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ABSTRACT 

The equitable distribution of radio resources among different users in wireless networks is a difficult 

problem and has attracted the interest of many studies. This study presents the Proportional Fair Q-

Learning Algorithm (PFLA) to enable the equitable distribution of radio resources among diverse users 

through the integration of Q-learning and proportional fairness principles. The PFLA, Round Robin (RR), 

and Max Throughput (MaxTP) algorithms were compared to evaluate their effectiveness in resource 

allocation. Performance was measured in terms of sum-rate throughputs and fairness index. The 
comparison results showed an improvement in the fairness index metrics for PFLA compared to the other 

algorithms. PFLA showed gains of 11.62 and 43% in the fairness index compared to RR and MaxTP, 

respectively. These results show that PFLA is more efficient in utilizing available resources, leading to 

higher overall system throughput and demonstrating its ability to balance performance metrics between 
users, especially when the number of users increases. 

Keywords-radio resource distribution; proportional fair Q-learning algorithm; round robin; max throughput 

I. INTRODUCTION  

The allocation of radio resources aims to optimize spectrum 
efficiency while complying with the predefined fairness 
criteria. Effortless allocation of radio resources is particularly 
important in wireless communication networks because the 
available bandwidth is limited and shared between multiple 
users [1-2]. To make the best use of these resources, it is 
necessary to use advanced algorithms to allocate them 
efficiently and fairly among users. Effective resource allocation 
algorithms can have a significant impact on the performance of 
wireless networks. By balancing the competing demands of 
different users, these algorithms can improve network 
throughput, reduce latency, and enhance overall user 
experience [3-4]. Moreover, these algorithms can help network 
operators reduce costs and improve their return on investment 
by making more efficient use of their available spectrum. 

This paper presents the Proportional Fair Q-Learning 
Algorithm (PFLA) to optimize radio resource allocation in 
wireless networks by integrating Q-learning and proportional 
fairness principles. PFLA dynamically adjusts resource 
allocation based on network feedback using Q-learning, 
striving for long-term rewards like throughput and fairness. 
The proposed algorithm fairly balances the overall system 
throughput among users by considering factors such as channel 
conditions, queue sizes, and user priorities. This integrated 
approach enhances system performance while ensuring 
equitable treatment for all users, surpassing channel-unaware 
algorithms in wireless communication scenarios. PFLA can 
have a significant pragmatic impact on daily wireless 
communications, as it offers a promise of significantly 
increased network efficiency and can ensure a more equitable 
allocation of resources between users. Its implementation 
results in an improved user experience, reduced latency, and 
smoother connectivity in daily activities, such as faster 
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downloads and seamless streaming. PFLA was compared to the 
RR and MaxTP algorithms based on sum-rate throughputs and 
fairness index. The results showed that RR and MaxTP have 
limitations with larger user numbers, unlike PFLA, which 
improves allocation efficiency by considering channel quality 
and other factors. Incorporating channel conditions and queue 
sizes, PFLA surpasses RR and MaxTP in wireless network 
performance and efficiency. This channel- and size-aware 
strategy is crucial for enhancing wireless data network 
performance. 

II. RELATED WORK 

A user pairing technique can be implemented to match 
users based on their channel conditions and data rate needs and 
improve fairness among pairs of users by ensuring that those 
with similar requirements receive equal resource allocation [5- 
6]. In [7], it was shown that LTE-licensed assisted access 
achieves proportional fairness with WiFi by adjusting the initial 
backoff window size or sensing duration and deriving and 
validating optimal parameter values through simulation 
experiments. In [8], a deep reinforcement learning-based 
method was proposed for D2D communication in spectrum 
sharing, optimizing spectral efficiency and ensuring fairness 
between network links through resource block scheduling and 
power control integration. In [9], a decentralized framework 
was introduced for non-ideal NOMA networks, formulating a 
clustering algorithm considering cluster sizes and channel gain 
variations between User Equipment (UE), achieving a balanced 
α-fair RA framework, and optimizing throughput and fairness 
through iterative bandwidth and power refinement. In [10], 
spectrum and power allocation complexities in NOMAs were 
addressed by formulating principles focusing on Double-
Objective Optimization (DOO) to balance the total and 
minimum rates. Using a power dispersion method, nonconvex 
DOO problems were converted into Single-Objective 
Optimization (SOO) ones through global optimal search, 
prioritizing equal channel gain for Adaptive Proportional Fair 
(APF) user pairing and optimization restructuring. In [11], a 
dynamic power allocation scheme was proposed by employing 
model-free deep reinforcement learning where transmitters 
adjust transmission power based on collected channel state and 
quality of service data to maximize a utility function for 
weighted sum rates, allowing for adaptability for optimal rates 
or fair scheduling amidst random CSI changes using deep Q-
learning. In [12], Federated Learning (FL) was investigated in 
wireless networks to improve FL model training under 
limitations such as incomplete CSI and limited local computing 
resources. This study quantified the training loss gap between 
the FL client calendar and centralized training, addressing loss 
reduction through Lyapunov optimization as stochastic 
optimization. This method integrated a Gauss process 
regression-based channel prediction method and incorporated 
client CSI and computing power into planning decisions to 
mitigate these challenges. In [13], the maximum weight-min 
fairness was pursued, optimizing LTE-U node retention 
probability to maximize throughput in both WiFi and LTE-U 
networks, addressing bandwidth balance with weight factors 
and solving the optimization challenge through bisection and 
Laplace transformation inversion methodologies. In [14], non-
licensed frequency bands were organized into time slots for 

LTE frame transmission, and Small Base Stations (SBSs) 
reserved these slots at designated Access Points (APs) to 
prevent overlaps and interference between mobile and WiFi 
networks, ensuring independent resources via the maintenance 
cycle method by allocating specific slots for mobile systems 
and other WiFi operations. 

The existing advances in wireless network optimization, 
while promising, confront challenges in adaptability, 
scalability, and holistic consideration of dynamic network 
conditions. These methods, ranging from user pairing 
techniques to decentralized frameworks and deep 
reinforcement learning, often face limitations in scaling to 
larger networks, dynamically adapting to diverse network 
conditions, and ensuring fairness across varying user 
requirements. A comprehensive solution that integrates 
adaptive machine learning techniques with an algorithmic 
framework can offer a more flexible and adaptive approach to 
address these shortcomings. Combining reinforcement learning 
with predictive analytics and considering a broader spectrum of 
network parameters could dynamically optimize resource 
allocation, ensuring fairness while adapting to real-time 
changes and catering to a larger and more diverse user base in 
wireless networks. 

III. CLASSIC SCHEDULERS 

A. Round Robin (RR) Scheduling 

Fair resource allocation scheduling aims to achieve 
equitable distribution of resources among multiple users in a 
wireless communication system. A widely used logical strategy 
to implement resource fairness involves the recursive 
application of the RR scheduling scheme. This iterative 
approach is designed to ensure an equitable distribution of 
resources to all users, with the overarching objective of 
maximizing the average resource allocation rate for all users 
while adhering to specific fairness criteria [15-18]. In this 
context, the term "fair resources" denotes the principle of 
equitably distributing available resources, such as time slots or 
frequency bands, among all active users. This strategy aims to 
prevent any single user from monopolizing resources and 
ensures that each user receives an equal share. To implement 
this approach, the system recursively applies the RR scheduling 
scheme, which is a well-established method of providing equal 
access to resources. The primary goal of this strategy is to 
improve the overall average resource allocation rate for all 
users. It does so while maintaining fairness, which is often 
characterized by specific fairness criteria that dictate how 
resources should be allocated to different users. By striking a 
balance between resource fairness and maximizing resource 
allocation rates, this approach contributes to efficient and 
equitable resource utilization in wireless communication 
systems. 

B. Max Throughput (MaxTP) Scheduling  

The MaxTP scheduler aims to maximize the overall 
throughput of the base station by assigning a user to each 
channel, allowing the maximum data speed in the current 
transmission time interval. The Max TP scheduler can operate 
in both time and frequency fields. In the frequency field, UE is 
assigned to the highest Channel Quality Indicator (CQI) [19]. 
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In the MaxTP scheduling algorithm, channels are allocated to 
UEs based on their CQI values. UEs with better channel 
conditions (higher CQI) are given priority in resource 
allocation. This prioritization aims to maximize data rates for 
the UEs, resulting in higher overall throughput for the base 
station. The MaxTP scheduler can adapt to changing channel 
conditions and dynamically allocate RBs to UEs, ensuring 
efficient resource utilization and maximizing throughput. The 
specific implementation and fine-tuning of the algorithm may 
vary depending on the network requirements and system 
parameters. 

C. Proportional Fair Scheduling (PFS) 

PFS strategies have been developed to achieve a balanced 
trade-off between various performance metrics, primarily 
focusing on UE throughput and fairness. These schemes rely on 
evaluating the indicators of both the current and historical 
channel quality of the UEs. Specifically, they consider the 
instantaneous and average data rates experienced by UEs over 
time to determine a priority function. Within PFS, the 
scheduler, at each time slot, denoted as t, grants the highest 
priority to the UE that exhibits the maximum priority function. 
This priority function, denoted as Pk for the k-th UE, is 
mathematically expressed as: 

�� = argmax 	
���
�����    (1) 

where drk(t) represents the instantaneous achievable data rate 
for the k-th UE when connected to the channel at time slot t. 
Additionally, HRk(t) signifies the historical average data rate 
that has been assigned to the k-th UE up to and including the 
time slot t. In the PFS scheduling scheme, the system executes 
a two-step process using feedback from channel quality 
indicators. First, it calculates the priority functions for all UEs 
and sorts them in descending order. Subsequently, channels are 
assigned to the UE with the highest priority function. This 
process ensures a fair distribution of resources among UEs 
while considering their channel qualities, which in turn aids in 
optimizing overall network performance. In PFS scheduling 
algorithm, the priority function Pk is calculated based on the 
ratio of the current achievable data rate to the past average data 
rate for each UE. This prioritization ensures that UEs with 
varying channel conditions and data rate histories are allocated 
RBs fairly, balancing throughput and fairness. 

IV. THE PROPOSED MODEL 

A. Definitions and Terminologies 

This study considers WiFi networks, where different 
algorithms can be employed in managing access and resource 
allocation among devices to ensure fair transmission 
opportunities. This study considered a wireless network 
configuration consisting of two primary sets: N = {1, 2, …, N}, 
representing a group of agents, and K = {1, 2, …, K}, 
representing a collection of available channels. Agents use a 
random access protocol to send their data over these shared 
channels. At each discrete time slot, each agent could choose 
one channel for transmission with an associated transmission 
probability such as an Aloha-type narrowband transmission 
scheme. It is assumed that all agents always have pending 
packets for transmission. After each time slot t, when an agent i 

attempts to send a packet, it receives binary feedback in the 
form of an ACK signal denoted as oi(t). This signal indicates 
whether their transmission was successful or not. If oi(t) = 1, it 
means that transmission was successful. On the other hand, 
oi(t) = 0 signifies a failed transmission or collision. 

Let ai(t) ∈ {0, 1, …, K} denote the action taken by agent i 
at the time slot t. Here, ai(t) = 0 corresponds to the scenarios 
where agent i chooses not to transmit a packet during the time 
slot t, potentially to mitigate network congestion. On the 

contrary, ai(t) = k, where 1 ≤ k ≤ K, denotes the i-th agent's 
decision to transmit a packet on channel k in time slot t. During 
real-time operation, each agent, denoted as i, makes 
autonomous decisions independently and in a distributed 
manner. These decisions aim to acquire efficient spectrum 
access policies exclusively through ACK signals. Traditional 
methods for solving this problem become intractable from a 
mathematical point of view as the network size grows, given its 
combinatorial nature and the challenge of dealing with partial-
state observations. The Q-learning approach was embraced due 
to its ability to provide satisfactory approximate solutions, even 
when confronted with large state and action spaces. 

B. Q-Learning Approach 

The action taken by an agent i at time step t is represented 

by ai(t), where ai(t) ∈ {Transmit, Wait}. The Transmit action 
indicates that the agent i initiates transmission, while the Wait 
action indicates that the agent refrains from transmitting. The 
observation of the channel state at time step t is described as 
Oi(t) and can have one of the three possible values: Oi(t) = 
{Success, Collision, Idleness}. The Success observation 
indicates that a single station has successfully transmitted on 
the channel, Collision indicates that multiple stations have 
transmitted simultaneously resulting in a collision, and Idleness 
indicates that no station is currently transmitting. The agent 
analyzes the acknowledgment received from the Access Point 
(AP) when it transmits and monitors the channel while waiting 
to determine the value of Oi(t). The channel state at time step t 
is defined as an action-observation pair called ct = (ai(t), Oi(t)). 
The channel state ct can have five possible combinations: 
{Transmit, Success}, {Transmit, Collision}, {Wait, Success}, 
{Wait, Collision}, and {Wait, Idleness}. The environmental 
state st contains the history of the action-observation pairs for a 
specified length of M, which determines the scope of historical 
data considered by the agent. When the action ai(t) is executed, 
the transition from state st to state st+1 generates the reward 
rt+1, where: 

� �� = �1,  if � = Success                        
0,  if z" = Collision or Idleness  (2) 

Let ri(t) denote the reward received by agent i at the 
beginning of the time slot t. This reward depends on the actions 
of agent i at the previous time slot, ai(t−1), and the actions of 
other agents at the previous time slot, a-i(t−1), which 
collectively form the elusive network state that agent i is trying 
to identify. The cumulative discounted reward, denoted by Ri, 
is calculated as follows: 

)* = ∑ ,-��*./� �0�    (3) 
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where 0 ≤ γ ≤ 1 serves as a discounting factor, and T represents 
the time horizon. Typically, γ is set to 1, but it may assume a 
value less than 1 when T is bounded or unbounded. Following 
an occurrence of a state-action pair (10, 20) and the subsequent 
reward �0+1, Q-learning updates the Q-function, represented as 
(10, 20), through the application of the following update rule: 

3�1 , 2� ← 3�1 , 2� +  

         2 ∗ ���� + , ∗ 7289: 3�1�� , 2;� − 3�1 , 2� (4) 

where rt+1 is the immediate reward obtained after taking action 
αt in state st, maxa'q(st+1, a') is the maximum Q value over all 
possible actions in the next state st+1 and represents the 
estimated future cumulative reward, = ∈ (0, 1] signifies the 
learning rate that governs the magnitude of the update, and γ is 
a constant between 0 and 1 called the discount factor that 
determines the importance of future awards. The Q-function is 
updated iteratively to reflect the acquired reward and the 
expected future rewards based on the highest Q-value 
associated with potential future actions. During the period 
when the Q-function (1, 2) is being updated, the decision-
making process operates based on this evolving Q-function. A 
common policy strategy in this context is the ε-greedy policy. 
Under the ε-greedy policy, the agent selects the action that 
maximizes the Q-value, denoted as: 

2 = 2�?7289�1, 2′�    (5) 

In contrast, with a probability of ξ, the agent selects a 
random action. The rationale behind incorporating randomness 
through ξ is to strike a balance between exploration and 
exploitation, enabling the agent to explore new actions while 
also favoring actions with known high Q-values. 

C. Proportional Fair Q-Learning for Dynamic Resource 

Allocation 

Combining Q-learning with the proportional fair algorithm 
for dynamic resource allocation between users and channels in 
wireless communication systems can enhance system 
performance and fairness. The following assumptions were 
made:  

 Multiple users (indexed by i) and multiple channels 
(indexed by A). 

 Each user has a Q-table to learn the Q-values for each state-
action pair (state: user's buffer size and channel conditions, 
action: channel allocation). 

Initialize Q-tables for each user, with dimensions (1, 2), where 
1 represents the state and a represents the action. Initialize all 
Q-values to zero. The algorithm shown in Figure 1 uses Q-
learning to learn the optimal channel allocation strategy based 
on observed states and rewards. The fairness factor λ is 
introduced to ensure proportional fairness in the allocation of 
resources. Users strike a balance between exploration and 
exploitation through the ε-greedy policy. 

V. PERFORMANCE EVALUATION  

Νumerical experiments were carried out in Matlab to 
determine the performance attributes of PFLA. The simulated 
wireless network was designed to encompass a variable number 

of users, denoted as N, ranging between 5 and 50, and K 
channels, varying between 2 and 23. A consistent channel 
bandwidth, denoted as B = 25MHz, was maintained to calculate 
data rates. 

 
Input: α, γ, ε, λ, Μ (Maximum number of 

iterations). 

Output: Learning values, Qm*n 

 

Begin 

Initialize Qm*n(st, at) to 0 for all state-action 

pairs (st, at). 

Generate a random number ξ in [0, 1] 

Set st to a random state from the state set: 

S={Success, Collision, Idleness}. 

Set actt to a random action from the action set: 

S={Transmit, Wait}. 

Generate a random number x in [0, 1]. 

for iteration m = 1, …, M do 

  for time-slot t = 1, …, T do 

    for agent i = 1, …,N do 

      if agent i has still data to send do 

        Determine the state of the robot si(t). 

        If x < ξ then 

          Choose ai(t) based on (4) 

        else 

          Choose the best ai(t)∈ {0, …,K} using Qm*n. 
        End if 

        Perform action ai(t) and receive reward  

          ri(t). 

        Update Q-values using Q-learning: 

        Calculate the TD error:  

        δ = r + γ * max(s', α')- max(s, a)  

        Update Q-value: (s, α) ← (s, a) + α * δ 

        si(t) ← si(t+1) 

      End if 

    End for 

  End for 

End for 

Return Qm*n 

End 

Fig. 1.  PFL algorithm for dynamic resource allocation. 

A. Sum-Rate Throughput 

The average rate of each UE in the T schedule interval is 
defined by: 

C)* = �
. ∑ D�*./� �0�    (6) 

The sum rate is established as a specific metric to measure 
the optimization. It quantifies the average cumulative 
throughput of the entire network during the period of the 
schedule interval T: 

)EFG = ∑ C)*H*/�     (7) 

Based on Figure 1, the results show the sum rate throughput 
achieved by different scheduling methods for different users. In 
PFLA, with increasing user numbers, total sum rates tend to 
increase, demonstrating effective resource allocation based on 
the Q-learning approach. RR scheduling shows a less 
consistent trend and does not match PFLA performance for 
more users. The MaxTP scheduler starts with a competitive 
sum rate throughput, but as the number of users increases, the 
performance plateaus. MaxTP does not adapt well to the 
growing number of users, indicating limitations in resource 
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allocation efficiency. In general, PFLA is more effective in 
resource allocation in this scenario, with a higher number of 
users resulting in better average throughput than other methods. 
RR and MaxTP schedulers have limitations in handling large 
user numbers, which leads to less efficient resource utilization. 

 

 
Fig. 2.  Sum-rate throughputs for PFLA, RR, and MaxTP. 

B. Fairness Index 

Fairness can be evaluated using Jain's fairness index. In the 
following equation, n represents the total number of users and 
xi is the total amount of throughput obtained by each user: 

I�8�, 8J, . . . , 8L) =
M∑ .�

N
�OP Q

R

HM∑ .R
�

N
�OP Q

   (8) 

Figure 3 shows the fairness index achieved by different 
scheduling methods for different numbers of users.  

 

 
Fig. 3.  Comparative analysis of fairness metrics. 

Fairness is often measured by a fairness index, and in this 
case, higher values indicate better fairness. PFLA consistently 
shows a high level of fairness for all users. With the increase in 
the number of users, the fairness index is still relatively stable, 
showing that PFLA maintains equality between users while 
efficiently allocating resources. The RR scheduler shows 
relatively low fairness indexes, which decrease as the number 
of users increases. MaxTP scheduling starts with moderately 
competitive fairness indexes, but as user numbers increase, 
fairness decreases. Like RR scheduling, it is difficult to 
maintain fairness when more users are needed to serve. In 
summary, PFLA consistently achieved the highest fairness 
index, demonstrating its ability to balance performance metrics 
between users, especially if the system has more users. The RR 

and MaxTP schedulers provide a certain degree of fairness, but 
their flexibility decreases as users increase. 

The following formulas were used to determine the relative 
advantages of PFLA over RR and MaxTP: 

S2TUVWXY-�� =  

VWXY 9Z[
9\[ ]9*
L[EE *L	[^-�� 9Z[
9\[ ]9*
L[EE *L	[^

VWXY9Z[
9\[  ]9*
L[EE *L	[^
_ 100  

S2TUVWXY-��  = `.ab-`.cb

`.ab
_ 100 d 11.62%   

S2TUVWXY-h9^.i =  

VWXY 9Z[
9\[ ]9*
L[EE *L	[^-h9^.V 9Z[
9\[ ]9*
L[EE *L	[^

VWXY9Z[
9\[ ]9*
L[EE *L	[^
_ 100  

S2TUVWXY-h9^.i =
( .̀ab-`.jk)

.̀ab
_ 100 d 43%   

VI. CONCLUSION 

The choice of an algorithm for radio resource allocation 
depends on the specific requirements and constraints of the 
wireless communication network. PFLA aims to maximize 
system throughput by considering both channel conditions and 
queue sizes. By incorporating channel conditions and queue 
sizes into the resource allocation decision-making process, 
PFLA outperforms the RR and MaxTP algorithms in terms of 
performance and efficiency in wireless networks. The empirical 
findings showed an improvement in the fairness index metrics 
when comparing PFLA with the RR and MaxTP algorithms. 
The percentage gain between PFLA and RR was determined to 
be 11.62%, which represents a notable improvement in the 
fairness index achieved by PFLA over RR. Similarly, when 
PFLA was compared to MaxTP, a substantial gain of 43% was 
achieved in the fairness index, indicating the superior fairness 
achieved by the proposed algorithm in all the experimental 
scenarios considered. By extending PFLA to support the 
unique requirements of next-generation wireless technologies, 
the proposed allocation algorithm can remain relevant and 
effective in the ever-evolving landscape of wireless 
communication. Future work involves further development and 
adaptation of PFLA to align with the specific demands of 
emerging wireless technologies, such as 6G and IoT networks, 
ensuring its applicability and optimization for evolving 
communication paradigms. 
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