summed up and 
divided by the sum of all (Ns) values for each state 5 in set S 
[4]: 

2|J|  �  ∑ DEE∈L
∑ FEE∈L

 × 100    (7) 

The SOV metric is crucial when evaluating the precision of 
protein secondary structure predictions. Unlike accuracy 
measures, SOV provides a detailed evaluation by considering 
both length and overlap between the predicted and actual 
segments. This metric is useful when assessing predictions for 
structure elements like alpha helices and beta sheets which can 
vary significantly in length. SOV compares how well predicted 

segments align with segments in terms of length and overlap. It 
takes into account variations, in segment size making it a 
comprehensive and realistic measure to assess prediction 
performance for complex proteins that exhibit diverse 
secondary structures. 

E. Implementation Details 

PyTorch framework was used as it offers a graph, 
imperative execution style and a wide range of tools and 
libraries. To ensure training and avoid overfitting to data 
patterns, the minibatch size was set to 8 and random sampling 
was employed to create minibatches. For optimizing the 
suggested models, the AdamW optimizer was used with a 
weight decay value of 0.0001. Throughout the training process 
a fixed learning rate of 0.00005 was maintained. To enhance 
the proposed model’s performance, a custom cross loss 
function that handles class imbalances by allowing optional 
weights, for different classes was implemented. This function 
calculates the loss for each instance without reduction, and then 
averages it across the minibatch while considering the provided 
class weights. This approach ensures an impact of each class on 
the models learning process. Moreover, a stopping criterion 
was implemented. The particular criterion halts training if there 
is no improvement in Qs accuracy, on the validation set for 5 
consecutive epochs. This study experiments were conducted 
using an NVIDIA Tesla V100 GPU with 16 GB VRAM and 32 
GB system memory. The transformer encoder architecture used 
in this study consisted of 5 layers, each equipped with 8 
attention heads. In these layers, a dropout rate of 0.2 was 
incorporated. The dimension of the feed forward network was 
set to 2048. The model’s convolutional layers produced an 
output with 1024 channels. 

III. RESULTS 

A. Ablation Study  

We comprehensively evaluated the performance of the 
proposed method through a series of experiments on the CB433 
test set and our validation set. These experiments were 
meticulously designed to analyze the influence of key 
hyperparameters, specifically the number of transformer 
encoder layers, the number of attention heads, and the learning 
rate, on the model’s effectiveness. 

1) Number of Encoder Layers 

To examine the effect of encoder layer depth on model 
performance, this study experimented with architectures 
ranging from 1 to 7 layers, each coupled with a fixed 
configuration of 8 attention heads. The validation and test 
results on the CB433 dataset, as depicted in Figure 2, indicate 
that the architecture with 5 encoder layers achieved the highest 
9-class accuracy (Q9). Deeper models can learn more complex 
contextual representations and better capture long-range 
dependencies in protein sequences, performance plateaus, but 
this ability slightly declines beyond 5 layers. This could be 
indicative of overfitting or vanishing gradients, affecting the 
model's generalizability and learning efficacy. 
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Fig. 2.  Performance evaluation of transformer models with varying 
numbers of encoder layers. 

2) Number of Attention Heads 

To investigate the optimal configuration for protein 
secondary structure prediction, there was a focus on the number 
of attention heads in the transformer encoder layer. 
Configurations with 1, 2, 3, 4, 6, 8, 12, and 16 attention heads 
were tested for their impact on the model’s performance to be 
determined. As shown in Figure 3, the model with 8 attention 
heads proved most effective in both validation and testing sets, 
particularly on the CB433 dataset, achieving significant 
improvements in 9-class accuracy, pointing to the optimal 
balance between the granularity and breadth of attention 
mechanisms. While increasing the number of attention heads 
generally improves model’s ability to discern intricate 
relationships within protein structures, a threshold exists 
beyond which additional heads may not enhance or could even 
reduce predictive accuracy. This highlights the importance of 
fine-tuning attention mechanisms in transformer models for 
specialized bioinformatics tasks mechanisms in transformer 
models for specialized bioinformatics tasks. 

 

 
Fig. 3.  Comparative analysis of prediction accuracy across different 
numbers of attention heads. 

3) Learning Rate 

The study examined the best hyperparameters for protein 
secondary structure prediction and found that the learning rate 
had a significant impact on model accuracy. The former 
rigorously assessed the model’s performance throughout a 
range of learning rates, as shown in Figure 4: 0.001, 0.0005, 
0.0001, 0.00005, 0.00001, and 0.000005. In the testing and 
validation stages, a learning rate of 0.00005 produced the best 
9-class accuracy, especially when employing the CB433 

dataset. Interestingly, there was a clear trend in the model's 
performance: the accuracy decreased dramatically at higher 
learning rates (0.001 and 0.0005) pointing the detrimental 
effect of rapid weight adjustments. However, as the learning 
rate was gradually reduced, a notable improvement in accuracy 
was observed, culminating in the optimal performance at 
0.00005. 

 

 
Fig. 4.  Impact of learning rate on model accuracy. 

B. Comparative Analysis on Eight-State Prediction 

This section provides a comparative analysis of the 
proposed method against a selection of state-of-the-art 
predictors methods, specifically focusing on two distinct test 
data called, TEST2016 and TEST2018. To ensure an equitable 
comparison, data for existing predictors were sourced from the 
literature [4, 7, 9]. The comparison encompasses a variety of 
methods: 10 predictors based on profile features and 3 
predictors based on embedding features (Table I). For the 
LIFT_SS method, the most accurate results were selected from 
three lightweight fine-tuning approaches. In the conducted 
analysis the TE_SS method was evaluated, against these 13 
predictors through the employment of different metrics on two 
test datasets. These metrics include Q8 and SOV8 for 
predictions in 8 classes and Q3 and SOV3 for predictions in 3 
classes. The detailed results can be found in Table I, which 
showcases the performance of the proposed method alongside 
the 13 methods for each metric. Table I clearly demonstrates 
that the TE_SS method outperforms the others in predicting 
protein secondary structures in both 8- and 3- class formats. 
Not only does this comprehensive analysis reveal the strength 
of the TE_SS model, but also its advancement over existing 
state of the art methods setting a new standard, in protein 
secondary structure prediction. 

C. Comparative Analysis on Nine-State Prediction  

To assess the effectiveness of the TE_SS framework 
experiments were conducted using four widely used benchmark 
datasets, in the field of protein structure analysis. TE_SS was 
compared against two leading methods for predicting 9 class 
protein structures; DML_SSembed and LIFT_SS. Both these 
methods utilize embeddings derived from ProtTrans, a trained 
PL). These two methods were selected based on their 
utilization of the 9 class predictor from DSSP4. 

DML_SSembed employs a centroid model for sequence to 
sequence prediction. It assigns a centroid in the embedding 
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space to each structure category and aims to maximize the 
similarity between each amino acid and its corresponding 
centroid. This approach enhances the accuracy of secondary 
structure prediction. In contrast, LIFT_SS utilizes a fine tuning 
strategy on the pre trained PLM by employing 7 state of the art 
fine tuning techniques. This enables LIFT_SS to predict 
structures accurately by introducing new parameters during the 
embedding process. The results of these comparisons including 

predictions, for both 9- and 3- class scenarios are presented in 
Tables II and III. Notably, the highest metric values were taken 
from the 7 fine-tuning techniques used by LIFT_SS. The data 
for existing predictors were obtained from [7]. It is worth 
mentioning that the TE_SS model consistently outperformed 
both DML_SSembed and LIFT_SS exhibiting its accuracy and 
effectiveness, in predicting protein structure. 

TABLE I.  COMPARISON (Q8, Q3, SOV8, AND SOV3 ACCURACY) WITH STATE-OF-THE-ART METHODS 

Method 
TEST2016 TEST2018 

Q8 SOV8 Q3 SOV3 Q8 SOV8 Q3 SOV3 

CNN_BIGRU [45] 73.91 70.92 85.04 81.61 72.78 68.75 84.17 79.41 
DeepACLSTM [33] 75.19 73.67 85.62 82.6 73.42 71.32 84.66 80.05 

DCRNN [30] 72.19 68.63 83.72 78.39 70.6 65.82 82.75 75.1 
DeepCNN [31] 74.54 71.56 85.14 79.31 72.75 69.18 84.16 76.83 

MUFold-SS [34] 76.03 73.67 85.97 81.98 74.29 71 84.63 79.53 
NetSurfP-2.0 [37] - - - - 73.81 71.14 85.31 78.58 

SPOD-1D [36] 76.03 73.88 86.67 79.52 74.26 71.45 85.66 78.77 
SAINT [35] 76.23 - - - 74.48 - - - 

SPIDER-3 [32] - - 84.66 75.62 - - 83.84 73.89 
DML_SS [4] 76.62 74.6 86.1 82.72 74.82 72.23 84.83 80.5 

SPOT-1D-LM [19] - - - - 76.47 - 86.74 - 
DML_SSembed [4] 78.03 75.9 87.41 84.51 76.48 73.44 86.82 82.43 

LIFT_SS [7] 78.7 76.79 87.84 84.76 76.86 74.24 87.13 82.32 
TE_SS 79.08 77.02 87.99 84.81 77.57 74.60 87.31 82.47 

TABLE II.  COMPARATIVE 9-CLASS PSSP RESULTS ON THE TEST DATASETS 

Method 
CASP12 CASP13 CASP14 CB433 

Q9 SOV9 Q9 SOV9 Q9 SOV9 Q9 SOV9 

DML_SSembed [4] 74.81 70.07 72.32 67.25 65.4 58.43 75.59 73.35 
LIFT_SS [7] 75.82 70.81 73.07 68.06 66.59 59.71 76.87 74.36 

TE_SS 76.44 71.03 75.62 71.51 67.47 60.29 78.95 76.37 

TABLE III.  COMPARATIVE 3-CLASS PSSP RESULTS ON THE TEST DATASETS 

Methods 
CASP12 CASP13 CASP14 CB433 

Q3 SOV3 Q3 SOV3 Q3 SOV3 Q3 SOV3 

DML_SSembed [4] 84.56 78.48 82.75 74.99 77.7 68.82 85.9 80.63 
LIFT_SS [7] 85.24 79.38 83.56 77.3 78.38 68.23 86.69 81.28 

TE_SS 85.55 79.84 84.69 77.50 78.56 69.71 87.35 81.64 
 

D. Multi-Metric Evaluation 

To thoroughly evaluate models performance, an approach 
was adopted by considering evaluation metrics, such as F1 
score, Precision, and Recall. These metrics were applied to 
CB433, CASP12, CASP13, and CASP14 datasets. This 
rigorous evaluation strategy ensured that the model’s 
effectiveness in predicting protein structure was reliable and 
applicable to a range of protein sequences. Table IV provides a 
summary of the models performance on these metrics 
highlighting its accuracy in predicting protein structure. The 
proposed model consistently performed satisfactorily across all 
datasets indicating its potential, for various protein structure 
prediction tasks. 

TABLE IV.  PERFORMANCE OF TE_SS ON TEST DATASETS  

Dataset F1 Precision Recall 

CASP12 61.28 68.66 57.45 
CASP13 58.95 64.24 56.56 
CASP14 45.11 53.06 42.94 
CB433 67.72 73.16 65.55 

IV. CONCLUSIONS  

In this study, the effectiveness of the transformer-based 
TE_SS model in predicting protein structures has been 
demonstrated. Utilizing the Ankh protein language model for 
feature embedding, the TE_SS model achieves accurate 
predictions of protein structures in both nine and eight 
classification systems. The model's performance in predicting 
9-class structures was evaluated on CASP12, CASP13, 
CASP14, and CB433 test datasets. Also, the model, trained on 
data containing 8 classes, was evaluated on two publicly 
available test datasets, TEST2016 and TEST2018. The 
experimental results indicate improved accuracy compared to 
the other models. A notable advancement of TE_SS is its 
adeptness in capturing both short-range and long-range 
dependencies among residues in proteins. The ability of this 
transformer-based model to process sequence data in parallel 
demonstrates its efficiency and effectiveness in analyzing 
complex protein structures. However, it is worth noting that the 
proposed method has limitations in terms of its demanding 
resources and GPU memory requirements. Moreover, the 
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model currently lacks the ability to provide information 
regarding the reliability or confidence level of its predictions. 
This shortcoming is especially evident when the model 
encounters specific types of proteins or disordered regions 
within proteins, where its predictions may be less accurate or 
reliable. For future work, it is imperative to address these 
limitations, potentially by developing methods to estimate 
prediction reliability and optimizing the model for reduced 
resource consumption. 
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