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ABSTRACT 

The demand for frequency spectrum is increasing rapidly with the wide growth of wireless 

communications. Spectrum sensing issues present in Cognitive Radio Sensor Networks (CRSN) are 

detected dynamically using spectral sensing techniques, which also help to utilize frequency bands more 

effectively. The study proposes a novel Cosine Sand Cat Optimization (CSCO) protocol to address spectral 

sensing problems by selecting the optimal Cluster Head (CH) in a CRSN. The CRSN is simulated, and 
spectral allocation is performed using LeNet to extract signal components. Then, Primary User (PU) aware 

optimal CH selection is performed using the proposed CSCO by taking account of multi-objective fitness 

parameters. Finally, data communication is performed between nodes after CH selection using the CSCO 

protocol. The simulation results of CSCO were validated to determine its superiority concerning 

Secondary User (SU) density, and it attained residual energy, network lifetime, Packet Delivery Ratio 

(PDR), normalized throughput, and delay of 69.457 J, 77, 75.89%, 74.473, and 4.782ms, respectively. 

Keywords-cosine sand cat optimization; sine cosine algorithm; sand cat swarm optimization; LeNet 

I. INTRODUCTION  

Cognitive Radio (CR) is an intelligent radio device that 
adapts itself to activities within its Radio Frequency (RF) 
environment [1]. Spectrum scarcity issues are effectively 
addressed by CR technologies, which also provide a solution to 
increase spectrum utilization by intelligently using temporarily 
unused spectrums [2]. Today, CR techniques have overcome 
the limitations encountered by conventional Wireless Sensor 
Networks (WSNs) to create Cognitive Radio Sensor Networks 
(CRSNs) [3-4]. In general, idle time slots or other resources are 
utilized by CR if they are not used by the Primery User (PU) or 
licensed users. CR uses frequency resources when the 

connection is used by a Secondary User (SU) or an unlicensed 
user [5]. CR performs dynamic variation in operating 
parameters, spectrum sensing, and the estimation of vacant 
bands. In general, CR has two objectives: efficient utilization of 
spectrum resources and maintaining permanent and reliable 
communication [5]. Several methods have been proposed for 
the effective utilization of unused spectrum [6]. In general, 
spectrum sensing is performed by a few of the received signal 
features to effectively distinguish the signal from noise. PU 
signals are accurately detected by various spectral sensing 
approaches. The approaches used for spectrum sensing are 
categorized into blind and non-blind techniques. Blind 
spectrum sensing approaches do not utilize information on PU 
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signals, such as pulse shape, carrier frequency, modulation, etc. 
Wireless links are generally affected by different channel 
impairment issues, such as receiver impairments, multipath 
fading, and shadowing. These imperiments may cause loss of 
unpredictable signals resulting in spectrum sensing 
degradation. Moreover, hidden node issues affect spectrum 
sensing based on a single cognitive user and create shadowing 
issues. Thus, it becomes difficult for an SU to detect PU. 
Cooperative Spectrum Sensing (CSS) has been introduced to 
provide solutions in challenging scenarios by increasing the 
reliability of spectrum sensing [7]. CRSN performance has 
been improved by grouping adjacent nodes into clusters using 
cluster routing protocols, inter-cluster relay, and intra-cluster 
aggregation using multi-hop data delivery [8-9]. Thus, the 
clustering routing protocol introduced for CRSNs has become a 
trending research topic. CRSN assumes perfect spectrum 
sensing while designing cluster routing protocols. However, 
this assumption is suitable only for designing simple routing 
protocols that do not consider the original perceptual 
performance of CRSN nodes [9]. 

CRSNs also perform intracluster data transmission that 
applies to clustering protocols. This involves communication 
between clusters and inter-cluster data transmission and helps 
to increase scalability by reducing energy consumption and 
promoting communication between the sink and the cluster. 
The predetermined CHs present in intercluster communication 
help to transmit data to the sink. In CRSN, CHs are selected 
mostly among available sensor nodes that are highly vulnerable 
to energy depletion issues. This is due to the burden caused 
while performing functions related to CR, such as channel 
assignment and sensing, data forwarding, and data aggregation. 
In general, CH experiences high energy consumption while 
performing single-hop communication. The lifetime of CRSN 
is increased by performing multi-hop routing. However, the 
residual energy of CHs near the sink severely decreases due to 
frequent traffic relaying [10]. Therefore, the energy 
consumption of the end users is considered the critical 
parameter of CRSNs. In addition, artificial intelligence 
techniques, such as machine learning and deep learning 
approaches, are employed to provide solutions to CH-related 
problems in CRSNs. Several studies have been conducted 
based on the use of neural networks to design and optimize 
wireless communication systems [11-12]. 

Currently, several clustering algorithms are employed to 
form a fully connected topology of the network. However, the 
algorithms only paid minimum attention to problems based on 
ensuring maximum energy efficiency. CRSN is introduced by 
integrating CR capacity into sensor networks [13] and helps 
reduce high contention delays, eliminate collisions, and deploy 
multiple overlaid sensor networks. This aspect motivated the 
present study, which selected the optimal CH in a CRSN using 
the CSCO protocol. The CRSN was initially simulated and was 
further allowed for spectrum allocation using LeNet by 
extracting various signal components, such as energy, test 
statics, eigenstatistics, wavelet transform, and matched filter. 
Then, optimal PU-aware CH selection was performed on the 
allocated spectrum using CSCO by taking into account 
different multiobjective fitness parameters, such as trust factor, 
energy, delay, and distance. Later, in the data communication 

phase, the selected CH carried out data communication by 
transferring data packets to other nodes. 

II. THE PROPOSED CSCO PROTOCOL FOR 
OPTIMAL CH SELECTION IN CSRN 

This study presents the CSCO protocol for the selection of 
optimal CH in CRSN. Initially, the CRSN simulation is 
performed, followed by the allocation of the spectrum. 
Spectrum allocation is performed by extracting signal 
components using LeNet [14]. The different signal 
components, such as energy, eigenstatistics, test statics, 
matched filter, and wavelet transform, are extracted. The 
allocated spectrum is allowed for PU-aware optimal CH 
selection, which is performed using the CSCO protocol by 
considering multiobjective fitness parameters, such as trust 
factor, energy, delay, and distance. CSCO was designed by 
integrating the SCA [15] and SCSO [16] algorithmic 
approaches. Finally, the selected CH performs data 
communication by transferring data packets from one node to 
another. Figure 1 shows the diagrammatic view of the CSCO 
protocol used for optimal CH selection in CRSN. 

 

 
Fig. 1.  Schematic diagram of CSCO protocol for optimal CH selection in 

CRSN. 

A. Test Statistic 

The test statistic [17] was used to observe null and 
alternative hypotheses in binary hypothesis testing problems 
with the presence and absence of PU. 

B. LeNet Architecture 

LeNet [14], a Convolutional Neural Network (CNN) 
gradient-based learning method, was applied for the spectrum 
allocation in CRSN. The extracted signal components are fed 
into the input layer and the output from the final layer is 
received. The LeNet comprises deep layers that help to 
accurately allocate spectrum in less execution time. It consists 
of convolutional, pooling, fully connected, and softmax layers. 
The total parameters used for training are effectively reduced 
by utilizing fully connected layers in LeNet. 
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C. CH Selection Using the CSCO Protocol  

The optimal CH is selected using the proposed CSCO 
protocol, which is designed by integrating the SCA [15] and 
SCSO [16] techniques. SCSO is a metaheuristic algorithm 
designed to consider the natural survival behavior of sand cats. 
In general, sand cats live in stony and sandy deserts. The low-
frequency noises are easily heard by sand cats through their 
extraordinary hearing sense. SCSO is designed based on two 
distinct characteristics of a sand cat, such as foraging and 
attacking the prey. Extraordinary features are used by sand cats 
to easily locate their prey. The SCSO effectively controls 
transitions in a balanced manner, which also effectively 
determines optimal solutions using few parameters in the 
exploitation and exploration phases. Similarly, SCA is a 
population-based optimization algorithm designed by 
considering the effects of sine and cosine. In this algorithm, the 
solution is repositioned in a cyclic pattern of sine and cosine 
functions. The SCA effectively converges to the global 
optimum and identifies promising regions of the search space. 
The SCA is incorporated with SCSO to exploit promising 
regions of the search space and promote the best approximation 
of local optimum. The mathematical modeling of CSCO is 
described below. 

1) Phase 1: Population Initialization 

The solution of each cat is randomly initiated, given by: 

� = ���, ��, ��, . . . , �
�    (1) 

The upper and lower boundaries are considered to locate Y, 
and a candidate matrix is generated by considering the 
population of sand cats and based on the problem size (θΡ×θe). 

2) Phase 2: Fitness Computation 

Equation (16) is used for the computation of the fitness 
function during the selection of the optimal CH after the 
solution is initiated. 

3) Phase 3: In search of Prey 

Sand cats consider the emission of low-frequency noise to 
execute prey search mechanisms. The sensitivity ranges of sand 
cats are considered to start from 2 kHz to 0 during prey search, 
where the sensitivity range is determined by: 

�⃗� = �ℎ − ��×�ℎ×��
��
��
����

�   (2) 

where ���  denotes the general sensitivity range, �ℎ  represents 
the hearing characteristics of a sand cat, the present iteration is 
signified as ��� !, and the maximum iteration is indicated as 
��� "#$ . The final parameter is initialized to control the 
transition between the exploration and exploitation phase, 
which is given by: 

%⃗ = 2 × �⃗� × '�0,1� − �⃗�   (3)  

where τ represents the parameter vector initialized for 
transitions control and R[0, 1] signifies a random number set to 
[0, 1]. The sensitivity range of each sand cat is expressed as: 

�⃗ = �⃗� × '�0,1�    (4) 

The best-candidate position is considered by each sand cat 

to update its position *⃗! , sensitivity range �⃗ , as well as the 

present best position *⃗+ . Then, the best prey position is 
determined by sand cats as: 

*⃗,- + 1/ = �⃗. �*⃗+ ,-/ − '�0,1�. *⃗!,-/�  (5) 

where *⃗+  signifies the best-candidate position of the sand, �⃗ 
denotes sensitivity range, and the present position of the sand 

cat is indicated by *⃗!. Let us consider, *⃗,- + 1/ = *,- + 1/, 

*⃗+ ,-/ = *+,-/ , �⃗ = � , and *⃗!,-/ = *,-/ . Thus, (5) 
becomes: 

*,- + 1/ = �. 0*+,-/ − '�0,1�. *,-/1  (6) 

SCA [15] is incorporated with SCSO [16] for the 
exploitation of promising regions of the search space and to 
promote the best approximation of local optimum. From SCA: 

*,- + 1/ = *,-/ + �� ∗ 345, ��/ ∗ |��78 − *,-/| (7) 

where y1, y2, and y3 are random numbers, uD is the position of 
the destination in the D

th
 dimension, and X(f) signifies the 

position of the present solution. Assuming uD > X(f), (7) 
becomes: 

*,-/ = 9,:;�/<=>∗?@A,=B/∗=CDE
,�<=> ?@A,=B//    (8) 

Substituting (8) into (6) gives:   

*,- + 1/ = �. �*+,-/ − '�0,1�. F9,:;�/<=>∗?@A,=B/∗=CDE
,�<=> ?@A,=B// G� (9) 

Thus, the updated equation of CSCO is given by: 

*,- + 1/ = �
,�<=> ?@A,=B/;H.I�J,��/ ��. *+,-/,1 − �� 345,��// +

    �. '�0,1�. �� ∗ 345, ��/ ∗ ��78�   (10) 

4) Phase 4: Attacking the Prey 

Based on its hearing ability, the sand cat effectively 
determines the prey, and the distance between its present and 
best positions is determined. The random position ensures that 
the position of the cat is near to the prey and is expressed as: 

*⃗I = L'. *⃗+,-/ − *⃗!,-/L   (11) 

where *⃗I symbolizes the random position of the sand cat. 
Moreover, the local optimum trap is avoided and the direction 
of movement is identified using a random angle when the 
sensitivity range of the sand cat is supposed to be a circle. 
Thus, the modified prey position based on the direction of 
movement is given by: 

*⃗,- + 1/ = *⃗+,-/ − '. *⃗I. M45,N/  (12) 

5) Phase 5: Solution Feasibility Check 

The reevaluation of fitness is performed using (4) to 
identify the optimal solution to select optimal CH in CRSN. If 
any new solutions are identified to be more efficient than the 
current one, the solution can be replaced. Thus, the CSCO 
protocol effectively selects the optimal CH in the PU-aware 
CRSN system from the allocated spectrum by considering 
multi-objective fitness parameters. 
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III. RESULTS AND DISCUSSION 

The NS2 simulator was used to implement the CSCO 
protocol for optimal CH selection in a CRSN. Figure 2 shows 
the simulation results obtained by the CSCO protocol during 
the selection of optimal CH. Figure 2 shows the simulation 
results obtained for 0.002 s and 6.028 s. In Figure 2(a), the 
algorithm does not declare a clear CH, while Figure 2(b) shows 
the CH selected with the black triangular spot. 

 

 
Fig. 2.  Experimental simulation results of CSCO: (a) 0.002 s, (b) 6.028 s. 

A. Evaluation Parameters 

The following parameters, concerning SU density, were 
used to evaluate the performance of CSCO in CH selection. 

Residual energy is the remaining energy presented in the 
nodes after the transmission of data packets in CRSN, and it is 
calculated by: 

'�5OP7QR�S� T� = 1 − UI,V/  (13) 

where WR(K) denotes consumed energy. 

Network lifetime is computed by considering the death of 
the sensor node, showing the ability of the model to prolong the 
network functioning during data transmission. 

Throughput is the total data packets sent to the destination 
by the nodes at the stipulated period, expressed as: 

Wℎ 47TℎX7� = Y
Z     (14)  

where ι denotes the time duration taken by the nodes and η 
indicates the total number of node counts. 

PDR is the proportion of total packets delivered to the total 
packets transmitted to the destination, formulated as: 

[\' = ]
^     (15) 

where ρ represents the total packets delivered, and σ indicates 
the total packets passed to the destination. 

Delay is the time taken by the data packets to reach the 
destination, and is determined using (5). 

B. Comparative Analysis 

The effectiveness of the CSCO protocol in CH selection 
was validated by comparing its performance with that of 
traditional protocols, namely ISSMCRP [9], ESAUC [10], 
sensing-after prediction scheme [18], and Dynamic Fuzzy-
based PU aware Clustering (DFPC) [19]. Comparative 
validation of the designed CSCO protocol in CH selection was 
performed for 1000 rounds. Figure 3 shows the analysis of the 
CSCO for the optimal selection of a CH with 1000 rounds. 
Figure 3(a) shows the analysis of the CH selection protocols 
using residual energy, where CSCO recorded maximum 
residual energy of 60.983J for an SU density of 200. The 
residual energy measured by existing models, such as ESAUC, 
the sensing-after prediction scheme, ISSMCRP, and DFPC was 
50.297 J, 51.831 J, 53.187 J, and 56.765 J, respectively. 

 

 
Fig. 3.  Analysis of CSCO with 1000 rounds based on: (a) Residual energy, (b) network lifetime, (c) normalized throughput, (d) PDR, and (e) delay. 
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Figure 3(b) presents the validation using the network 
lifetime of the CH selection protocols. For an SU density of 
200, the network lifetime obtained by ESAUC was 69, for the 
sensing-after prediction scheme was 72, for the ISSMCRP was 
73, for the DFPC was 76, and for the proposed CSCO protocol 
was 77. Figure 3(c) shows an analysis of various CH selection 
models used in CRSN using normalized throughput. For an SU 
density of 200, the CSCO protocol recorded a maximum 
normalized throughput of 77.438, and the prevailing 
techniques, such as ESAUC, sensing-after prediction scheme, 
ISSMCRP, and DFPC measured a normalized throughput of 
65.529, 67.255, 68.914, and 75.748, respectively. Figure 3(d) 
shows the PDR obtained by the various CH selection methods. 
For an SU density of 200, the maximum PDR of 53.64% was 
recorded by the proposed CSCO protocol, and PDRs of 40.27, 
46, 44.475, and 44.764% were obtained by ESAUC, sensing-
after prediction scheme, ISSMCRP, and DFPC, respectively. 
Figure 3(e) shows the validation of the performance of 
different CH selection protocols using delay. For an SU density 
of 200, the delays recorded by the existing models were 9 ms 
by ESAUC, 8.089 ms for the sensing-after prediction scheme, 
7.874 ms for ISSMCRP, and 5.563 ms for DFPC. The 
proposed CSCO protocol obtained a minimum delay of 4.910 
ms. 

IV. CONCLUSIONS AND FUTURE WORK 

This paper presented the CSCO algorithmic model for 
optimal CH selection to effectively perform CH-based 
communication in CRSNs by reducing the energy consumption 
of the network. The experimental results obtained showed that 
CSCO outperformed previous approaches. The CSCO achieved 
superior performance compared to previous techniques, having 
a residual energy of 69.457 J, a network lifetime of 77, a 
normalized throughput of 74.473, a PDR of 75.894%, and a 
delay of 4.782 ms. In the future, the performance of the 
proposed CSCO algorithm can be studied in various real-world 
applications. The use of various technologies to schedule 
subclusters to increase the energy efficiency of spectrum 
sensing in CRSN can also be studied. 
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