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ABSTRACT 

This study introduces a highly effective technique to address the load flow challenge in Radial Distribution 

Networks (RDNs). The proposed approach leverages two matrices derived from the topological features of 

distribution networks to provide an optimal solution to handle load flow challenges. To assess the efficacy 

of this technique, simulations were executed on an IEEE 33-bus radial distribution system using 

MATLAB. Deep Learning (DL) has become a powerful artificial intelligence technique that excels at 

interpreting power grid datasets. Thus, a data-driven methodology is presented that incorporates an 

advanced Long-Short-Term-Memory (LSTM) network. Employing the Recurrent Neural Network with 

the LSTM (RNN-LSTM) technique based on these simulations, the study precisely identifies the optimal 

placement of an integrated PV generator within the radial network. The application of DL techniques, 

specifically LSTM networks, exemplifies the potential of data-driven approaches in enhancing decision-

making processes. The results of this study highlight the potential of RNN-LSTM for the optimal 

integration of PV generators and for ameliorating the reliability of RDNs. 

Keywords-RDN; PV; load flow; DL; RNN-LSTM 

I. INTRODUCTION  

RDNs featuring main feeders and lateral distributors are 
gaining popularity due to their simplicity and cost-
effectiveness. Power flow analysis is crucial in designing 
efficient distribution networks, considering factors, such as 
maximum feeder currents, voltage dips, energy loss, and 
reliability [1]. Optimization of these networks relies on 
algorithms that require multiple power flow runs, with 
uncertainties arising from estimated inputs, namely load 
forecasts and network parameters. In complex distribution 
systems, practical challenges in data collection contribute to 
non-statistical uncertainties. The following characteristics 
distinguish electric distribution networks: radial or weakly 

mesh topologies, unbalanced operation with scattered loads, a 
large number of buses and branches, varying resistance and 
reactance values, as well as operation in numerous phases [2]. 

Conventional power flow techniques, like Newton-Raphson 
and rapidly decoupled methods, are effective in managing 
power systems. However, difficulties arise when applying these 
methods to faulty or improperly initialized systems [3-4]. 
Additionally, the Gauss-Seidel method, although robust, 
demonstrates inefficiency when dealing with large power 
systems [5]. Distribution networks, characterized by their ill-
conditioned nature, pose challenges due to the presence of 
diverse resistance and reactance values and their radial 
structure. As renewable energy sources become more 



Engineering, Technology & Applied Science Research Vol. 14, No. 2, 2024, 13681-13687 13682  
 

www.etasr.com Zdiri et al.: Optimizing Solar PV Placement for Enhanced Integration in Radial Distribution Networks … 

 

integrated, it becomes imperative to address these challenges in 
distribution systems. Therefore, it is crucial to adapt the load 
flow method to overcome these challenges [6]. 

The incorporation of renewable PV energy sources in 
power distribution networks is rapidly expanding [7]. The swift 
advances in Photovoltaic Generator (PG) technology and their 
integration into distribution networks present a multitude of 
benefits. These advantages encompass the reduction of the 
highest loads, greater system security, improved dependability, 
increased voltage stability, strengthened grid resilience, 
incurred peak operating expenses, and diminished network 
losses [8-9]. This study proposes an approach that uses 
Machine Learning (ML) techniques, specifically an Artificial 
Neural Network (ANN) to determine the optimal placement of 
PGs [10]. Deep Learning (DL) is viewed as a progression from 
ML, integrating algorithms that can learn from data to perform 
tasks without the need for explicit programming [11]. Its ability 
to extract advanced features from extensive input data, known 
as feature engineering, sets it apart from ML. Consequently, 
DL is increasingly favored for its groundbreaking applications 
in natural language processing, computer vision, and predictive 
modeling [12]. Various types of DL modeling approaches have 
been presented, including vector space models, Convolutional 
Neural Networks (CNNs), Recurrent Neural Networks (RNNs), 
and hybrid neural networks [13].  

This study employed a DL technique, specifically RNN-
LSTM, to enhance the placement of PV generators. This 
approach effectively addresses load flow challenges by 
utilizing two matrices derived from the topology of the 
distribution network. The efficiency of the proposed technique 
is demonstrated through simulations conducted on an IEEE 33-
bus RDN using MATLAB. The prediction procedure exhibits 
significant improvements in the efficacy and performance of 
the proposed technique. The findings demonstrate the potential 
of the proposed RNN-LSTM technique for optimizing PG 
placement in distribution networks, leading to enhanced 
network performance and efficiency. 

II. PHOTOVOLTAIC INTEGRATION IN RDNS 

The control of load flow in an RDN is achieved by 
incorporating Bus Injections into the Branch Current (BIBC) 
matrix and applying comparable current injections [14]. The 
model based on current injection, especially beneficial for 
distribution networks, is employed. The formula for the load 
apparent power at the node ci is given by: 

��� � ��� � �. 	��    (1) 

where ���  represents the active load power,  	�� represents the 
reactive load power for each bus, and � takes values from 1 to �. The ii-th current injection can be expressed similarly as: 

���� � ���������� � �. ���������� � ����� � �	���/������ ∗ (2) 

At the iith
 iteration, the bus voltage and current injection are 

symbolized as Vc
ii
 and Ic

ii
, respectively, and s2 

= -1. The real 
and imaginary parts of the current injection at this iteration are 
denoted by Ici

i
 and Ici

r
, respectively. 

A. Development of Relationship Matrices 

Figure 1 illustrates a basic RDN. 

 

 

Fig. 1.  Simplified RDN. 

Equation (2) is used to compute the injected currents, and 
Kirchhoff's current law is applied to determine the branch 
currents in the RDN. As a result, the branch currents can be 
expressed as functions of their respective current injections: 

⎩⎪
⎨
⎪⎧

��� � �� � �� � �� � �� � � � �!��� � �� � �� � �� � � � �!��� � �� � �� � � ��� � �� � � ��� � � �� � �!

  (3) 

Therefore, the branch currents can be obtained as follows: 
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⎢⎢
⎢⎡
��������� �!⎦⎥

⎥⎥
⎥⎤
  (4) 

Equation (4) may be rewritten as: 

*�+ � *��,+. *�+    (5) 

The BIBC matrix is characterized by an upper triangular 
structure, with its elements exclusively taking values of 0 or 1. 

B. Development of BIBC Matrices 

The process for forming the BIBC matrix, as delineated (4), 
can be outlined as shown in [15]. 

C. Development of the Bus Voltage 

To determine the receiving-end bus voltages, a forward 
sweep is performed across the ladder network utilizing the 
following generalized equations: 

��cm2� � V�cm1� - Br�jj� Z �jj�  (6) 

In this context, the symbols cm1 and cm2 represent the 
transmitting and receiving ends, respectively, and Br(jj) 
denotes the branch current number. The following equation can 
be used to calculate the correlation between branch currents 
and bus voltages: 
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    (7) 

These relationships can be illustrated in a matrix form: 

*Δ�+ � *�,��+. *��+    (8) 

with: 

*�,��+ �
⎣⎢
⎢⎢
⎢⎡
7�� 0 0 0 0 07�� 7�� 0 0 0 07�� 7�� 7�� 0 0 07�� 7�� 7�� 7�� 0 07�� 7�� 7�� 7�� 7� 07�� 7�� 0 0 0 7�!⎦⎥

⎥⎥
⎥⎤
  

The Branch Current to Bus Voltage (BCBV) matrix 
facilitates the computation of equivalent bus voltage 
fluctuations corresponding to variations in branch currents. The 
expression below can be employed to articulate the correlation 
between bus voltages and current injections: 

*��+ � *���+ 6 *�,��+. *��,+. *�+  (9) 

The updated voltage values are employed for a new top-
down iteration. The next equation can be deployed to calculate 
the connection between branch currents and bus voltages. 
Additionally, the actual and reactive power loss of the branch 
ij, with j=i+1, can be determined using: 

89:;<< � |�������|. |>����|?:;<< � |�������|. |@����|   (10) 

with R(ij) and X(ij) being the resistance and reactance of the 
line section ij. 

D. Development of PV Bus 

The most favorable PG location on an RDN, in terms of 
minimizing losses, is near the line's termination point. The 
maximum power capacity of a solar plant is expressed by [16]: 

�AB � ��. C� . D1 � ��. �C� 6 C��EF� � ��. �GH� 6 GH��EF�I (11)  

where Ec represents the panel insolation (W/m
2
), Ecref and Tjcref 

are equal to 1000 W/m
2
 and 25°C, and P1, P2, and P3 are fixed 

values. This simplified model enables the calculation of the 
maximum PG power at a given panel irradiation and 
temperature, with only three constant variables and a 
straightforward equation. The active power at bus i varies 
according to the following factors: 

��� � ���J 6 �AB     (12)  

The initial power consumption at bus i, before the injection 
of power from the PG, is denoted as Pci0. 

III. RNN DL PV PLACEMENT 

A. DL Techniques 

DL modeling techniques facilitate the acquisition of feature 
representations in data through the utilization of multiple 

processing layers and various levels of abstraction [17]. 
Advanced DL models, founded on ANNs [18], demonstrate 
proficiency across diverse domains. Despite their effectiveness, 
ANNs exhibit drawbacks, such as the absence of guaranteed 
convergence to an optimal solution and susceptibility to 
overfitting in the training data. The term "deep" in DL reflects 
the numerous processing layers traversed by data within the 
network. A DL model comprises stacked layers, as shown in 
Figures 2 and 3. The initial layer (input) consists of units with 
values distributed to neurons in the first hidden layer, leading 
to the final layer where predicted results emerge. The number 
of units in the final layer corresponds to the desired output 
classes. Hidden layers positioned between the input and output 
layers apply weights to inputs, passing them through an 
activation function that introduces non-linearity, facilitating the 
learning of complex data relationships. The backpropagation 
algorithm computes the error between predicted results and the 
desired output class and then adjusts the weights in the hidden 
layer to minimize loss. This iterative process continues until the 
output achieves sufficient accuracy for practical use [19]. 
Given the aforementioned neural network concepts, numerous 
DL modeling techniques have been explored [20]. 

 

 

Fig. 2.  Conventional neural network. 

 
Fig. 3.  DL neural network. 

B. RNN with LSTM 

RNNs have exhibited promising results in various natural 
language processing tasks, excelling in areas, such as sentiment 
classification [21], image captioning [22], and language 
translation [23]. Many scenarios involve data sequences that 
inherently convey the essence of the information, as noticed in 
tasks like language modeling where the meaning is derived 
from the sequential arrangement of words. Traditional neural 
networks assume no interdependence between input and 
output, but in cases where sequential order matters, a network 
that incorporates prior information becomes essential for 
meaningful comprehension of the data. RNNs address this need 
by performing the same computation for each element in a 
sequence, establishing a connection to previous information. 
This recurrent nature enables RNNs to maintain a memory that 
retains information from prior computations [24]. 

An LSTM network consists of distinct memory blocks 
known as cells. These cells are formed by gates that regulate 
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the information flow, including forget, input, and output gates. 
The forget gate eliminates information from the cell 
configuration, while the input gate incorporates newly entered 
data into the cell. The input gate governs the pace at which new 
data is introduced to the cell, and the output gate restricts the 
data within the cell, determining the output activation of the 
LSTM unit. The equations below can be used to define the 
gating mechanism in an LSTM network: 

KL � MNOFF . *ℎLP�, RL+ � SFFT   (13) 

�L � M�O�� . *ℎLP�, RL+ � S���   (14) 

,U � VW�ℎ�OXX . *ℎLP�, RL+ � SXX�  (15) 

,L � KL ∗ ,LP� + �L ∗ ,UL   (16) 

YL = M�O;;. *ℎLP�, RL+ � S;;�   (17) 

ℎL � YL ∗ VW�ℎ�,L�    (18) 

where: 

 KL is the forget gate output at the time step V.This element 
decides the extent to which the information from the 
previous cell state should be disregarded. 

 �L is the input gate output at V, dictating the proportion of 
the candidate cell state to be added to the existing cell state. 

 ,UL is the candidate cell state at V, referring to a novel piece 
of information that can be incorporated into the cell state. 

 ,L  is the current cell state at V. This signifies the memory 
aspect of the LSTM cell. 

 YL  is the output gate output at V . This factor decides the 
proportion of the current cell state to be produced as the 
output. 

 ℎL is the hidden state output at V. This is the result or output 
produced by the LSTM cell. 

 OFF , O�� , OXX , and  O;;  are matrices representing the 

weights for the forget gate, input gate, candidate cell state, 
and output gate, respectively. 

 SFF , S�� , SXX ,  and  S;; are bias vectors. 

 M denotes the sigmoid activation function. 

 ∗ denotes element-wise multiplication. 

These equations describe the gating mechanism in an 
LSTM network. The forget gate (13) determines which 
information should be discarded from the cell state, while the 
input gate (14) decides the amount of new information that 
should be added. The output gate (15) controls the information 
flow from the cell to the output activation of the LSTM unit. 
LSTM networks can be used to effectively model the 
interdependencies and sequential patterns in the input data, 
allowing the capture of relevant information for the problem at 
hand. These insights are incorporated into the objective 
function to ensure that the input signals are appropriately 
represented. 

IV. SIMULATION RESULTS  

The proposed algorithm was implemented on the IEEE 33-
bus RDN, both with and without a PG. The system consists of 
33 buses and 32 lines, as depicted in Figure 4. By applying the 
proposed algorithm to this real-world distribution system, it is 
possible to assess its performance and evaluate its applicability 
in several scenarios. The IEEE 33-bus system is widely utilized 
as a benchmark in power system analysis, making it an ideal 
test case for validating the capabilities of the proposed 
algorithm. The Advance Power API-M370 PV module is well-
suited to meet current requirements, and its characteristics are 
illustrated in Figure 5 and Table I. 

 

 

Fig. 4.  Configuration of distribution network incorporating PG. 

 

Fig. 5.  API-M370 characteristics. 

TABLE I.  API-M370 PARAMETERS 

Maximum power (W) 370 

MPP Voltage (V) 38.8 

Current at MPP (A)  9.54 

Open-circuit voltage (V) 47.8 

Short-circuit current (A) 10.17 

 
Figure 6 portrays the voltage load flow solution obtained 

from the radial network analysis conducted on an IEEE 33-bus 
distribution system in the absence of a PG. The load flow 
solution offers important information on the steady-state 
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operating conditions of the distribution system. Analyzing the 
load flow solution provides valuable insights into voltage 
profiles and power flows across the network. These data aid in 
evaluating system stability, detecting possible voltage 
violations, and comprehending the overall performance of the 
distribution system under standard operating conditions. Table 
II presents Active Power Loss (APL) and Reactive Power Loss 
(RPL) in the case where a PG is integrated in nodes 2 to 33 of 
the distribution system, providing a comprehensive overview 
of the power losses associated with the integration of the PG 
and quantifying the impact of renewable energy integration on 
the overall power losses of the system. Specifically, the PG has 
a power capacity of 500 kW, representing a renewable energy 
integration rate of 10.77% into the electrical grid. By analyzing 
the active and reactive power losses in each case, the 
effectiveness of PG integration in reducing power losses and 
improving system efficiency can be assessed.  

TABLE II.  PG- IEEE 33 BUS RDN'S POWER LOSS SOLUTION 

Actual PG location nodes APL (p.u.) RPL (p.u.) 

2 0.2092 0.1421 

3 0.2004 0.1375 

4 0.1959 0.1351 

5 0.1913 0.1327 

6 0.1816 0.1246 

7 0.1804 0.1214 

8 0.1728 0.1159 

9 0.1696 0.1135 

10 0.1667 0.1115 

11 0.1662 0.1113 

12 0.1654 0.111 

13 0.163 0.1091 

14 0.1622 0.1082 

15 0.162 0.108 

16 0.1619 0.108 

17 0.1623 0.1085 

18 0.1629 0.1089 

19 0.209 0.142 

20 0.2085 0.1415 

21 0.2085 0.1415 

22 0.2089 0.142 

23 0.1986 0.1363 

24 0.1954 0.1338 

25 0.1943 0.133 

26 0.1807 0.1241 

27 0.1794 0.1234 

28 0.1752 0.1198 

29 0.1723 0.1174 

30 0.1709 0.1166 

31 0.1694 0.1153 

32 0.1693 0.1151 

33 0.1696 0.1156 

 

The results in Table II highlight the importance of 
renewable energy integration in mitigating power losses and its 
potential as a means to enhance the sustainability and economic 
viability of the electrical grid. Table III illustrates the power 
loss solution for branches 15-16, 16-17, and 17-18 in the 
distribution system, offering valuable information on the power 
losses that occur in these specific branches. Tables II and III 
indicate that the PG installed on node 16 plays a significant 
role in supplying a substantial amount of energy, highlighting 
its contribution to reducing power losses and enhancing the 

overall performance of the system. Furthermore, nodes 17 and 
18, which are part of branches 15-16, 16-17, and 17-18, 
consume the highest amount of energy. This demonstrates their 
importance in the distribution system and emphasizes the need 
for efficient energy management in these nodes. As moving 
away from node 16 and traverse the branches, the current 
flowing through the branches gradually decreases. This 
reduction in current leads to a decrease in power losses along 
the branches. Consequently, node 16 emerges as the optimal 
location for integrating the PG system, as it exhibits the lowest 
active and reactive power losses among the nodes considered. 
Positioning the PG system at node 16 can effectively minimize 
power losses and improve the overall performance of the 
distribution system. This information serves as a guide for the 
optimal placement of renewable energy sources, such as PG 
systems, to maximize their impact and achieve greater energy 
efficiency in the network. 

TABLE III.  PG- IEEE 33 BUS RDN'S BRANCH POWER LOSS 
SOLUTION 

 Without PG With PG (in node 16) 

Branch APL (p.u.) RPL (p.u.) APL (p.u.) RPL (p.u.) 

17-18 0.054 0.043 0.051 0.040 

16-17 0.257 0.343 0.241 0.322 

15-16 0.287 0.210 0.226 0.165 
 

 

Fig. 6.  Voltage load flow solution. 

Figure 7 showcases the active and reactive power losses in 
the IEEE 33 bus network with and without PG. Case 1 
represents the scenario in which PG is injected at node 16, 
while Case 2 represents the absence of PG. These results 
indicate a significant reduction in both active and reactive 
power losses compared to previous works. The reductions 
achieved were 23.27% in APL and 24.48% in RPL, 
highlighting the strong performance of the proposed approach. 
This decrease is achieved even without the need for additional 
shunt capacity, effectively reducing system installation costs. 
Furthermore, when the integrated PG case at node 16 was 
compared with other cases, it was found that it offers a more 
reliable voltage profile. This suggests that integrating the PG at 
node 16 not only reduces power losses, but also expands the 
overall voltage stability and reliability of the system. 

The RNN-LSTM approach was used to train a collection of 
localized PV generator data points, leveraging simulation 
results for various injected PG power datasets. Figure 8 
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illustrates the results obtained from the RNN-LSTM model, 
indicating that the actual and predicted trajectories are closely 
aligned and displaying the high level of performance and 
accuracy achieved by this technique. The RNN-LSTM method 
demonstrates remarkable performance, achieving an impressive 
accuracy level of up to 97%, as observed in Figure 9. This 
accuracy level provides compelling evidence of the superiority 
of the RNN-LSTM approach compared to traditional and ANN 
algorithms commonly employed in similar tasks [10, 25].  

 

 
Fig. 7.  APL and RPL for the two cases of the IEEE 33 bus network. 

 

Fig. 8.  RNN-LSTM prediction results. 

 

Fig. 9.  Prediction accuracy as a function of iterations. 

Comparing the proposed RNN-LSTM method with 
algorithms, such as Artificial Bee Colony (ABC), Water Wave 
Optimization (WAO), Genetic Algorithm/Particle Swarm 
Optimization (GA/PSO), Genetic Algorithm (GA), and Firefly 
Algorithm (FA) can provide valuable insights into its 
performance and potential advantages [26-28]. By surpassing 
other methods in terms of accuracy, the RNN-LSTM technique 
proves its effectiveness in precisely predicting and analyzing 
data. This exceptional accuracy underscores the robustness and 
reliability of the RNN-LSTM approach, establishing it as a 
highly valuable tool in various applications and domains. The 
evaluation considered key metrics, like the calculation time, the 
convergence rate, and the accuracy of the optimal solutions. In 
terms of calculation time, the RNN-LSTM technique 
demonstrated notable efficiency, significantly reducing the 
time required for training and prediction compared to the 
existing algorithms. Additionally, the convergence rate of the 
RNN-LSTM technique was superior, requiring fewer iterations 
to achieve a satisfactory solution. Furthermore, the accuracy of 
the optimal solutions (97%) obtained from the RNN-LSTM 
technique surpassed that of existing algorithms. This 
comparative analysis allows for a comprehensive assessment of 
the deep learning method's performance compared to other 
established algorithms, as it facilitates a better understanding of 
its potential benefits, namely improved convergence, accuracy, 
and robustness, while also identifying any areas where other 
algorithms may outperform it. The proposed RNN-LSTM 
approach for optimal PV placement in the distribution network 
offers several advantages and some disadvantages. Table IV 
entails some key points to consider. 

TABLE IV.  ADVANTAGES AND DISADVANTAGES OF THE 
PROPOSED METHOD. 

Advantages Disadvantages 

Accuracy 

Flexibility 

Adaptability 

Automation 

Computational Complexity 

Data Requirements 

 

V. CONCLUSION 

This study presented a proficient method to address the load 
flow problem in RDNs. By harnessing the topological 
characteristics of distribution networks, two matrices were 
derived that facilitated an optimal solution to the load flow 
challenge. The BIBC matrix, computed through the application 
of Kirchhoff's current law, and the BCBV matrix, illustrating 
the correlation between bus voltages and branch currents, were 
instrumental in resolving the load flow. Simultaneous 
utilization of these matrices presents a direct and effective 
method to address load flow issues. The proposed method 
demonstrated excellent performance in practical applications. 
The simulation results showcased its effectiveness in dealing 
with widespread RDNs. In addition, considering the integration 
of PG into the radial system under investigation, simulation 
results were presented and discussed concerning voltage 
amplitudes, current branches, and active and reactive power 
losses. These results helped identify the optimal location for 
integrating a PG, which was determined to be the farthest node 
providing reliable voltage and minimizing power loss. 
Furthermore, the RNN-LSTM technique was applied to 
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accurately locate a PG that had already been incorporated into 
the RDN. This prediction procedure caused a significant 
improvement in the efficacy and performance of this technique, 
as evidenced by the results obtained. 

ABBREVIATIONS 

RDN: Radial Distributed Network 
DL: Deep Learning 
PV: Photovoltaic 
APL: Active Power Loss 
RPL: Reactive Power Loss 
RNN: Recurrent Neural Network 
LSTM: Long Short-Term Memory 
PG: Photovoltaic Generator 
ANN: Artificial Neural Network 
BIBC: Branch Injection into Branch Current 
BCBV: Branch Current to Bus Voltage 
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