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ABSTRACT 

In the realm of industrial production, condition monitoring plays a pivotal role in ensuring the reliability 
and longevity of rotating machinery. Since most of the production facilities rely heavily on vibration 

analysis, it has become the cornerstone of condition monitoring practices. However, manual analysis of 

vibration signals is a time-consuming and expertise-intensive task, often requiring specialized domain 

knowledge. The current research addresses the aforementioned challenges by proposing a novel semi-

automated diagnostics system. The approach leverages historical vibration data in the form of Fast Fourier 

Transform (FFT) spectrums. The system extracts energy features from the frequency domain by dividing 

the frequency range into a predefined number of bins and summing the energy values within each bin. 

Subsequently, each datapoint is labeled based on the corresponding machine condition, enabling the 

system to learn diagnostic patterns by employing machine learning models. This approach facilitates 

efficient and accurate diagnostics with minimal manual intervention. The resulting dataset effectively 

represents and provides an interpretable result. Support Vector Machines (SVM), and ensemble 

algorithms are utilized to diagnose the faults instantaneously and with minimal error rates. The proposed 

system is capable of providing early warnings and thus prevents further deterioration and unplanned 
downtimes. Experimental validation using real-world data demonstrates the system's efficacy, achieving an 

accuracy of over 90%. 

Keywords-condition monitoring; predictive maintenance; FFT; SVM; ensemble  

I. INTRODUCTION  

Industry 4.0 is characterized by the integration of advanced 
technologies, such as artificial intelligence, Machine Learning 
(ML), and Internet of Things (IoT) into industrial processes and 
maintenance. Maintenance technologies have evolved 
considerably to address the challenge of machine reliability. 
This integration allows for the collection and analysis of large 
amounts of data from machines, which can be used to optimize 
maintenance activities and improve the reliability and 
availability of machinery. Besides that, vibration signals and 
their analysis have become an integral part of every industrial 
plant worldwide, and ML techniques, either classical [1-3] or 
deep learning [4-6] models have been employed extensively for 
fault detection using these signals. The vibration signals from 
rotating equipment can be gathered easily during operation, 
reflecting their operating conditions in real-time, thus, current 

trends in machinery fault diagnostics mainly rely on vibration 
signal analysis [7].  

Most of the vibration signals are of non-linear nature. This 
characteristic of the machinery vibration signals is mainly due 
to the changing states of loading, interaction between parts, and 
loading variations. For this purpose, many works in the field of 
condition monitoring, justify the wide use of entropy as a 
measure for signal complexity and feature engineering. 
Therefore, the use of different entropy methods (i.e 
approximate, multiscale, and sample entropies) has been 
widely associated with vibration signal analysis and machinery 
fault diagnostics [8], even though many works in this field do 
not require the use of entropy for feature engineering. For 
instance, authors in [9] developed an automatic feature learning 
neural network eliminating the need for a conventional feature 
development step. This network achieved high accuracy. 
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Authors in [10] proposed a novel deep learning algorithm 
utilizing the power of Recurrent Neural Networks (RNNs) 
combining Bidirectional Long-Short-Term Memory (BiLSTM) 
and Support Vector Machines (SVMs). Additionally, authors in 
[11] utilized BiLSTM models with autoencoders. The proposed 
hybrid model for wind turbine gearbox fault detection and 
diagnosis exhibited higher accuracy than conventional models. 
SVM, as a versatile supervised learning algorithm excels in 
both classification and regression tasks [12-13] and is well-
suited for classification problems involving small datasets [14]. 
In addition to linear classification, nonlinear classifications are 
also possible, by fine tuning the hyper parameters, and the 
kernel type [15-16]. Authors in [17] introduced a vibration 
signal dataset acquired from a laboratory testing rig. Three ML 
algorithms, namely k-Nearest Neighbors (kNN), SVM, and 
Gaussian Naive Bayes (GNB) achieved an overall accuracy of 
99.75% on fivefold cross-validation using SVM. Authors in 
[18] developed an innovative fault diagnosis system for rolling 
bearings defects, powered by SVMs and Bayesian 
optimization. Discrete Fourier Transform (DFT) was used for 
feature extraction in both time and frequency domains. The 
work demonstrated a significant improvement from 85% to 
100% accuracy compared with the base SVM model. 

Further research explored other approaches to fault 
diagnosis using ML. Authors in [19] proposed a high-accurate 
early fault diagnosis method based on the Reinforcement 
Learning (RL) optimized SVM model. Authors in [20] 
developed a test rig to collect vibration signals under different 
bearing conditions, utilizing a Quadratic SVM model, 
achieving high accuracy in fault diagnosis. Authors in [21] 
utilized a combination of Principal Component Analysis (PCA) 
and SVM for fault diagnosis. The method demonstrated high 
accuracy in fault diagnosis under varying operating speeds. 
Authors in [22] proposed a fault identification method that 
combines variational mode decomposition, average refined 
composite multiscale dispersion entropy, and an SVM model 
optimized by Multi-strategy Enhanced Swarm Optimization 
achieving high classification accuracy. Authors in [23] 
described the development of a ML pipeline using SVMs for 
diagnosing bearing faults. The SVM classifier achieved an 
overall accuracy of 91%-99% and F1-score of 0.81-0.99. Other 
researchers utilized Wavelet Packet Transform (WPT), 
Empirical Mode Decomposition (EMD), and Variational Mode 
Decomposition (VMD) hybrid methods [24-26]. They were 
proven to be effective for fault diagnosis, achieving superior 
classification accuracies. 

Continuing the above directions, ensemble learning has 
emerged as a prominent tool for classification problems, 
offering a robust and effective approach to enhancing 
predictive performance, and is poised to play an increasingly 
vital role in addressing real-world prediction tasks [27-29]. 
Authors in [30] presented an innovative diagnosis model using 
Complementary Ensemble Empirical Mode Decomposition 
(CEEMD) with SVM kernel to evaluate the health condition of 
bearings. This method has a high prediction accuracy and is 
easy to implement. Authors in [31] utilized the Multi-Scale 
Sample Entropy-based Energy Moment (M-SSampEn-EM) 
method and proposed an innovative approximate distance-
based metric to optimize the feature extraction parameters. 

Authors in [32] adopted an EMD method to extract features 
from denoised signals and classify them using multiple 
classifiers. The best results were achieved with a hybrid of time 
and spectral features using SVM with a Gaussian kernel. 

To develop an interpretable dataset, for fault detection in 
rotating machinery, the first step is to extract the energy from 
each frequency band, through FFT transformation of the raw 
time waveform signal. The FFT has emerged as a widely used 
and indispensable tool in signal processing. By employing this 
transformation, signals can be effectively transformed to the 
frequency domain. Several algorithms have been developed to 
efficiently calculate the FFT, paving the way for the 
implementation of high-performance FFT processors. The 
Fourier transform essentially converts a signal's representation 
from the time domain to the frequency domain [33-35]:  

�(�)  =  �{�(	)}  =  � �(	)�������	�
�  (1) 

where �(	) is the time domain signal, �(�) is the FFT, and ft 
is the frequency to be analyzed.  

To measure the size or strength of a signal, signal energy as 
a concept in signal processing is used. If (|x(t)|) is a continuous-
time signal, its energy is given by (2) and if it is a discrete-time 
signal, it is given by (3) [36-37]: 

�(�) =  � |�(	)|��	�
�     (2) 

������ =  ∑ |����|�� !�     (3) 

Signal energy can also be computed in the frequency 
domain, using the Fourier transform of the signal. The total 
energy of the signal is equal to the integral of the spectral 
energy density over all frequencies. This is a consequence of 
Parseval’s theorem [37], which states that: 

� |�(	)|��
� �	 =  "

��  � |�(�)|����
�   (4) 

where (|�(�)|) is the Fourier transform of (|�(	)|). 

In order to calculate the cumulative energy of each 
individual bin, (5) [26] is used where �(�) is the frequency 
domain signal, M denotes the number of frequency bins, each 
with width ∆� , and the frequency range for the i

th
 bin is 

���  , �� + ∆��:  
{�", ��, … , �'}    (5) 

To this end, the primary objective of this research work is 
to critically assess the practicality of incorporating ML 
methodologies as a diagnostic instrument within industrial 
environments. Also, its innovative aspect is underscored by the 
application of traditional ML algorithms to pre-existing 
historical data taken from a real-world industrial context as a 
case study, involving machinery that operates under severe 
conditions, exposed to both gradual and abrupt degradation of 
components. The process involves converting raw vibration 
waveform signal with FFT, then extracting the energies from 
the different frequency bands, creating a dataset that is fed into 
an ensemble model with SVC as the base estimator. The 
resulting model can classify various faults with high efficacy 
across various performance metrics including accuracy, 
precision, and F1-score.  
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II. METHODOLOGY 

A. The Proposed Model 

The proposed model for predictive maintenance comprises 
three key components: machine identification, data acquisition, 
and automated diagnosis. The system outputs one of the four 
predicted conditions: normal operation, unbalance, bearing 
defect, or a combined case of unbalance and bearing defect. 
This system is scalable to a wide range of similar machinery 
due to its reliance on dividing the FFT spectrum into frequency 
bins and measuring the cumulative energy in each bin. This 
approach offers interpretable results that are readily applicable 
in real-world scenarios. Figure 1 presents an overview of the 
proposed automated diagnosis system. The system consists of 
three primary components: 

1. Rotating machinery: The selected rotating machinery in 

this study is an Induction Draft (ID) fan. 

2. Vibration signal acquisition device and analysis system: 

This component collects the time-domain vibration signal 

from the rotating machinery and converts it into its FFT 
representation.  

3. Automated diagnostic part: This component receives the 

FFT spectrum and extracts energy features by summing the 

energy values within pre-defined bins across the frequency 
domain. Each data point is labeled according to the 
corresponding machine condition.  

 

 
Fig. 1.  Overview of the automated diagnosis system. 

Subsequently, the extracted features are fed into an ML 
model with parameters optimized through cross-validation 
process. The model's output provides a textual classification, 
identifying one of the four predefined conditions. Figure 2 
illustrates the internal workings of the automated diagnostic 
component. It depicts the flow of data through the component, 
from the input of the FFT spectrum to the final textual 
classification of the machine condition. 

The combined use of vibration signal analysis and ML 
offers a promising approach for automated diagnostics of 
rotating machinery. This system provides potential advantages, 
such as improved accuracy, reduced reliance on human 
expertise, and increased efficiency in condition monitoring and 
fault detection. 

 
Fig. 2.  Flow chart of the automated diagnostic system. 

Rolling Contact Fatigue (RCF) [38-39] is a detrimental 
wear process that occurs in rolling bearings, characterized by 
the gradual deterioration of the bearing surface due to repeated 
rolling contact stresses. This progressive wear process can be 
broadly divided into five distinct stages, each marked by 
unique surface topology changes and accompanied by specific 
physical measurements. Elevated stresses in rolling contact 
arising from increased operating loads, faults like imbalance, 
misalignment, bent shaft, looseness, or distributed defects such 
as high surface roughness and waviness, contaminations, and 
inclusions, may induce topological alterations. The progression 
of RCF can be significantly accelerated by the presence of the 
above-mentioned faults within the rotating machinery. These 
faults introduce additional dynamic forces and stress 
concentrations, exacerbating the wear process and potentially 
shortening the bearing's lifespan as shown in Figure 3.  

 

 
Fig. 3.  Cycle of bearing failure pattern of the induction draft fan. 

Rolling element bearings exhibit distinct vibrational 
signatures that serve as indicators of the degradation stage. 
These signatures arise from the interaction of rolling elements 
with fatigue-induced defects on bearing surfaces, generating 
periodic impulses known as "fundamental defect frequencies". 
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These frequencies are influenced by the bearing's geometrical 
configuration and the rotational speed of the shaft resulting in 
frequencies that lie within the high-frequency range of the 
vibration spectrum. These defect frequencies were categorized 
to: Ball Pass (BP) frequencies, Ball Pass Outer Race Frequency 
(BPFO), Ball Pass Inner Race Frequency (BPFI), Ball Spin 
Frequency (BSF), and Fundamental Train Frequency (FTF) as 
in  (6-9), which are defined by: 

BPFO =   �,
� -1 / 0

1  cos56   (6) 

BPFI =  �,
� -1 + 0

1  cos56   (7) 

 FTF =  �,
� -1 / 0

1  cos56   (8) 

BSF =  1
�0 :1 / ;0

1  cosϕ=�>    

B. Real World Dataset 

Vibration signal data are acquired with an Emerson CSI 
2140 data collector equipped with a 100 mV/g accelerometer. 
The data are collected from an ID centrifugal fan in the pyro-
processing area of the local cement manufacturing facility at 
XYZ Company. The fan is driven by a 1600 kW medium 
voltage drive connected by a coupling to a shaft hanging an 
impeller centrally between two bearings. The rotating parts of 
the equipment are subjected to high-magnitude forces due to 
structural loads, multi-axis dynamic loads acting during 
operation, and rotational inertia. Rotating element bearings, 
including two spherical roller bearings of types SKF 22244, 
and SKF C2244, are mounted on the fan’s shaft. The weight of 
the whole shaft along with the impeller exceeds 10,000 kg, 
exerting very high loads on these bearings, rendering them as 
the most critical components of the fan.  

 

 

Fig. 4.  The data acquisition process. 

The signal is collected from three directions (horizontal, 
vertical, and axial) by placing a uniaxial accelerometer attached 

to a data collection unit. The vibration signal is collected in the 
form of a time waveform, and then exported to the signal 
analyzer software. The signals are analyzed either by using the 
raw time waveform signals or by converting them digitally and 
displaying the signal in FFT form. This study exclusively 
employed the frequency-domain representation, extracting 
peak amplitudes and their corresponding frequencies as well as 
orders from the FFT spectra provided by the software. Figure 4 
visually depicts the complete workflow of signal acquisition 
and subsequent data extraction. 

III. RESULTS AND DISCUSSION 

This section outlines the implementation process of the 
proposed model for early fault prediction, encompassing data 
labeling, dataset summarization, condition representation 
analysis, ML model evaluation, and accuracy assessment. 

A. Labeling 

Data labeling is a crucial step in the development of ML 
models, as it involves annotating raw data with meaningful 
labels that enable the model to learn patterns and make 
predictions. The historical dataset from 2016 to 2023 falls 
mainly into four major conditions, as shown in Figure 5. 

B. Unbalanced Rotor 

Unbalanced rotor is a prevalent type of machinery fault 
observed in rotating systems. The fault arises from an uneven 
distribution of mass within a rotating component about its axis 
of rotation. The resulting unbalanced force acts radially and 
increases with the square of the shaft's rotational speed [40]. 
The unbalanced force introduces additional fatigue stress on the 
bearings, potentially leading to premature failure of both 
bearings and rotating shafts as shown in Figure 6. 

C. Results of Bearing Faults 

In the case of the existence of bearing faults, the forcing 
frequencies show up as a multiple of the rotating speed in the 
frequency domain as per Table I (SKF- bearing properties). 

TABLE I.  FREQUENCIES FOR THE ID FAN BEARINGS (HZ) 

Designa

tion 

Rotational frequency Over- rolling frequency 

Inner 

race 
Outer 

race 

Rolling 

element set 

and cage 

Rolling 

element 
about its 

axis 

Inner 

race 

Rolling 

element set 

and cage 

Outer 

race 

C2244 1 0 0.418 2.978 9.308 6.692 5.955 

22244 
CC/W33 

0 0 0.431 3.484 10.817 8.183 6.968 

 

Figure 7 displays an example of an outer race defect 
harmonics in the spectrum. The number of harmonics along 
with their corresponding amplitudes are indicative of the 
severity of the fault. The Figure indicates the existence of a 
defect on the outer race of the bearing. Since this work focuses 
on supervised ML, it is imperative to label every data point as 
per its corresponding condition by individually analyzing every 
data point acquired from the industrial facility, and combining 
them with the historical database on Computerized 
Maintenance Management Systems (CMMS). The aim of this 
procedure is to correlate the dates of repairs, and emergency 
repairs to the condition of the machine, to further verify the 
correctness of the labels used.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Fig. 5.  Different machinery conditions. (a) Normal, (b) unbalanced, (c) 

bearing defect, (d) combined effect of unbalanced and bearing defect. 

 
Fig. 6.  Illustration of the bearing defect progression due to severe 

unbalance. 

 
Fig. 7.  FFT spectrum with 8x non-synchronous harmonics of BPFO of 

C2244 bearing. 

 
Fig. 8.  Energy bands corresponding with the condition of the machinery. 
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The final dataset represents these cases by their energy 
bands. The division and width of each energy band are intrinsic 
to the type of fault it corresponds to. For example in pure 
unbalance case the band from 0-17 Hz shows the highest of the 
rest of the energy bands, thus indicating the unbalance case. 
Figure 8 summarizes energy bands of each case. 

The resulting dataset labels are portrayed in Figure 9. 
Evidently, the dataset was unbalanced, it caused 
unpredictability to the model, and relies mainly on the 
randomness of the label distribution, to offset the effect of this 
unbalance. The dataset was resampled to 40 counts of each 
case (except the combined case), hence, overcoming the 
reliance on the randomness of the train/test sample distribution. 

 

 
Fig. 9.  The distribution of the labels in the dataset. 

 
Fig. 10.  SVC parameter values. 

TABLE II.  PERFORMANCE METRICS VALUES 

Metric SVC 
Adaboost 

classifier 

Bagging 

classifier 

Multi-Layer 

Perception (MLP) 

classifier 

Accuracy 86.21% 86.21% 89.66% 93.10% 

Precision 89.22% 93.53% 92.67% 94.40% 

F1 Score 86.90% 88.78% 90.43% 93.24% 

 

Utilization of ensemble models has a very significant 
impact on improving the performance metrics of an SVM 
model significantly across all metrics. As illustrated in Table II, 

the base model is SVC’s accuracy after cross-validation of the 
parameters, which only reached 86.2% with parameter values 
C=100, Gamma=0.1, Kernel= Radial Base Function being 
chosen as optimal (Figure 10). The hyper-parameters for the 
models are shown in Table III. The SVC parameters, which are 
used as base estimator for the different ensemble models 
employed, were fixed across different ensemble algorithms. 
Figure 11 illustrates the results of experimenting with different 
numbers of estimators and their corresponding effect on the 
performance metrics. The findings show no significant 
difference when the number of estimators increased from 500 
to 1000, justifying the choice of 500 estimators.  

TABLE III.  OPTIMIZED HYPER-PARAMETERS OF THE 
VARIOUS CLASSIFICATION MODELS 

Model Hyper parameters 

SVC 
(gamma=1, C=100, random_state = 42, kernel='rbf', 

probability=True) 

Bagging 
(base_estimator=svm, n_estimators=500, 

random_state=314) 

Adaboost 
(base_estimator=svm, n_estimators=500, 

learning_rate=0.0002, algorithm='SAMME.R') 

MLP 

(hidden_layer_sizes = (5000,), max_iter=3500, 

final_estimator =svm) 

 

 
Fig. 11.  Changes in performance metrics under varying number of 

estimators for Bagging ensemble classifier. 

The same experiment was carried out on the MLP 
classifier. In that case, instead of the number of estimators, the 
experiment was conducted on varying the number of neurons in 
the ANN layer, and then examined the performance metrics for 
improvements. The results did not improve when the number 
of neurons increased from 500 to 5000 as depicted in Figure 
12, and the number of iterations required for convergence 
decreased from 3500 for 10 and 50 neurons to 1500 iterations 
for 100 neurons and above, decreasing the computation time 
for the model to train.   

The MLP classifier, an ensemble of SVC and ANN with 
two hidden layers of 500 neurons reached an accuracy of 
93.1% and was most capable of recognizing the different 
conditions with ease and high precision, as shown in Figure 13. 
The numbers 0, 1, 2, and 3 denote the conditions normal, 
unbalanced, bearing defect, and combined, respectively. 

 



Engineering, Technology & Applied Science Research Vol. 14, No. 2, 2024, 13181-13189 13187  
 

www.etasr.com Khalil & Rostam: Machine Learning-based Predictive Maintenance for Fault Detection in Rotating … 

 

 
Fig. 12.  Effect of the number of neurons on the performance metrics for 

MLP classifier. 
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Fig. 13.  Confusion matrix of stacking algorithm (SVC, ANN). 

The first misclassified condition is a combined condition, 
whereas the model predicted an unbalance case, after 
examining the FFT spectrum, shown in Figure 14. However, 
instead of having multiple bearing defects harmonics, the 
existing harmonics were more sporadic and spaced out leading 
to misclassification.  

 

 
Fig. 14.  FFT spectrum of the misclassified condition. 

The second misclassified condition is an unbalance 
condition at 1x peak of 0.7 mm/s amplitude, coupled with high 
noise floor as displayed in Figure 15. 

 

 
Fig. 15.  Existence of 1x peak and high noise floor. 

The above experiments can be seen as a feasibility study for 
integrating ML into an already functional system to improve 
quality and reduce the time taken for fault diagnosis. Thus, it is 
a stride towards automating fault detection and streamlining the 
usage of ML into local production facilities, by experimenting 
with the already existing data. Table IV portrays a comparison 
between the current work and other research works in this field.  

TABLE IV.  COMPARISON BETWEEN CURRENT AND 
RECENT WORKS 

Ref. Method Accuracy 

[17] SVM (using test rig.) 99.97% 

[22] VMD-ARCMDELCPGWO-SVM (using test rig) 97.14% 

[20] SVM (using test rig) 97% 

Current SVM (using real-world data) 93.24% 

 

The use of test rig data is widely employed in the field, 
(Table IV), and numerous datasets have been developed for 
this purpose, having a specified max frequency and sampling 
rates, as well as yielding less noisier data. The real-world 
dataset, however, faces several obstacles, including the non-
public nature of the vibration signal data collection system, an 
insufficient quantity of data points, and non-standard data 
collection protocols (non-uniform maximum frequency limit 
and sampling rates). Despite those drawbacks, the findings are 
promising, indicating that the proposed methodology is a 
practicable and effective solution for automated machinery 
fault detection in industrial environments. Additionally, the 
model can effortlessly integrate with current systems without 
incurring additional financial costs. Besides, the findings 
demonstrate that the proposed model, employing a stacking 
ensemble of MLP classifier and SVC coupled with ANN, 
achieved an accuracy of 93% in identifying machinery faults, 
surpassing the baseline SVC model, which achieved an 
accuracy of 86%. It is evident that the findings are significant 
and showcase the potential of ML to automate machinery fault 
detection in cement plants.  

The novelty of this work lies in its interpretability, and ease 
of use. As shown in the dataset, the energies from each band 
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can be associated with a specific case and can be used as a 
platform for further modifications to fit certain configurations 
of machinery as well as the fault types, based on the intervals 
of the frequency bands. This has the potential to revolutionize 
the way that cement plants (as an example) maintain their 
equipment, leading to broader adoption of ML techniques 
leveraging historical data to help improve production 
efficiency, reduce costs, and extend the equipment lifespan of 
the machinery.  

IV. CONCLUSION 

The current work assessed the feasibility of 
incorporating/integrating an automated fault diagnostic system 
upon the already existing manual condition monitoring layer, 
without additional costs. Once the failure pattern of the 
machine is understood, it is relatively easy to recognize when 
the fault is initiated and act ahead for a planned shutdown and 
replacement. In most cases, the bearings did not reach their 
normal end of life but were rather affected by the severely 
unbalanced rotor, exerting extreme loads on the bearings, 
leading to the initiation and development of cracks and spalling 
on the races of the bearing that eventually end with catastrophic 
failures. 

The usage of machine learning algorithms was justified, as 
it can be scaled to encompass all similar equipment and be 
employed simultaneously across different devices at once, with 
minimal input from the domain expert. The dataset used 
contained varying conditions, however, there was a focus on 
the ones that contributed most to the failure of the equipment 
and excluded rare events. The most repeated conditions were 
normal, unbalanced, bearing defect, and a combination of the 
faulty states of unbalance and bearing defect. The performance 
across different traditional machine learning models shows a 
promising result, especially when a combination of more than 
one method was used, showing significant improvement from 
using standard SVC to a more accurate ensemble method 
yielding a change in accuracy from 86% to 93%. 

As a future direction, the proposed model can be developed 
in several ways, including expanding the number of data points 
to improve the model’s accuracy and robustness and 
developing an online real-time system. 
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