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ABSTRACT 

Graph Neural Networks (GNNs) have emerged as a powerful tool for node representation learning within 

graph structures. However, designing a robust GNN architecture for node classification remains a 

challenge. This study introduces an efficient and straightforward Residual Attention Augmentation GNN 

(RAA-GNN) model, which incorporates an attention mechanism with skip connections to discerningly 

weigh node features and overcome the over-smoothing problem of GNNs. Additionally, a novel MixUp 

data augmentation method was developed to improve model training. The proposed approach was 

rigorously evaluated on various node classification benchmarks, encompassing both social and citation 

networks. The proposed method outperformed state-of-the-art techniques by achieving up to 1% accuracy 

improvement. Furthermore, when applied to the novel Twitch social network dataset, the proposed model 

yielded remarkably promising results. These findings provide valuable insights for researchers and 

practitioners working with graph-structured data. 



Engineering, Technology & Applied Science Research Vol. 14, No. 2, 2024, 13238-13242 13239  
 

www.etasr.com Abbas et al.: Residual Attention Augmentation Graph Neural Network for Improved Node Classification 

 

Keywords-graph neural networks; node classification; over-smoothing; citation and social networks; mixup 

data augmentation 

I. INTRODUCTION  

Graphs are used in many different disciplines, such as 
social networks, biological systems, and recommendation 
engines, to depict intricate relationships and structures. To 
properly interpret and utilize graph data, it is critical to learn 
meaningful node representations within these complex network 
topologies. In light of this, Graph Neural Networks (GNNs) 
have become a powerful paradigm that presents a hopeful 
resolution to this problem [1]. GNNs facilitate efficient node 
classification, graph classification, and link prediction, among 
other tasks, by encoding both the local and global graph 
structure [2]. However, creating effective GNN architectures 
that meet the unique requirements of node classification is still 
a challenging issue. Numerous GNN variations have been 
proposed, each with a unique architectural design and 
components, creating a vast array of alternatives [3]. The 
ongoing research for the most effective and efficient GNN 
architectures that can function effectively on a range of real-
world graph data is highlighted by this diversity. 

This study aims to offer a thorough and workable approach 
for enhancing GNN performance in the context of node 
classification in light of these difficulties. The proposed 
method aims to improve the capabilities of GNN designs while 
making them simpler, drawing inspiration from recent 
developments in the field. This approach combines graph 
convolutional layers with fully connected layers in a simplified 
architectural layout. It uses Attention Mechanism (AM) [4] and 
Data Augmentation (DA) strategies, namely MixUp [5], to 
further enhance the performance of GNNs in node 
classification. Strategically incorporated into the GNN 
architecture, these strategies help improve the generalization of 
the GNN model. Skip Connections (SCs) are used to reduce the 
accuracy loss caused by over-smoothing. Extensive tests were 
performed on various node classification tasks to thoroughly 
evaluate the performance of the proposed strategies on known 
benchmarks, such as social networks [6] and citation networks 
[7]. Concisely, this study:  

 Developed a Residual Attention Augmentation Graph 
Neural Network (RAA-GNN) to enhance the evaluation of 
the node classification task. 

 Developed a novel DA method, called MixUp DA, which 
combines labels and node attributes to produce synthetic 
data points and improve the model's ability to classify 
nodes. Additionally, well-designed skip connections and an 
effective multi-head attention technique were introduced to 
improve information aggregation and over-smoothing 
issues, which together improve GNN performance for node 
classification. 

 Evaluated the proposed method on the Twitch social 
network dataset, and the results showed up to a 1% gain in 
accuracy, providing further insights for graph-structured 
data applications. 

II. RELATED WORKS 

Several studies have investigated SCs, AMs, and DA in the 
context of graph-based machine learning. Although DA has 
been beneficial in enhancing model performance in several 
fields, its implementation in graph-based machine learning has 
encountered difficulties. Conventional augmentation methods 
for graph data, including noise addition or perturbing node 
properties [8], frequently fail because they break the natural 
graph structure [9]. Furthermore, the addition of synthetic noise 
can impede the learning and generalization of the model. The 
proposed MixUp DA strategy [10] provides a logical method to 
enhance graph data by seamlessly combining node attributes 
and labels. 

Attention mechanisms have revolutionized information 
aggregation in GNNs by allowing nodes to choose to attend to 
the relevant neighbors [11]. However, problems with 
scalability and processing complexity may make them less 
successful. Current methods are frequently computationally 
intensive, and therefore, they are unfeasible for large-scale 
graphs. Currently, the SuperHyperGraph presents the most 
general form of graph [11]. These issues are addressed and 
make it easier to apply attention methods to larger graphs by 
introducing a multi-head AM that strikes a compromise 
between expressive capacity and computational efficiency. SCs 
are important in deep learning architectures because they 
facilitate the transfer of information between layers [12]. 
Applying SCs in GNNs has proven difficult, despite their 
usefulness. Their poor integration can cause over-smoothing, 
reducing classification accuracy by making nodes 
indistinguishable through excessive information exchange. 
This study introduces SCs into the GNN design to mitigate the 
effects of over-smoothing [13], resulting in improved 
performance without sacrificing accuracy. Consequently, SCs, 
AM, and DA [14-15] have all been crucial in the advancement 
of graph-based machine learning. This study addresses these 
systems' drawbacks by providing a computationally efficient 
multi-head AM, a more principled approach to DA, and a 
method for preventing over-smoothing using SCs. Together, 
these developments enhance node classification in GNNs and 
enable a greater variety of complicated, real-world graph data 
to be used in GNNs. 

III. METHODOLOGY 

Figure 1 shows the architecture of the proposed RAA-GNN 
model. In the first step, the MixUp augmentation strategy 
employs a feature-label augmentation method to increase the 
robustness of the training dataset. Then, the AM is used, which 
permits the adaptive weighting of pertinent neighbors, boosting 
the model's capacity to identify significant local structures and 
raising classification accuracy all around. Following this, SCs 
are used to solve the over-smoothing problem of GNNs for 
node classification. 
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Fig. 1.  The RAA-GNN architecture integrates SCs, AMs, and DA for improved node classification. 

A. Node Augmentation MixUp Method 

GNNs can be designed with MixUp augmentation as a 
practical and efficient approach to improve node classification 
performance. The proposed method is based on meticulous 
preprocessing of input data represented by X, which guarantees 
consistency and standardization. MixUp augmentation serves 
as a dynamic catalyst by carefully combining the training 
dataset to add robustness and diversity. The amount of 
augmentation is dynamically influenced by the mixing 
parameter λ. This coefficient highlights the controlled 
variability included during training and is randomly generated 
from a beta distribution with parameters: 

���� � �� � 	1 �  ����������    (1) 

MixUp works in unison with the larger GNN design, where 
SCs and attention processes are essential building blocks to 
improve the model's comprehension of complex graph 
structures. The following mathematical formulas capture 
MixUp's effect on the data and explain how original and 
shuffled features and labels are well combined, which adds to 
the model's flexibility: 

����� ���� �  
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Integrating MixUp into the GNN model promotes a more 
robust and flexible learning process for node categorization 
tasks. The proposed GNN architecture is at the forefront of 
node classification research because of this deliberate 
augmentation, which also strengthens the model's ability to 
generalize across a variety of graph configurations and enrich 
the training dataset. 

B. Attention Mechanism (AM) for Node Classification 

RAA-GNN is used to represent the attention function, 
which is essential to the model's ability to concentrate on the 
most pertinent data inside the graph structure. With sixteen 
attention heads, the model captures many structural details and 
complex relationships, leading to a thorough comprehension. 

The ReLU activation function is used to combine the 
contributions of each attention head, represented as RAA-
GNNi(X, A), to get the final attention scores. Each attention 
head makes a unique contribution to the overall AM. The 
adjacency matrix is represented by A. Intricate graph patterns 
are captured by 64 hidden dimensions, which balance model 
expressiveness and efficiency. The aggregation function 
combines data from nearby nodes by applying the summation: 

)*++ � ∑ )--     (4) 

where N is for the neighbor. By introducing non-linearity, 
ReLU activation improves the model's capacity to learn 
intricate relationships: 

)*./�0*/�� �  1��20, )*++5   (5) 

C. Skip Connections (SCs) 

The SCs, denoted by Hskip, enable the smooth transfer of 
data between the model's layers. These SCs serve to bridge the 
gap between subsequent layers by integrating the activated 
features (Hactivated) with the features of the preceding layer 
(Hprevious), therefore facilitating the transfer and retention of 
crucial information. By ensuring that important information 
from previous layers is merged, this additive process improves 
the model's ability to represent both local and global 
interdependence. 

)�6�7 � )* � )7    (6) 

where a is the activated and p is the previous. The model's 
three layers improve node classification by capturing 
hierarchical representations: 

)8�/7�/ � 9::	)�6�7
	;� �   (7) 

The output graph, which displays node classifications based 
on learned features, is generated by the last layer: 

<7=�� � >?@�1��2)8�/7�/5   (8) 

This architecture provides a basis for strong node 
classification in a variety of datasets by utilizing cutting-edge 
methods to address graph-based learning difficulties. 
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IV. EXPERIMENTAL RESULTS AND DISCUSSION 

Extensive simulations were carried out to evaluate the 
performance of the proposed GNN with the novel features of 
DA, AM, and SCs. The findings demonstrate the complex 
relationships between these elements and the accuracy of node 
classification on a variety of datasets. The results in Table I 
shed important light on the relative importance of the various 
parts of the proposed GNN model. These features are crucial 
for accurately capturing complex relationships in graphs, as 
demonstrated by the model's strong performance across a range 
of datasets. The results advance the knowledge of GNN 
architectures and provide useful advice for creating powerful 
models that are suited to particular uses. 

The experimental results demonstrate that the proposed 
GNN architecture changes increase the model's test set 
accuracy up to 1%. Adam optimizer, with a learning rate of 
0.01, DA, AM, SC, and three GCN layers with the ReLU 
activation function were utilized in the top-performing design. 
Table II shows the reported mean classification accuracy for 

the fully supervised node classification task for various graph 
neural network models. The bold numbers represent the best 
results while the second bests are underlined. The results for 
GCN, Mix-Hop, and GraphSAGE were obtained from [16]. 
The results For GCNII, NodeAug, FSGNN, GPRGNN, and 
GEOM-GCN were taken from [17, 18]. Traditionally, GNN 
models such as GCN and GAT have more efficiency on 
homophily datasets, although they give poor results on datasets 
with heterophily. Advanced models such as WRGAT, and 
GPRGNN function are reasonably superior on datasets with 
both homophily and heterophily. The proposed model performs 
significantly better on heterophily datasets, particularly with a 
notable boost on the CiteSeer and Chameleon datasets. 
Improvements were also noted for the datasets from Actor, 
Texas, and Cornell. The proposed model achieves consistent 
and comparable performance to state-of-the-art methods on 
homophily datasets. It also performed exceptionally well in the 
evaluation of the new Twitch social network dataset for node 
classification, demonstrating its flexibility to various graph 
architectures [19]. 

TABLE I.  NODE CLASSIFICATION ACCURACY (%) FOR THE PROPOSED MODEL 

 Cora CiteSeer PubMed Chameleon Wisconsin Texas Cornell Squirrel Actor 

Proposed 88.94 78.32 89.14 79.31 86.14 86.21 86.57 72.22 36.71 

Without DA 85.33 73.52 87.37 78.30 84.90 85.12 86.21 71.39 34.99 

Without AM 86.22 75.59 87.13 79.01 84.90 84.22 84.43 71.35 33.78 

Without SC 85.59 77.23 86.97 78.30 83.09 84.32 85.55 71.87 32.34 

TABLE II.  NODE CLASSIFICATION ACCURACY (%) FOR DIFFERENT MODELS ON VARIOUS DATASETS 

Model Cora CiteSeer PubMed Chameleon Wisconsin Texas Cornell Squirrel Actor Mean Acc. 

GCN 87.28 76.68 87.38 59.82 59.80 59.46 57.03 36.89 30.26 61.62 

GraphSAGE 86.90 76.04 88.45 58.73 81.18 82.43 75.95 41.61 34.23 69.50 

MixHop 87.61 76.26 85.31 60.50 75.88 77.84 73.51 43.80 32.22 68.10 

GEOM-GCN 85.27 77.99 90.05 60.90 64.12 67.57 60.81 38.14 31.63 64.05 

GCNII 88.01 77.13 90.30 62.48 81.57 77.84 76.49 N/A N/A – 

NodeAug 86.20 75.40 82.1 N/A N/A N/A N/A – – – 

GPRGNN 88.49 77.08 88.99 66.47 85.88 86.49 81.89 49.03 36.04 73.37 

FSGNN 87.61 77.17 89.70 78.93 87.25 85.90 86.23 73.32 34.89 77.88 

RAA – GNN 88.94 78.32 89.14 79.31 86.14 86.21 86.57 72.22 36.71 78.17 

 

TABLE III.  RESULTS ON A NEW TWITCH SOCIAL 
NETWORKS DATASET 

Dataset 
Train 

Loss 

Train 

Accuracy 

Validation 

Loss 

Test 

Accuracy 

Twitch Social 

Networks 
0.2463 0.8989 0.9186 0.9046 

 

V. CONCLUSION 

This study presents the RAA-GNN model for node 
classification that incorporates SC, AM, and DA, showing that 
these elements can work together to improve its discriminative 
ability. While SCs handle over-smoothing issues, the AMs 
specifically allow the model to perform better on graphs for 
node classification. DA is an essential component that adds 
variation to the training dataset and promotes robustness 
against overfitting. The experimental study highlighted each 
component's independent effectiveness, as well as their 
combined impact on overall performance. The proposed model 
demonstrated its adaptability by consistently outperforming 

state-of-the-art approaches in node classification across 
multiple datasets. In summary, this study extends GNN 
architectures and sheds light on the complex interactions 
between SC, DA, and AM. It also sets a new Sota node 
classification in graph structure learning through the first 
attempt to integrate SC, AM, and DA into RAA-GNN, thus 
advancing our understanding of GNNS. 
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