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ABSTRACT 

The prediction of the asphalt dynamic modulus (E*), which measures the material's ability to withstand 

changes in shape or structure, is important. Previous studies indicated that the well-known Witczak 1-40D 

model for E* is outperformed by machine learning models. Additionally, the application of machine 

learning algorithms requires manual fine-tuning of their hyperparameters. In this study, the artificial 

Hummingbird and Harris Hawks optimization algorithms were employed in the automatic calibration of 

the Random Forest and Gradient Boost algorithms' hyperparameters for modeling E* using the Witczak 

1-40D model and additional parameters. In addition, the model was interpreted using the Shapley value 

and permutation feature importance. The results indicate that the optimized artificial hummingbird 

algorithm model performed better, with R² reaching 0.97. The interpretability of the model suggests that 

the binder parameters exhibited the highest effect on the variance of E*. 
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I. INTRODUCTION  

Road quality is crucial for the economic development of a 
country and well-designed roads are vital to the economic 
progress of any region. The construction of a high-quality road 
requires careful knowledge of road distress and a proper 
selection of materials to withstand these stresses. Rutting is one 
of the asphalt pavement distresses prevalent on roads exposed 
to high temperatures and traffic loads. Asphalt concrete 
dynamic modulus (E*), which measures the material's ability to 
withstand changes in shape or structure [1], is often used to 
characterize the resistance of a material to rutting. Several 
models have been developed to predict rutting, the most 
notable among them being the Witczak model [2-3]. The 
performance evaluation of predicting E* using the Witczak 
model gave an R2 of 0.94 with Gaussian process regression [4].  

Previous studies have shown that machine learning 
evaluation performance can be improved when an optimization 
approach is applied to fine-tune model hyperparameters instead 
of performing manual trial-and-error calibration [5-7]. This is 
evident in the results reported in [8-12] in the prediction of E*. 

Despite the reported high accuracy, there are significant gaps in 
the literature: 

 The databases used are limited. 

 The input parameters do not account for all the parameters 
that affect the variance of E*. 

 Model interpretability is missing. 

This study sought to address the aforementioned gaps using 
the Witczak database with 346 test cases, which totals 7,400 
data points. Furthermore, the Witczak model input parameter 
was used, since it accounts for the binder, aggregate, void, and 
test parameters, in addition to five other parameters. 

II. METHODOLOGY  

This study focuses on the automatic calibration of 
traditional machine learning models, namely Random Forest 
(RF) and Gradient Boost Regression (GBR), to predict E* 
using Witczak 1-40D parameters. This study aims to improve 
the prediction accuracy of E* using the Witczak 1-40D 
parameters, six additional parameters, and the Witczak 1-40D 
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database. The parameters of the Witczak 1-40D are: r200 is the 
percentage  passing a #200 sieve, r4 is the  cumulative 
percentage retained on a #4 sieve, r38  is the cumulative 
percentage retained on a 3/8" sieve, r34 is the  cumulative 
percentage retained on ¾" sieve, Va is the air void percentage, 
Vbeff  is the effective binder content percentage, |Gb*| is 
the binder complex shear modulus in psi, and db is the binder 
phase angle. The six additional parameters were: Asphalt 
Content (AC), Temperature (T), frequency of loading (fs), air 
voids (A), Volumetric Total Solids (VTS), and phase angle of 

the mixture (phi). This study also aims to provide model 
feature interpretability using the Shapley (SHAP) value and 
Permutation Feature Importance (PFI) analysis to identify the 
key parameters that significantly influence predictive accuracy. 
The Witczak 1-40D database used contains 5970 unique test 
cases and was partitioned into training and testing sets in a 
65:35 ratio. The test set was used for the model evaluation after 
model training was completed. Table I presents the details of 
the features of the model, assessed with the relevant statistical 
parameters. 

TABLE I.  DESCRIPTIVE STATISTICS OF THE MODEL 

 Mean Standard Deviation Sample Variance Kurtosis Skewness Min Max Count 

r34 (%) 3.96 6.51 42.38 3.23 1.98 0.00 26.10 5970 
r38 (%) 25.75 11.39 129.83 -0.78 -0.51 2.60 43.00 5970 
r4 (%) 51.17 9.84 96.83 0.20 0.09 30.00 74.00 5970 

r200 (%) 4.90 1.45 2.10 3.42 1.03 1.80 11.80 5970 
AC (%) 5.42 1.17 1.37 1.62 1.20 3.60 8.90 5970 
Va (%) 6.81 2.25 5.06 3.21 0.63 0.70 18.13 5970 

Vbeff (%) 10.48 2.66 7.05 10.58 2.58 6.08 25.09 5970 
A 10.52 0.77 0.59 2.28 -1.47 7.58 11.79 5970 

VTS -3.51 0.28 0.08 2.18 1.46 -3.98 -2.44 5970 
|G*| (psi_ 1105.57 1480.93 2.19E+06 1.24 1.34 0.01 7386.60 5970 
db (deg) 57.09 22.30 497.11 -1.00 -0.29 11.86 90.00 5970 

T (oF) 70.30 42.09 1771.63 -1.28 0.00 0.00 130.00 5970 
fs (Hz) 1.14 1.43 2.04 -0.09 1.18 0.02 3.98 5970 

phi (deg) 22.59 11.32 128.18 -0.03 0.21 1.59 123.40 5970 
E* (psi) 1.48E+06 1.55E+06 2.40E+12 3.59E-01 1.05E+00 1.05E+04 8.64E+06 5970 

 

The trained models were evaluated using standard error 
metrics such as the Root Mean Squared Error (RMSE), Mean 
Absolute Error (MAE), R-squared (R2), Nash-Sutcliffe 
Efficiency (NSE), and Kling-Gupta efficiency (KGE). The 
mathematical expressions of these metrics are: 
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where ��� = ∑6�Pred ," − �89�
, ��: = ∑6Y<=>,? − �89� , �8 is the 

mean of @ value, 3 is the number of observed values, �$%&'"  is 
the predicted value, � !"  is the observed value, --  represents 
the correlation coefficient, -A is the coefficient of 
determination, BA denotes the relative deviation, -C represents 
the mean error, and BC represents the relative mean error. 

A. Model Training 

The model was trained with the GBR and RF algorithms 
from the scikit-learn library in Python. Training these 
algorithms traditionally requires manual calibration of the 
algorithm parameters. This could be time-consuming and with 
a low possibility of reaching the optimum solution. For this 
reason, two metaheuristic optimization algorithms, Haris 
Hawks Optimization (HHO) and Artificial Hummingbird 

Algorithm (AHA), were used to automatically calibrate the 
GBR and RF model training hyperparameters. 

HHO is a metaheuristic algorithm inspired by hawks' 
hunting strategies It demonstrates exceptional performance in 
many optimization problems, such as mobile robot path 
planning, and enhanced feature selection performance by 
integrating chaotic opposition and simulated annealing in an 
improved version of the algorithm consisting of two main 
stages, investigation and exploitation, utilizing equations with 
variables representing hawks' positions, prey location, solution 
space bounds, and random numbers. Although this algorithm is 
very effective, it can struggle with population diversity and 
local optima [13]. AHA [14] is a novel bioinspired design that 
is classified as a new metaheuristic optimizer, based on 
intelligent foraging strategies and unique flights of 
hummingbirds. AHA simulates three foraging behaviors, 
guided, territorial, and migration foraging, in the optimization 
process. It uses a visit table to model the flight abilities and 
clever foraging techniques of hummingbirds. AHA has three 
basic components: food sources, hummingbirds, and visit 
tables. Food sources measure nectar quality, nectar 
replenishment rate, and last visit to flowers. Hummingbirds are 
assigned to particular food sources and communicate with each 
other. For each food source, visit levels are recorded in visit 
tables [14]. 

For GBR, the key hyperparameters optimized are the 
number of estimators, learning rate, and maximum depth. 
These hyperparameters control the trade-off between accuracy 
and complexity in gradient boost models, where more trees, 
lower learning rate, and higher depth can improve the fit but 
also increase the risk of overfitting and the computational cost. 
The upper and lower bounds of the optimization algorithm 
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search ranges for these parameters were: 50-200 estimators, 
0.01-1 learning rate, and 1-10 maximum depth. The search was 
carried out over a population of 50 in 180 iterations. RF 
optimization was applied to the number of estimators, 
maximum depth, and maximum features. The lower and upper 
values of the optimization algorithm search range were: 10-200 
estimators, 1-50 maximum depth, and maximum feature range 
from 1 to the maximum number of input variables. The search 
was carried out over a population of 100 in 180 iterations.  

B. Model Feature Selection 

Model feature importance can help to understand how the 
model makes predictions, identifying and removing irrelevant 
or redundant features, and comparing and contrasting different 
models or datasets. There are different ways to calculate model 
feature importance, such as coefficients from linear models, 
decision trees, permutation importance, and SHAP values. This 
study used PFI and SHAP analysis to offer a comprehensive, 
multi-faceted evaluation of feature importance in the predictive 
models. 

The SHAP value is a concept from cooperative game theory 
that distributes the total pay-off among the players of a game 
according to their marginal contribution. In this context, the 
players are the features, the game is the prediction of the 
model, and the payoff is some measure of the importance or 
influence of the feature subset. The SHAP value for a feature is 
calculated by averaging the difference in the model output 
when the feature is included or excluded from all possible 
subsets of features [15]. PFO is a technique that measures how 
much the prediction error of a machine learning model 
increases when the values of a feature are randomly shuffled. 
This technique can be used for any fitted model and any tabular 
data, and it is especially useful for non-linear or opaque models 
that are hard to explain. PFI can help in understanding which 
features are more important to the model and how they affect 
its performance and accuracy [16]. 

III. RESULTS AND DISCUSSION 

This study evaluates the performance potentials of the AHA 
and HHO-optimized GB and RF models to predict E*. This 
study is unique as it used two distinct sets of input features for 
its predictions. On the one hand, it used the Witczak 1-40D 
model input features, a conventional method known for its 
reliability in predictions. On the other hand, the model was also 
trained with a combination of Witczak 1-40D input features 
and six additional features: AC, T, fs, A, VTS, and phi. This dual 
approach in feature evaluation aimed to explore the extent to 
which the integration of these additional features could enhance 
the model's accuracy in predicting E*, thereby providing a 
comprehensive understanding of the model's predictive 
capabilities. Furthermore, the interpretability of the model 
parameters was evaluated using the SHAP value and PFI. 

A. Performance using Witczak 1-40D Input Parameters 

The evaluation of Witzcak parameters using GB and RF 
models, reveals significant insights into their predictive 
accuracy and efficiency. While the GB model exhibits 
excellent performance in the training phase (R² ranging from 
0.90 to 0.99, NSE from 0.91 to 0.99, KGE from 0.90 to 0.99), it 
shows a slight decline in the testing phase (R² from 0.89 to 
0.93, NSE from 0.90 to 0.93, KGE from 0.89 to 0.96), 
indicating a potential overfitting to the training data. On the 
other hand, the RF model demonstrates remarkable consistency 
and robustness, maintaining high scores across all metrics in 
both training (R², NSE, KGE all around 0.98 to 0.99) and 
testing phases (R² and NSE from 0.92 to 0.94 and KGE from 
0.92 to 0.93), Figure 1shows that RF models are more fitted 
compared to GB models. This consistent high performance of 
the RF model, especially in the testing phase, underscores its 
superior ability to generalize, making it a more reliable choice 
for applications requiring stable and accurate predictions on 
new, unseen data. 

 

(a) 

 

(b) 

 

Fig. 1.  Correlation of measured vs predicted dynamic modulus using Witczak input parameters: (a) Gradient Boosting Regression, (b) Random Forest. 
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TABLE II.  OUTPUT TRAIN AND TEST USING WITCZAK PARAMETER 

Models Train Test 

  DE RMSE MAE NSE KGE DE RMSE MAE NSE KGE 

GB 0.90 4.71E+05 3.06E+05 0.91 0.90 0.89 5.14E+05 3.38E+05 0.90 0.89 
AHA-GB 0.99 8.52E+04 1.05E+04 0.99 0.99 0.92 4.64E+05 2.76E+05 0.91 0.96 
HHO-GB 0.98 1.91E+05 1.32E+05 0.98 0.99 0.93 4.08E+05 2.72E+05 0.93 0.96 

RF 0.98 1.83E+05 1.07E+05 0.99 0.97 0.92 4.39E+05 2.74E+05 0.92  0.93 
AHA-RF 0.98 1.69E+05 9.85E+04 0.99 0.97 0.94 4.05E+05 2.53E+05 0.93 0.92 
HHO-RF 0.98 1.66E+05 9.64E+04 0.99 0.96 0.94 4.03E+05 2.52E+05 0.94 0.92 

 

(a) 

 

(b) 

 
Fig. 2.  Correlation of measured vs predicted dynamic modulus using all parameters: (a) GBR, (b) RF. 

TABLE III.  OUTPUT OF TRAIN AND TEST USING ALL PARAMETERS 

Models Train Test 

 R2 RMSE MAE NSE KGE R2 RMSE MAE NSE KGE 

GB 0.93 3.95E+05 2.54E+05 0.93 0.93 0.92 4.44E+05 2.87E+05 0.92 0.92 
AHA-GB 0.99 1.53E+04 1.10E+04 1 0.1 0.97 2.80E+05 1.65E+05 0.97 0.97 
HHO-GB 0.99 1.48E+05 1.09E+05 0.99 0.99 0.94 3.75E+05 2.56E+05 0.94 0.97 

RF 0.99 1.44E+05 8.56E+04 0.99 0.98 0.94 3.82E+05 2.29E+05 0.94 0.94 
AHA-RF 0.99 1.49E+05 8.67E+04 0.99 0.97 0.94 3.77E+05 2.24E+05 0.94 0.93 
HHO-RF 0.99 1.46E+05 8.47E+04 0.99 0.97 0.94 3.79E+05 2.26E+05 0.94 0.94 

 
B. Performance using Witczak 1-40D Input and Additional 

Parameters 

For the model with the Witczak 1-40D model parameters 
and the additional six parameters, the GBR training results 
were outstanding, particularly for the AHA and HHO variants, 
with R², NSE, and KGE values reaching perfection. However, a 
slight decline was observed in the test phase, although the 
metric values remain high (R², NSE, KGE ranging from 0.92 to 
0.97), indicating strong model generalization but a slight 
overfit in training. In contrast, the RF model exhibited 
exceptional consistency and slightly higher robustness, with 
almost perfect scores in training (R², NSE, KGE all around 
0.99) and very high scores in testing (R², NSE, KGE all around 
0.94), showcasing its remarkable ability to generalize across 
unseen data. These results indicate that while GBR provides 
excellent fit and predictive accuracy as shown in Figure 2(b), 
especially when its parameters were optimized with AHA and 
HHO, RF stands out for its consistency and robustness, making 
it exceptionally reliable for practical applications where 

generalization and stability across diverse datasets are crucial. 
Furthermore, the addition of the six parameters shows that the 
performance of the E* prediction can be improved when 
compared to the performance reported in [4, 17].  

C. Parameter Interpretability and Optimize Input Features 
for the Model 

For the model interpretability, the E* measurement of 
asphalt mixture depends on grouped factors: binder parameters, 
mixture test parameters, mixture volumetric parameters, and 
the aggregate distribution properties. 

1) Binder Parameters 

Figure 3 shows that the binder's complex modulus (G*) 
significantly influences the prediction of the E* of an asphalt 
mixture. This impact is more pronounced than the effects of the 
binder's phase angle, which although important, is less 
influential than the phase angle of the mixture and the test 
temperature. Additionally, in regions where VTS and A values 
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for the binder are close to zero, there is an increased 
importance of these properties in predicting E*. 

2) Mixture Test Parameters 

The analysis of a group of mixture test parameters, 
including mixture, phase angle, test temperature T, and 
frequency Fs, shows that they are significantly influential in the 
prediction of the E* of an asphalt mixture, following the binder 
parameter group in importance. Specifically, the mixture phase 

angle within this group is highlighted for its high permutation 
importance, as shown in Figure 3(b). According to the SHAP 
explainer plot shown in Figure 3(a), these parameters generally 
exhibit a negative distribution, implying a particular kind of 
influence on E* predictions. Additionally, it was observed that 
the test frequency, although a part of this group, has a relatively 
minor effect on the prediction as indicated by its low 
permutation importance score. 

 

(a) 

 

(b) 

 

Fig. 3.  (a) Shap value, (b) permutation importance. 

3) Aggregate Distribution Properties 

In evaluating the E* of asphalt mixtures, the significance of 
the aggregate gradation parameters progressively decreases. 
Among these, the percentage of aggregates retained on a 19.05 
mm sieve stands out (r34), ranking as the second most 
influential factor in this category. On the contrary, the 
percentage of aggregates passing through a 0.13 mm sieve r200 
is observed to have the least influence on E* predictions within 
the same group. This trend underscores hierarchical importance 
in aggregate sizes, where larger sizes, such as those retained on 
the 19.05 mm sieve, play a more substantial role, while finer 
sizes, like those passing through the 0.13 mm sieve, contribute 
less to the prediction of the mixture's dynamic modulus. 

4) Mixture Volumetric Properties 

In the analysis of the E* of asphalt mixtures, the parameters 
AC, VA, and Vbeff have a significant influence. These 
parameters substantially affect the E* predictions, a fact 
underscored by their notable permutation importance scores. 
Despite this, their Shapley effect distributions tend to hover 
near zero. This implies that while each parameter individually 
contributes to E* predictions, their collective impact within the 
predictive model is more balanced or neutral. 

IV. CONCLUSION  

This study investigated the novel approach of using the 
Artificial Hummingbird Algorithm (AHA) and Harris Hawks 
Optimization (HHO) for the automatic calibration of Gradient 
Boosting Regression (GBR) and Random Forest (RF) 
algorithm hyperparameters for the prediction of E*. 
Additionally, the prediction of E* using the Witczak model 

parameters was improved by including six additional inputs for 
an accurate account of its variation. The presented results show 
that by adding asphalt content, temperature, frequency of 
loading, air voids, volumetric total solids, and mixture phase 
angle to the existing Witczak model parameters, the R² 
performance of the model prediction improved from 0.92 to 
0.97 in a model trained with a hybrid AHA-optimized Gradient 
Boost model. The model interpretability presented showed that 
the binder properties and mixture phase angle had the highest 
effect on the variance of E*. The size of the aggregate shows a 
decreasing effect with a decrease in the aggregate size, 
indicating the dependency of the mixture stiffness on the 
aggregate size. 
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