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ABSTRACT 

The software testing phase requires considerable time, effort, and cost, particularly when there are many 
faults. Thus, developers focus on the evolution of Software Fault Prediction (SFP) to predict faulty units in 

advance, therefore, improving software quality significantly. Forecasting the number of faults in software 

units can efficiently direct software testing efforts. Previous studies have employed several machine 

learning models to determine whether a software unit is faulty. In this study, a new, simple deep neural 

network approach that can adapt to the type of input data was designed, utilizing Convolutional Neural 

Networks (CNNs) and Multi-Layer Perceptron (MLP), to predict the number of software faults. Twelve 

open-source software project datasets from the PROMISE repository were used for testing and validation. 
As data imbalance can negatively impact prediction accuracy, the new version of synthetic minority over-

sampling technique (SMOTEND) was used to resolve data imbalance. In experimental results, a lower 

error rate was obtained for MLP, compared to CNN, reaching 0.195, indicating the accuracy of this 

prediction model. The proposed approach proved to be effective when compared with two of the best 
machine learning models in the field of prediction. The code will be available on GitHub. 

Keywords-deep learning; MLP; CNN; software testing; prediction; fault; class imbalance 

I. INTRODUCTION  

Quality attributes are among the most important desired 
attributes in developed software, and faults have a significant 
negative impact on software quality. The cost of software 
projects rises as they progress towards the deployment phase, 
whereas the presence of faults entails additional costs that can 
affect the allocated budget and actual time [1]. The field of 
Software Fault Prediction (SFP) is not limited to software 
engineering only, it has also contributed to the medical [2-3] 
and industrial fields [4]. Recently, SFP, a method of designing 
models to classify software units as faulty [5], has gained 
considerable attention [6]. The SFP predicts defective software 
modules/units before the testing phase [7]. Various supervised 
Machine Learning (ML) models, such as Decision Tree (DT), 
Neural Networks (NNs), and Support Vector Machines (SVMs) 
[8-10], as well as unsupervised algorithms, namely K-means++ 
and QuadTree K-means (QDK) [10], have been used with 
varying degrees of success. Also, ensemble learning models 
have been developed and utilized for this purpose [11]. Some 
studies have applied Principal Component Analysis (PCA) and 
feature selection techniques to improve the prediction results 

[12, 13]. Furthermore, a few researchers have turned to Deep 
Learning (DL) as it produces a higher accuracy rate for SFP [7, 
14-17]. The existing studies focus on classifying software units 
as faulty or not. However, predicting the number of faults is 
more useful as it helps developers focus more on software units 
with a large number of faults, thereby reducing the testing effort 
[7-14]. Software developers aim to find the best solutions to 
predict the number of faults in early phases. Many models and 
techniques have been tested. With the emergence of DL models 
many experiments have proven the ability of DL to predict 
software faults. 

Given the advantages that Convolutional Neural Networks 
(CNN) have in terms of their ability to predict and adapt to 
structure, quality, and number of data, this feature is considered 
important in the field of fault prediction, because the data that 
we obtain for prediction vary due to the existing differences in 
programs and features [18-20]. Furthermore, the source code 
usually consists of millions of lines and hundreds of files [6], 
which is a huge amount of data that can be better utilized with 
DL techniques [21]. CNNs along with MLP models have been 
effectively applied in the area of prediction [7]. In this study, 
DL models will be developed using CNNs and Multi-Layer 
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Perceptron (MLP) to predict the number of faults. The model 
design of [22] was followed, with modifications producing 
better results. To further improve the prediction results, 
SMOTEND technique was applied to solve data imbalance, 
which introduced majority bias and considered noise. The main 
contribution of the current study lies in the investigation of the 
effectiveness of the proposed CNN and MLP design to the field 
of SFP. Additionally, the acquired results were compared with 
those of well-known ML models to showcase the effectiveness 
of DL. As far as is known, only the studies [22-34] have 
considered DL algorithms to predict the number of faults at the 
class level. 

II. RELATED WORK 

Initially, SFP was approached as a classification problem, 
aiming to predict whether software units were faulty. 
Researchers focused on ML models in earlier studies. Authors 
in [9] summarized the related articles published between 
January 1991 and October 2013 and identified the best 
techniques and measures for SFP models [9]. The results 
showed that Random Forest (RF) was the best-used model with 
80% accuracy. Authors in [8] compared the performances of 
three of the most popular supervised ML techniques: MLP, 
Bayesian network, and Naïve Bayes (NB). The findings 
indicated that NB achieved the highest accuracy (97%). 

In addition to supervised ML techniques, unsupervised ML 
algorithms have been also used. The author in [23] conducted a 
comparative study on clustering algorithms, specifically K-
means and their variants (K-means++, QDK, and Fuzzy C-
means (FCM)). NASA datasets with 29 static code attributes 
were used, with the QDK algorithm exhibiting the best 
performance. Research continues to improve classification 
accuracy. Authors in [10] predicted software faults using ML 
and source code metrics. They also investigated the effect of the 
feature selection technique on the prediction performance. In a 
study conducted employing an NASA project, RF achieved the 
highest accuracy of 93.7%, while correlation-based feature 
subset selection (CFS) led to a slight increase in performance, 
reaching 93.84%. Authors in [24] studied the effect of feature-
selection techniques utilizing five classification algorithms: 
MLP, SVM, k-Nearest Neighbors (kNN), NB, and Logistic 
Regression (LR), with a telecommunications software system 
[24]. LR exhibited the best performance, whereas the wrapper-
based subset selection technique outperformed the other 
techniques. Authors in [6] performed a new experiment by 
combining well-known classification algorithms with PCA, 
which reduced dataset dimensionality. The datasets were taken 
from Kaggle using the WEKA simulation tool and the 
experiment achieved an accuracy of 98.70% implementing the 
SVM model. 

Considering improvements in prediction models, in [25], 28 
datasets from the PROMISE repository were utilized to 
investigate the performance of seven ensemble techniques using 
three classification algorithms. A total of 532 models were built 
to demonstrate the effectiveness of ensemble techniques in 
predicting faults. While most existing research has focused on 
classifying software units as faulty (buggy) or non-faulty 
(clear), only a few studies have focused on predicting the 
number of faults [11, 14, 26, 27]. The DTR model aimed to 

predict the number of faults, including intra- and inter-release 
predictions, along with several software project datasets [14]. 
DTR yielded good accuracy, with the intra-release prediction 
showing better results. Additionally, GP and NNs were used to 
predict the number of faults employing ten software projects 
from the PROMISE repository. GP achieved better results for 
large datasets [27]. The quality of the classification model is 
highly dependent on the quality of the data [28]. Authors in [5] 
focused on two data-related problems: class overlap and data 
imbalance. These problems were solved utilizing neighborhood 
cleaning and random oversampling. After data processing, four 
models were trained: kNN, NB, DT, and LR. The Synthetic 
Minority Oversampling Technique (SMOTE) and an ensemble 
classifier were used whereas NASA datasets were considered 
and the proposed approach provided improved results. While 
ML techniques are widely employed for software unit 
classification, the research community is still experimenting to 
find better models, with a few researchers utilizing DL [7, 15, 
16, 29]. Authors in [29] used DL algorithms, including ANNs, 
CNNs, Self-Organizing Maps (SOMs), Learning Vector 
Quantization-3 (LVQ3), and multipass-LVQ (multiLVQ). CNN 
achieved the best performance, reaching 99.28%. Additionally, 
dimensionality reduction techniques have also been applied to 
improve DL algorithms. Authors in [13] applied PCA and 
Kernel Principal Component Analysis (KPCA) using DT and 
ANNs, with the ANN algorithm combined with the KPCA 
yielded the best results. Authors in [22] designed a CNN to 
predict the number of software faults, utilizing SMOTEND to 
overcome the problem of imbalanced data. In the most recent 
considered studies [30, 31], other DL techniques were 
implemented to predict software faults, namely Long Short-
Term Memory (LSTM), Bidirectional LSTM (BILSTM), and 
Radial Basis Function Network (RBFN) and to classify the 
modules into faulty or non-faulty. LSTM and BILSTM gave the 
better performance with 93.53% and 93.75% accuracy, but 
RBFN was the fastest [30]. Utilizing DL models based on 
Recurrent Neural Networks (RNNs), the accuracy reached 95% 
[31]. 

III. DATASET 

The considered dataset consisted of 12 publicly available 
software projects obtained from the PROMISE repository, 
which was used for fault prediction studies. These projects 
include Apache Ant, Camel, Xerces, Xalan, Ivy, Poi, Log4j, 
Velocity, Lucene, and Synapse, JEdit, and PROP. Table I 
summarizes the dataset. In this study, the term class is utilized 
to refer to each module. The complete details of the data can be 
found in [32]. Each project consisted of the project name, 
version number, class name, and 20 object-oriented metrics as a 
set of features [26], as shown in Table ΙΙ. In total, 83,113 
records and 24 columns, including the target column were 
obtained. A change in the target column (bug) name is referred 
to as a fault. This study focused on the class level, and the 
dataset consisted of the number of faults in each class for each 

project. Figure 1 shows the total number of classes related to 

the number of faults. For example, there were 70,000 classes 
without any faults. The number of software faults is centered 
around zero, indicating an imbalance in the dataset (the number 
of classes with no faults is greater than the number of classes 
having at least one fault). 
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TABLE I.  DATASET 

Project Version 
Number of 

classes 

Number of faulty 

classes 
Project Version 

Number 

of classes 

Number of 

faulty classes 
Project Version 

Number 

of classes 

Number of 

faulty classes 

Ant 

1.3 125 20 

Lucene 

2.0 195 91 

Jedit 

3.2 272 90 

1.4 178 40 2.2 246 144 4.0 306 75 

1.5 293 32 2.4 340 203 4.1 312 79 

1.6 351 92 

Poi 

1.5 237 141 4.2 367 48 

1.7 745 166 2.0 314 37 4.3 492 11 

Camel 

1.2 609 217 3.0 442 281 3.2 272 90 

1.4 873 145 

Velocity 

1.4 196 147 

Prop 

1 15134 2439 

1.6 966 189 1.5 214 142 2 17065 2158 

Xalan 
2.4 724 111 1.6 229 78 3 7949 1048 

2.5 804 388 

Synapse 

1.0 157 16 4 6981 756 

Xerces 
1.3 453 69 1.1 222 60 5 6649 1178 

1.4 588 437 1.2 256 86 6 631 64 

Ivy 

1.1 111 63 

Log4j 

1.0 135 34    

1.4 241 16 1.1 109 37    

2.0 352 40 1.2 205 189     

TABLE II.  OBJECT-ORIENTED SOFTWARE METRICS 

Abbreviation Name Abbreviation Name Abbreviation Name 

WMC Weighted methods per class LOC Lines of code CE Efferent couplings 

DIT Depth of inheritance tree DAM Data access metric LCOM3 Lack of cohesion in methods 

NOC Number of children MOA Measure of aggregation IC Inheritance coupling 

CBO Coupling between object classes MFA 
Measure of functional 

abstraction 
AMC Average method complexity 

RFC Response for a class CAM 
Cohesion among methods of 

class 
Max_cc 

Max McCabe’s cyclomatic 

complexity 

LCOM Lack of cohesion in methods CBM Coupling between methods Avg_cc 
Avg McCabe's cyclomatic 

complexity 

CA Afferent couplings NPM Number of public methods FAULT Number of faults 

 

 
Fig. 1.  Number of classes vs number of faults. 

A. Data Analysis   

During the analysis, it was evident that approximately 
37,123 duplicate records were present. Consequently, the data 
were analyzed to determine the underlying relationships 
between the features and the dependent variable (fault). First, 
bivariate analysis was applied to identify possible relationships 
or distinct patterns between the two features. A commonly used 
technique for this purpose is the correlation matrix, which 

effectively detects the linear relationship (correlation) between 
two continuous features. Correlation helps identifying important 
features with respect to the dependent variable and checks for 
multiple linear relationships among the features. Figure 2 
depicts the only the strongly correlated feature. However, there 
are only a few strong positive correlations. There was a strong 
positive correlation between the number of WMC and NPM, 
and the total number of methods for RFC and LCOM indicates 
that as the number of the former increased, the number of the 
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latter also increased within each class. From the first 
relationship it can be concluded that most of the methods in 
projects are of a public type. Additionally, there was a strong 
positive correlation among DIT, IC, and MFA, indicating that 
most of the methods were inherited. Additionally, RFC 
exhibited a positive correlation with LOC. There are a few 

linear relationships between the dependent variable (fault) and 
the independent variables (features). It was found out that RFC, 
LOC, and WMC have the strongest linear relationships with the 
number of faults. These features are important for predicting the 
number of faults.  

 

 
Fig. 2.  Correlation matrix, only strongly correlated features. 

B. Data Pre-Processing 

Data are combined into one file to make them suitable for 
DL models. In this phase, duplicate records were deleted, 
resulting in a data size of 45,988. Subsequently, columns that do 
not affect the target column (fault) were removed, namely the 
program name (Name), version number (Version), and class 
name (Name), reducing the total number of columns to 21. The 
number of faulty records, 11,122, was way less than that of non-
faulty records (34,867). Faulty records represented only 24%, 
while non-faulty records comprised 75% of the total data size. 
The SMOTEND method was applied to address this problem 
[11], which increases the number of minority records, 

specifically the number of faulty records in this case. Thus, the 
dataset size was 161,086 records after deleting the duplicate and 
missing records, which led to a 78% increase in classes 
containing faults. The distribution of the dependent variable 
(fault) in the original data following the application of the 
SMOTEND method is displayed in Figure 3. The distribution 
was improved slightly by increasing the number of faulty 
records shown, which balanced the data (Figure 4). 
Subsequently, natural logarithmic transformation and 
standardization were performed. A natural logarithm 
transformation was adopted to transform a highly skewed 
dataset distribution into a less skewed one [33]. 
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A log transformation on the dependent variable (fault) was 
applied to improve the distribution of the dependent variable 
further, as portrayed in Figure 5. Standardization was then 
performed to enhance the feature distribution by eliminating the 
bias using (1): 

� �
�����

�
     (1) 

where x expresses a specific element (feature), μ is the mean of 
the feature, and σ is the standard deviation of the feature. 

 

 
Fig. 3.  Distribution of dependent variable, original data. 

 

Fig. 4.  Distribution of the dependent variable, after applying SMOTEND. 

 
Fig. 5.  Distribution of data with a log transformation. 

IV. RESEARCH METHODOLOGY  

Figure 6 presents the block diagram of the followed process. 
After collecting and pre-processing the data, the latter were 
divided into training and testing sets to train the model (70% 
training and 30% testing). Two DL models, CNN and MLP, 
were designed to predict faulty units. The results were evaluated 
using two performance measures, Mean Squared Error (MSE) 
and Kendall, and the performances of the two models were 
compared. Finally, the obtained results were compared with the 
two best ML fault predicting models, which are DTR and SVR. 

 

 
Fig. 6.  The overall process. 

A. Prediction Model  

DL, a subset of ML, is based on ANNs [34]. The structure of 
an ANN is composed of multiple inputs, outputs, and hidden 
layers, which makes the learning structure deep. Each layer 
consists of neurons that process input data and pass the 
information to the next layer for a specific predictive task. The 
final output depends on the input data, the choice of activation 
function, and weight parameters [34]. CNN and MLP are 
alternative Deep Neural Network (DNN) architectures [34]. To 
improve prediction accuracy, CNNs were chosen to perform a 
new experiment based on the architecture developed in [22]. 
However, MLP has been effectively applied in the area of 
prediction [7]. Also, it has not been used for predicting the 
number of software faults.  

1) Convolutional Neural Networks 

A CNN is a DL technique that has attracted considerable 
attention for handling high-dimensional data. It engages a 
mathematical operation called convolution and incorporates a 
special type of NN consisting of feature extractors that 
determine weights during the training process [29]. The basic 
structure of a CNN is composed of three layers: a convolutional 
layer, a pooling layer, and a fully connected layer. In the 
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traditional approach, all the features are inserted into one CNN 
layer and then into the next layer, unlike the way we used.  

In this paper, the CNN structure was applied, as described in 
[22], and subsequent modifications were made to improve the 
design. The difference was spotted in the division of the 
features. That is, they were divided according to dimensions, 
and encapsulation metrics, coupling metrics, abstraction 
metrics, cohesion metrics, while complexity metrics were 
considered. There was an effort for the same division to be 
utilized, but certain groups had a higher number of features than 
others. For example, the encapsulation metric group contained 
only one feature, namely the Data Access Metric (DAM), 
whereas the complexity metric group contained seven features. 
The resulting model did not learn and did not give satisfactory 
results. 

As a next step, the features were divided randomly into five 
groups, all groups containing four features equally. Group one 

contained (WMC, DIT, NOC, CBO), group two (RFC, LCOM, 
CA, CE), group three (NPM, LCOM3, LOC, DAM), group four 
(MOA, MFA, CAM, IC), and group five (CBM, AMC, 
MAX_CC, AVG_CC). Each feature group was fed into a single 
CNN layer. The output of the CNN input layer becomes the 
input to a maxpooling layer. The maxpooling layer was added to 
merge similar features and reduce dimensionality [34]. 
Subsequently, dropout layers were added to reduce the 
possibility of overfitting [7]. Finally, flatten layers are added to 
convert the resulting matrix into an one-dimensional vector. 
These layers were repeated five times consecutively, which was 
equal to the number of feature groups, with a different dataset 
being entered each time. The flattened layers generated five 
outputs, which were then merged using the merge layer and fed 
into the first fully connected layer. The final layer is the second 
fully connected layer, which produced the predicted number of 
faults. Figure 7 illustrates the design structure of the CNN 
model. 

 

 
Fig. 7.  The structure of the CNN model. 

 
Fig. 8.  The structure of the MLP model. 
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2) Multilayer Perceptron 

MLPs are multi-hidden layer NNs composed of a minimum 
of three layers: an input layer, one or more hidden layers, and an 
output layer. The input features are weighted and 
simultaneously fed into the first hidden layer. This layer 
generates inputs for the next hidden layer, and this process 
continues until the last layer. The weighted output from the last 
hidden layer is fed into the output layer, enabling the network to 
make predictions [7]. In terms of implementation, the deep MLP 
is the simplest DL model [34]. As a preliminary experiment, this 
model was built similarly to the previous CNN model. The 
features were divided into five groups. A dense layer was 
inserted into each group, followed by a flat layer. Thus, five 
outputs were obtained. Following that, the merge layer collected 
the outputs and fed them into the first and second fully 
connected layers. Figure 8 shows the structure of the MLP 
model. 

V. MODEL EVALUATION 

Two different performance metrics were used to evaluate the 
prediction models: Kendall and MSE. Kendall provides the best 
performance measure for predicting the number of faults 
compared to other metrics [11]. On the other hand, the MSE is 
widely employed and is considered a measure of the quality of a 
prediction model, with a preference for a smaller value [33]. 
The Kendall rank correlation coefficient, known as Kendall, is a 
non-parametric statistic used to test the similarities in data 
ordering. It has been also used to measure the ordinal 
association between two measured quantities [11]. In this 
experiment, the ordinal correlation between the actual and 
predicted numbers of faults was determined. A higher Kendall 
coefficient value shows better performance. The Kendall 
coefficient is given by: 

	 �
#�
��
����� ����� � #����
����� �����

��� � ��/�
   (2) 

MSE measures the squared difference between the predicted 
and the actual values [33]. The formula for calculating MSE is 
given by: 

MSE = 
�

�
∑ �|�� − y��

� � ��   (3) 

where y� is the predicted value of y. 

VI. RESULTS AND DISCUSSION 

A. Experimental Settings 

The models were developed in Google Colab using Python 
3. An Asus PC with Windows operating system was utilized. 
The total number of records employed in the experiments was 
161,086. Two experiments were conducted. First, the prediction 
models were evaluated before and after using the SMOTEND 
method. During model training, the epoch and batch size 
parameters were modified regularly to achieve the best results. 
The batch size varied between 10 and 20 and the number of 
epochs between 10 and 200, with the improvement stopping at 
100. The CNN and MLP model parameters were defined as: 
activation = ReLU and kernel_initializer = glorot_uniform. 

B. Experimental Results 

The results of Experiments 1 and 2, evaluating both models 
before and after applying the SMOTEND method, are depicted 
in Table III. When the data were imbalanced, the MLP 
performed poorly compared to CNN in both the training and 
testing phases. However, the results demonstrated further 
improvement when SMOTEND was used to resolve the 
imbalance issue, as in the second experiment. In the testing set, 
the MLP outperformed the CNN, with an enhanced Kendall's 
value of 0.416 and MSE of 0.195 in the testing phase when 
utilizing MLP with balanced data, and this proves the 
effectiveness of MLP in predicting the number of faults. The 
results were not in accordance with those in [22], where CNN 
performed well. To ensure the integrity of the model's 
progression, we need to monitor the validation loss value. This 
value is adopted to check the performance after each complete 
epoch and determine if the model requires adjustments. The 
training and validation losses indicate how effectively the model 
was trained. The MSE was selected as the loss function due to 
its compatibility with the data type.  

TABLE III.  EXPERIMENTS TO TRAIN AND TEST THE 
IMPACT OF BALANCE AND IMBALANCE DATA WITH CNN 

AND MLP 

Experiment 
Experiment 1 

(without SMOTEND) 

Experiment 2 

(with SMOTEND) 

MODEL METRIC Kendall MSE Kendall MSE 

CNN 
Train 0.19 1.776 0.361 0.222 

Test 0.162 1.316 0.363 0.218 

MLP 
Train 0.186 1.887 0.444 0.185 

Test 0.183 1.73 0.416 0.195 

 

Figure 9 presents the training and validation losses for both 
models before processing the unbalanced data. It is noticed that 
the MLP did not learn well with the current data, thus, the 
SMOTEND method was applied to solve this issue. Figure 10 
shows the optimized training and validation losses for both 
CNN and MLP. The best performing models are displayed in 
Figure 10(b), where a clear reduction in loss can be seen. In 
Figure 10(a), the number of batch size and epochs changed 
many times and no improvement was noticed. 

The difference between CNN and MLP is that CNN 
contains layers that filter features, unlike MLP, which deals 
with the data directly without any intervention or filtering. 
Therefore, it was concluded that the data pre-processing is good 
enough. MLP performed better, contrary to the conclusions 
reached in [16-29]. The reason is the type of data used (numeric 
data) and the non-linearity of the problem. 

While DL models employ big data to solve complex 
problems, they have been effective in addressing SFP problems 
for better predictions. To verify the effectiveness of the 
proposed DL models for SFP, two state-of-the-art ML models, 
SVR and DTR, were applied with the results illustrated in Table 
IV. These models were utilized due to their accuracy in 
predicting the number of faults in software modules [33]. The 
obtained results were compared with those of the implemented 
DL algorithms. The ML models were applied in the same two 
experiments using the same datasets and features.  
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(a) 

 

(b) 

 

Fig. 9.  (a) The CNN and (b) MLP without SMOTEND. 

(a) 

 

(b) 

 

Fig. 10.  (a) The CNN and (b) MLP witht SMOTEND. 

 

As shown in Table IV, Experiment 1 demonstrated 
underfitting, and the model failed to learn with the original data. 
However, the improvement was noticeable as the data were 
refined and cleaned. The DTR model provided better results 
than the SVR model, which required a longer time to run and 
deliver results. Additionally, the SVR did not present the 
outcomes of Experiment 1 in all training and test groups. Even 
though DTR gave better results in Experiment 2, with Kendall's 
coefficient of 0.486 and MSE of 0.170, the model did not train 
well.  

TABLE IV.  PERFORMANCE OF THE ML MODELS IN THE 
TRAINING AND TEST SETS AND THE SAME EXPERIMENTS 

Experiment 
Experiment 1 

(without SMOTEND) 

Experiment 2 (with 

SMOTEND) 

MODEL METRIC Kendall MSE Kendall MSE 

DTR 
Train 0.307 1.692 0.532 0.146 

Test 0.219 1.929 0.486 0.17 

SVR 
Train - - 0.279 0.255 

Test - - 0.276 0.257 
 

Figure 11 depicts the training of the DTR model with 
balanced data. The red color represents the actual data, while the 
blue color represents the predicted data. Therefore, it cannot be 
said that DTR gave better performance than MLP, because even 
though the MLP results were slightly lower, the model learned 
well. 

 

   

Fig. 11.  DTR with SMOTEND. 

VII. THREATS TO VALIDITY 

This section discusses the external validity of our 
experiments. External validity relates to the generality of the 
results. To mitigate this threat, we used 12 publicly available 
datasets for training and evaluating the proposed model. 
However, all projects involved in our experiments were written 
in Java, raising the potential threat of generalizing the results to 
other programming languages. Furthermore, our chosen datasets 
posed other threats to external validity, as they consisted of 20 
object-oriented metrics. However, other metrics yielded 
different results.  
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VIII. CONCLUSION AND FUTURE WORK 

SFP has attracted significant research attention due to its 
ability to decrease the testing cost. While most existing studies 
focused on the classification of software units as faulty, 
predicting the number of faults in each software unit is also 
beneficial. In this study, two deep learning models, CNN and 
MLP, were designed to predict the number of faults in each 
software unit. Their performance was evaluated over 12 
software project datasets. Furthermore, SMOTEND was applied 
to solve the data imbalance issue and improve prediction 
performance, which adversely affects result accuracy. 

Based on the findings of this research, the MLP showed 
better results, with a Kendall value of 0.416 and MSE equal to 
0.195, achieving a lower error rate than CNN. In addition, using 
SMOTEND improved the findings significantly. MLP was 
better in terms of the results and model performance. The main 
reason for this is that the problem is non-linear and the data type 
is numeric, making MLP suitable for facing this issue. Future 
work plans involve finding methods for obtaining data on fault 
types and their criticalities to prioritize faults. In addition, 
software semantics can be utilized to predict faults. Thus, this 
approach can be extended to techniques that consider code 
semantics while predicting faulty units.  
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