
Engineering, Technology & Applied Science Research Vol. 14, No. 2, 2024, 13222-13231 13222

www.etasr.com Alkaberi & Assiri: Predicting the Number of Software Faults using Deep Learning

Predicting the Number of Software Faults using

Deep Learning

Wahaj Alkaberi

Computer Science and Artificial Intelligence Department, College of Computer Science and Engineering,

University of Jeddah, Saudi Arabia
2100295@uj.edu.sa (corresponding author)

Fatmah Assiri

Software Engineering Department, College of Computer Science and Engineering, University of Jeddah,

Saudi Arabia

fyassiri@uj.edu.sa

Received: 22 December 2023 | Revised: 20 January 2024 | Accepted: 28 January 2024

Licensed under a CC-BY 4.0 license | Copyright (c) by the authors | DOI: https://doi.org/10.48084/etasr.6798

ABSTRACT

The software testing phase requires considerable time, effort, and cost, particularly when there are many
faults. Thus, developers focus on the evolution of Software Fault Prediction (SFP) to predict faulty units in

advance, therefore, improving software quality significantly. Forecasting the number of faults in software

units can efficiently direct software testing efforts. Previous studies have employed several machine

learning models to determine whether a software unit is faulty. In this study, a new, simple deep neural

network approach that can adapt to the type of input data was designed, utilizing Convolutional Neural

Networks (CNNs) and Multi-Layer Perceptron (MLP), to predict the number of software faults. Twelve

open-source software project datasets from the PROMISE repository were used for testing and validation.
As data imbalance can negatively impact prediction accuracy, the new version of synthetic minority over-

sampling technique (SMOTEND) was used to resolve data imbalance. In experimental results, a lower

error rate was obtained for MLP, compared to CNN, reaching 0.195, indicating the accuracy of this

prediction model. The proposed approach proved to be effective when compared with two of the best
machine learning models in the field of prediction. The code will be available on GitHub.

Keywords-deep learning; MLP; CNN; software testing; prediction; fault; class imbalance

I. INTRODUCTION

Quality attributes are among the most important desired
attributes in developed software, and faults have a significant
negative impact on software quality. The cost of software
projects rises as they progress towards the deployment phase,
whereas the presence of faults entails additional costs that can
affect the allocated budget and actual time [1]. The field of
Software Fault Prediction (SFP) is not limited to software
engineering only, it has also contributed to the medical [2-3]
and industrial fields [4]. Recently, SFP, a method of designing
models to classify software units as faulty [5], has gained
considerable attention [6]. The SFP predicts defective software
modules/units before the testing phase [7]. Various supervised
Machine Learning (ML) models, such as Decision Tree (DT),
Neural Networks (NNs), and Support Vector Machines (SVMs)
[8-10], as well as unsupervised algorithms, namely K-means++
and QuadTree K-means (QDK) [10], have been used with
varying degrees of success. Also, ensemble learning models
have been developed and utilized for this purpose [11]. Some
studies have applied Principal Component Analysis (PCA) and
feature selection techniques to improve the prediction results

[12, 13]. Furthermore, a few researchers have turned to Deep
Learning (DL) as it produces a higher accuracy rate for SFP [7,
14-17]. The existing studies focus on classifying software units
as faulty or not. However, predicting the number of faults is
more useful as it helps developers focus more on software units
with a large number of faults, thereby reducing the testing effort
[7-14]. Software developers aim to find the best solutions to
predict the number of faults in early phases. Many models and
techniques have been tested. With the emergence of DL models
many experiments have proven the ability of DL to predict
software faults.

Given the advantages that Convolutional Neural Networks
(CNN) have in terms of their ability to predict and adapt to
structure, quality, and number of data, this feature is considered
important in the field of fault prediction, because the data that
we obtain for prediction vary due to the existing differences in
programs and features [18-20]. Furthermore, the source code
usually consists of millions of lines and hundreds of files [6],
which is a huge amount of data that can be better utilized with
DL techniques [21]. CNNs along with MLP models have been
effectively applied in the area of prediction [7]. In this study,
DL models will be developed using CNNs and Multi-Layer

Engineering, Technology & Applied Science Research Vol. 14, No. 2, 2024, 13222-13231 13223

www.etasr.com Alkaberi & Assiri: Predicting the Number of Software Faults using Deep Learning

Perceptron (MLP) to predict the number of faults. The model
design of [22] was followed, with modifications producing
better results. To further improve the prediction results,
SMOTEND technique was applied to solve data imbalance,
which introduced majority bias and considered noise. The main
contribution of the current study lies in the investigation of the
effectiveness of the proposed CNN and MLP design to the field
of SFP. Additionally, the acquired results were compared with
those of well-known ML models to showcase the effectiveness
of DL. As far as is known, only the studies [22-34] have
considered DL algorithms to predict the number of faults at the
class level.

II. RELATED WORK

Initially, SFP was approached as a classification problem,
aiming to predict whether software units were faulty.
Researchers focused on ML models in earlier studies. Authors
in [9] summarized the related articles published between
January 1991 and October 2013 and identified the best
techniques and measures for SFP models [9]. The results
showed that Random Forest (RF) was the best-used model with
80% accuracy. Authors in [8] compared the performances of
three of the most popular supervised ML techniques: MLP,
Bayesian network, and Naïve Bayes (NB). The findings
indicated that NB achieved the highest accuracy (97%).

In addition to supervised ML techniques, unsupervised ML
algorithms have been also used. The author in [23] conducted a
comparative study on clustering algorithms, specifically K-
means and their variants (K-means++, QDK, and Fuzzy C-
means (FCM)). NASA datasets with 29 static code attributes
were used, with the QDK algorithm exhibiting the best
performance. Research continues to improve classification
accuracy. Authors in [10] predicted software faults using ML
and source code metrics. They also investigated the effect of the
feature selection technique on the prediction performance. In a
study conducted employing an NASA project, RF achieved the
highest accuracy of 93.7%, while correlation-based feature
subset selection (CFS) led to a slight increase in performance,
reaching 93.84%. Authors in [24] studied the effect of feature-
selection techniques utilizing five classification algorithms:
MLP, SVM, k-Nearest Neighbors (kNN), NB, and Logistic
Regression (LR), with a telecommunications software system
[24]. LR exhibited the best performance, whereas the wrapper-
based subset selection technique outperformed the other
techniques. Authors in [6] performed a new experiment by
combining well-known classification algorithms with PCA,
which reduced dataset dimensionality. The datasets were taken
from Kaggle using the WEKA simulation tool and the
experiment achieved an accuracy of 98.70% implementing the
SVM model.

Considering improvements in prediction models, in [25], 28
datasets from the PROMISE repository were utilized to
investigate the performance of seven ensemble techniques using
three classification algorithms. A total of 532 models were built
to demonstrate the effectiveness of ensemble techniques in
predicting faults. While most existing research has focused on
classifying software units as faulty (buggy) or non-faulty
(clear), only a few studies have focused on predicting the
number of faults [11, 14, 26, 27]. The DTR model aimed to

predict the number of faults, including intra- and inter-release
predictions, along with several software project datasets [14].
DTR yielded good accuracy, with the intra-release prediction
showing better results. Additionally, GP and NNs were used to
predict the number of faults employing ten software projects
from the PROMISE repository. GP achieved better results for
large datasets [27]. The quality of the classification model is
highly dependent on the quality of the data [28]. Authors in [5]
focused on two data-related problems: class overlap and data
imbalance. These problems were solved utilizing neighborhood
cleaning and random oversampling. After data processing, four
models were trained: kNN, NB, DT, and LR. The Synthetic
Minority Oversampling Technique (SMOTE) and an ensemble
classifier were used whereas NASA datasets were considered
and the proposed approach provided improved results. While
ML techniques are widely employed for software unit
classification, the research community is still experimenting to
find better models, with a few researchers utilizing DL [7, 15,
16, 29]. Authors in [29] used DL algorithms, including ANNs,
CNNs, Self-Organizing Maps (SOMs), Learning Vector
Quantization-3 (LVQ3), and multipass-LVQ (multiLVQ). CNN
achieved the best performance, reaching 99.28%. Additionally,
dimensionality reduction techniques have also been applied to
improve DL algorithms. Authors in [13] applied PCA and
Kernel Principal Component Analysis (KPCA) using DT and
ANNs, with the ANN algorithm combined with the KPCA
yielded the best results. Authors in [22] designed a CNN to
predict the number of software faults, utilizing SMOTEND to
overcome the problem of imbalanced data. In the most recent
considered studies [30, 31], other DL techniques were
implemented to predict software faults, namely Long Short-
Term Memory (LSTM), Bidirectional LSTM (BILSTM), and
Radial Basis Function Network (RBFN) and to classify the
modules into faulty or non-faulty. LSTM and BILSTM gave the
better performance with 93.53% and 93.75% accuracy, but
RBFN was the fastest [30]. Utilizing DL models based on
Recurrent Neural Networks (RNNs), the accuracy reached 95%
[31].

III. DATASET

The considered dataset consisted of 12 publicly available
software projects obtained from the PROMISE repository,
which was used for fault prediction studies. These projects
include Apache Ant, Camel, Xerces, Xalan, Ivy, Poi, Log4j,
Velocity, Lucene, and Synapse, JEdit, and PROP. Table I
summarizes the dataset. In this study, the term class is utilized
to refer to each module. The complete details of the data can be
found in [32]. Each project consisted of the project name,
version number, class name, and 20 object-oriented metrics as a
set of features [26], as shown in Table ΙΙ. In total, 83,113
records and 24 columns, including the target column were
obtained. A change in the target column (bug) name is referred
to as a fault. This study focused on the class level, and the
dataset consisted of the number of faults in each class for each

project. Figure 1 shows the total number of classes related to

the number of faults. For example, there were 70,000 classes
without any faults. The number of software faults is centered
around zero, indicating an imbalance in the dataset (the number
of classes with no faults is greater than the number of classes
having at least one fault).

Engineering, Technology & Applied Science Research Vol. 14, No. 2, 2024, 13222-13231 13224

www.etasr.com Alkaberi & Assiri: Predicting the Number of Software Faults using Deep Learning

TABLE I. DATASET

Project Version
Number of

classes

Number of faulty

classes
Project Version

Number

of classes

Number of

faulty classes
Project Version

Number

of classes

Number of

faulty classes

Ant

1.3 125 20

Lucene

2.0 195 91

Jedit

3.2 272 90

1.4 178 40 2.2 246 144 4.0 306 75

1.5 293 32 2.4 340 203 4.1 312 79

1.6 351 92

Poi

1.5 237 141 4.2 367 48

1.7 745 166 2.0 314 37 4.3 492 11

Camel

1.2 609 217 3.0 442 281 3.2 272 90

1.4 873 145

Velocity

1.4 196 147

Prop

1 15134 2439

1.6 966 189 1.5 214 142 2 17065 2158

Xalan
2.4 724 111 1.6 229 78 3 7949 1048

2.5 804 388

Synapse

1.0 157 16 4 6981 756

Xerces
1.3 453 69 1.1 222 60 5 6649 1178

1.4 588 437 1.2 256 86 6 631 64

Ivy

1.1 111 63

Log4j

1.0 135 34

1.4 241 16 1.1 109 37

2.0 352 40 1.2 205 189

TABLE II. OBJECT-ORIENTED SOFTWARE METRICS

Abbreviation Name Abbreviation Name Abbreviation Name

WMC Weighted methods per class LOC Lines of code CE Efferent couplings

DIT Depth of inheritance tree DAM Data access metric LCOM3 Lack of cohesion in methods

NOC Number of children MOA Measure of aggregation IC Inheritance coupling

CBO Coupling between object classes MFA
Measure of functional

abstraction
AMC Average method complexity

RFC Response for a class CAM
Cohesion among methods of

class
Max_cc

Max McCabe’s cyclomatic

complexity

LCOM Lack of cohesion in methods CBM Coupling between methods Avg_cc
Avg McCabe's cyclomatic

complexity

CA Afferent couplings NPM Number of public methods FAULT Number of faults

Fig. 1. Number of classes vs number of faults.

A. Data Analysis

During the analysis, it was evident that approximately
37,123 duplicate records were present. Consequently, the data
were analyzed to determine the underlying relationships
between the features and the dependent variable (fault). First,
bivariate analysis was applied to identify possible relationships
or distinct patterns between the two features. A commonly used
technique for this purpose is the correlation matrix, which

effectively detects the linear relationship (correlation) between
two continuous features. Correlation helps identifying important
features with respect to the dependent variable and checks for
multiple linear relationships among the features. Figure 2
depicts the only the strongly correlated feature. However, there
are only a few strong positive correlations. There was a strong
positive correlation between the number of WMC and NPM,
and the total number of methods for RFC and LCOM indicates
that as the number of the former increased, the number of the

Engineering, Technology & Applied Science Research Vol. 14, No. 2, 2024, 13222-13231 13225

www.etasr.com Alkaberi & Assiri: Predicting the Number of Software Faults using Deep Learning

latter also increased within each class. From the first
relationship it can be concluded that most of the methods in
projects are of a public type. Additionally, there was a strong
positive correlation among DIT, IC, and MFA, indicating that
most of the methods were inherited. Additionally, RFC
exhibited a positive correlation with LOC. There are a few

linear relationships between the dependent variable (fault) and
the independent variables (features). It was found out that RFC,
LOC, and WMC have the strongest linear relationships with the
number of faults. These features are important for predicting the
number of faults.

Fig. 2. Correlation matrix, only strongly correlated features.

B. Data Pre-Processing

Data are combined into one file to make them suitable for
DL models. In this phase, duplicate records were deleted,
resulting in a data size of 45,988. Subsequently, columns that do
not affect the target column (fault) were removed, namely the
program name (Name), version number (Version), and class
name (Name), reducing the total number of columns to 21. The
number of faulty records, 11,122, was way less than that of non-
faulty records (34,867). Faulty records represented only 24%,
while non-faulty records comprised 75% of the total data size.
The SMOTEND method was applied to address this problem
[11], which increases the number of minority records,

specifically the number of faulty records in this case. Thus, the
dataset size was 161,086 records after deleting the duplicate and
missing records, which led to a 78% increase in classes
containing faults. The distribution of the dependent variable
(fault) in the original data following the application of the
SMOTEND method is displayed in Figure 3. The distribution
was improved slightly by increasing the number of faulty
records shown, which balanced the data (Figure 4).
Subsequently, natural logarithmic transformation and
standardization were performed. A natural logarithm
transformation was adopted to transform a highly skewed
dataset distribution into a less skewed one [33].

Engineering, Technology & Applied Science Research Vol. 14, No. 2, 2024, 13222-13231 13226

www.etasr.com Alkaberi & Assiri: Predicting the Number of Software Faults using Deep Learning

A log transformation on the dependent variable (fault) was
applied to improve the distribution of the dependent variable
further, as portrayed in Figure 5. Standardization was then
performed to enhance the feature distribution by eliminating the
bias using (1):

� �
�����

�
 (1)

where x expresses a specific element (feature), μ is the mean of
the feature, and σ is the standard deviation of the feature.

Fig. 3. Distribution of dependent variable, original data.

Fig. 4. Distribution of the dependent variable, after applying SMOTEND.

Fig. 5. Distribution of data with a log transformation.

IV. RESEARCH METHODOLOGY

Figure 6 presents the block diagram of the followed process.
After collecting and pre-processing the data, the latter were
divided into training and testing sets to train the model (70%
training and 30% testing). Two DL models, CNN and MLP,
were designed to predict faulty units. The results were evaluated
using two performance measures, Mean Squared Error (MSE)
and Kendall, and the performances of the two models were
compared. Finally, the obtained results were compared with the
two best ML fault predicting models, which are DTR and SVR.

Fig. 6. The overall process.

A. Prediction Model

DL, a subset of ML, is based on ANNs [34]. The structure of
an ANN is composed of multiple inputs, outputs, and hidden
layers, which makes the learning structure deep. Each layer
consists of neurons that process input data and pass the
information to the next layer for a specific predictive task. The
final output depends on the input data, the choice of activation
function, and weight parameters [34]. CNN and MLP are
alternative Deep Neural Network (DNN) architectures [34]. To
improve prediction accuracy, CNNs were chosen to perform a
new experiment based on the architecture developed in [22].
However, MLP has been effectively applied in the area of
prediction [7]. Also, it has not been used for predicting the
number of software faults.

1) Convolutional Neural Networks

A CNN is a DL technique that has attracted considerable
attention for handling high-dimensional data. It engages a
mathematical operation called convolution and incorporates a
special type of NN consisting of feature extractors that
determine weights during the training process [29]. The basic
structure of a CNN is composed of three layers: a convolutional
layer, a pooling layer, and a fully connected layer. In the

Engineering, Technology & Applied Science Research Vol. 14, No. 2, 2024, 13222-13231 13227

www.etasr.com Alkaberi & Assiri: Predicting the Number of Software Faults using Deep Learning

traditional approach, all the features are inserted into one CNN
layer and then into the next layer, unlike the way we used.

In this paper, the CNN structure was applied, as described in
[22], and subsequent modifications were made to improve the
design. The difference was spotted in the division of the
features. That is, they were divided according to dimensions,
and encapsulation metrics, coupling metrics, abstraction
metrics, cohesion metrics, while complexity metrics were
considered. There was an effort for the same division to be
utilized, but certain groups had a higher number of features than
others. For example, the encapsulation metric group contained
only one feature, namely the Data Access Metric (DAM),
whereas the complexity metric group contained seven features.
The resulting model did not learn and did not give satisfactory
results.

As a next step, the features were divided randomly into five
groups, all groups containing four features equally. Group one

contained (WMC, DIT, NOC, CBO), group two (RFC, LCOM,
CA, CE), group three (NPM, LCOM3, LOC, DAM), group four
(MOA, MFA, CAM, IC), and group five (CBM, AMC,
MAX_CC, AVG_CC). Each feature group was fed into a single
CNN layer. The output of the CNN input layer becomes the
input to a maxpooling layer. The maxpooling layer was added to
merge similar features and reduce dimensionality [34].
Subsequently, dropout layers were added to reduce the
possibility of overfitting [7]. Finally, flatten layers are added to
convert the resulting matrix into an one-dimensional vector.
These layers were repeated five times consecutively, which was
equal to the number of feature groups, with a different dataset
being entered each time. The flattened layers generated five
outputs, which were then merged using the merge layer and fed
into the first fully connected layer. The final layer is the second
fully connected layer, which produced the predicted number of
faults. Figure 7 illustrates the design structure of the CNN
model.

Fig. 7. The structure of the CNN model.

Fig. 8. The structure of the MLP model.

Engineering, Technology & Applied Science Research Vol. 14, No. 2, 2024, 13222-13231 13228

www.etasr.com Alkaberi & Assiri: Predicting the Number of Software Faults using Deep Learning

2) Multilayer Perceptron

MLPs are multi-hidden layer NNs composed of a minimum
of three layers: an input layer, one or more hidden layers, and an
output layer. The input features are weighted and
simultaneously fed into the first hidden layer. This layer
generates inputs for the next hidden layer, and this process
continues until the last layer. The weighted output from the last
hidden layer is fed into the output layer, enabling the network to
make predictions [7]. In terms of implementation, the deep MLP
is the simplest DL model [34]. As a preliminary experiment, this
model was built similarly to the previous CNN model. The
features were divided into five groups. A dense layer was
inserted into each group, followed by a flat layer. Thus, five
outputs were obtained. Following that, the merge layer collected
the outputs and fed them into the first and second fully
connected layers. Figure 8 shows the structure of the MLP
model.

V. MODEL EVALUATION

Two different performance metrics were used to evaluate the
prediction models: Kendall and MSE. Kendall provides the best
performance measure for predicting the number of faults
compared to other metrics [11]. On the other hand, the MSE is
widely employed and is considered a measure of the quality of a
prediction model, with a preference for a smaller value [33].
The Kendall rank correlation coefficient, known as Kendall, is a
non-parametric statistic used to test the similarities in data
ordering. It has been also used to measure the ordinal
association between two measured quantities [11]. In this
experiment, the ordinal correlation between the actual and
predicted numbers of faults was determined. A higher Kendall
coefficient value shows better performance. The Kendall
coefficient is given by:

	 �
#�
��
����� ����� � #����
����� �����

��� � ��/�
 (2)

MSE measures the squared difference between the predicted
and the actual values [33]. The formula for calculating MSE is
given by:

MSE =
�

�
∑ �|�� − y��

� � �� (3)

where y� is the predicted value of y.

VI. RESULTS AND DISCUSSION

A. Experimental Settings

The models were developed in Google Colab using Python
3. An Asus PC with Windows operating system was utilized.
The total number of records employed in the experiments was
161,086. Two experiments were conducted. First, the prediction
models were evaluated before and after using the SMOTEND
method. During model training, the epoch and batch size
parameters were modified regularly to achieve the best results.
The batch size varied between 10 and 20 and the number of
epochs between 10 and 200, with the improvement stopping at
100. The CNN and MLP model parameters were defined as:
activation = ReLU and kernel_initializer = glorot_uniform.

B. Experimental Results

The results of Experiments 1 and 2, evaluating both models
before and after applying the SMOTEND method, are depicted
in Table III. When the data were imbalanced, the MLP
performed poorly compared to CNN in both the training and
testing phases. However, the results demonstrated further
improvement when SMOTEND was used to resolve the
imbalance issue, as in the second experiment. In the testing set,
the MLP outperformed the CNN, with an enhanced Kendall's
value of 0.416 and MSE of 0.195 in the testing phase when
utilizing MLP with balanced data, and this proves the
effectiveness of MLP in predicting the number of faults. The
results were not in accordance with those in [22], where CNN
performed well. To ensure the integrity of the model's
progression, we need to monitor the validation loss value. This
value is adopted to check the performance after each complete
epoch and determine if the model requires adjustments. The
training and validation losses indicate how effectively the model
was trained. The MSE was selected as the loss function due to
its compatibility with the data type.

TABLE III. EXPERIMENTS TO TRAIN AND TEST THE
IMPACT OF BALANCE AND IMBALANCE DATA WITH CNN

AND MLP

Experiment
Experiment 1

(without SMOTEND)

Experiment 2

(with SMOTEND)

MODEL METRIC Kendall MSE Kendall MSE

CNN
Train 0.19 1.776 0.361 0.222

Test 0.162 1.316 0.363 0.218

MLP
Train 0.186 1.887 0.444 0.185

Test 0.183 1.73 0.416 0.195

Figure 9 presents the training and validation losses for both
models before processing the unbalanced data. It is noticed that
the MLP did not learn well with the current data, thus, the
SMOTEND method was applied to solve this issue. Figure 10
shows the optimized training and validation losses for both
CNN and MLP. The best performing models are displayed in
Figure 10(b), where a clear reduction in loss can be seen. In
Figure 10(a), the number of batch size and epochs changed
many times and no improvement was noticed.

The difference between CNN and MLP is that CNN
contains layers that filter features, unlike MLP, which deals
with the data directly without any intervention or filtering.
Therefore, it was concluded that the data pre-processing is good
enough. MLP performed better, contrary to the conclusions
reached in [16-29]. The reason is the type of data used (numeric
data) and the non-linearity of the problem.

While DL models employ big data to solve complex
problems, they have been effective in addressing SFP problems
for better predictions. To verify the effectiveness of the
proposed DL models for SFP, two state-of-the-art ML models,
SVR and DTR, were applied with the results illustrated in Table
IV. These models were utilized due to their accuracy in
predicting the number of faults in software modules [33]. The
obtained results were compared with those of the implemented
DL algorithms. The ML models were applied in the same two
experiments using the same datasets and features.

Engineering, Technology & Applied Science Research Vol. 14, No. 2, 2024, 13222-13231 13229

www.etasr.com Alkaberi & Assiri: Predicting the Number of Software Faults using Deep Learning

(a)

(b)

Fig. 9. (a) The CNN and (b) MLP without SMOTEND.

(a)

(b)

Fig. 10. (a) The CNN and (b) MLP witht SMOTEND.

As shown in Table IV, Experiment 1 demonstrated
underfitting, and the model failed to learn with the original data.
However, the improvement was noticeable as the data were
refined and cleaned. The DTR model provided better results
than the SVR model, which required a longer time to run and
deliver results. Additionally, the SVR did not present the
outcomes of Experiment 1 in all training and test groups. Even
though DTR gave better results in Experiment 2, with Kendall's
coefficient of 0.486 and MSE of 0.170, the model did not train
well.

TABLE IV. PERFORMANCE OF THE ML MODELS IN THE
TRAINING AND TEST SETS AND THE SAME EXPERIMENTS

Experiment
Experiment 1

(without SMOTEND)

Experiment 2 (with

SMOTEND)

MODEL METRIC Kendall MSE Kendall MSE

DTR
Train 0.307 1.692 0.532 0.146

Test 0.219 1.929 0.486 0.17

SVR
Train - - 0.279 0.255

Test - - 0.276 0.257

Figure 11 depicts the training of the DTR model with
balanced data. The red color represents the actual data, while the
blue color represents the predicted data. Therefore, it cannot be
said that DTR gave better performance than MLP, because even
though the MLP results were slightly lower, the model learned
well.

Fig. 11. DTR with SMOTEND.

VII. THREATS TO VALIDITY

This section discusses the external validity of our
experiments. External validity relates to the generality of the
results. To mitigate this threat, we used 12 publicly available
datasets for training and evaluating the proposed model.
However, all projects involved in our experiments were written
in Java, raising the potential threat of generalizing the results to
other programming languages. Furthermore, our chosen datasets
posed other threats to external validity, as they consisted of 20
object-oriented metrics. However, other metrics yielded
different results.

Engineering, Technology & Applied Science Research Vol. 14, No. 2, 2024, 13222-13231 13230

www.etasr.com Alkaberi & Assiri: Predicting the Number of Software Faults using Deep Learning

VIII. CONCLUSION AND FUTURE WORK

SFP has attracted significant research attention due to its
ability to decrease the testing cost. While most existing studies
focused on the classification of software units as faulty,
predicting the number of faults in each software unit is also
beneficial. In this study, two deep learning models, CNN and
MLP, were designed to predict the number of faults in each
software unit. Their performance was evaluated over 12
software project datasets. Furthermore, SMOTEND was applied
to solve the data imbalance issue and improve prediction
performance, which adversely affects result accuracy.

Based on the findings of this research, the MLP showed
better results, with a Kendall value of 0.416 and MSE equal to
0.195, achieving a lower error rate than CNN. In addition, using
SMOTEND improved the findings significantly. MLP was
better in terms of the results and model performance. The main
reason for this is that the problem is non-linear and the data type
is numeric, making MLP suitable for facing this issue. Future
work plans involve finding methods for obtaining data on fault
types and their criticalities to prioritize faults. In addition,
software semantics can be utilized to predict faults. Thus, this
approach can be extended to techniques that consider code
semantics while predicting faulty units.

REFERENCES

[1] A. Kumar and A. Bansal, "Software Fault Proneness Prediction Using
Genetic Based Machine Learning Techniques," in 4th International

Conference on Internet of Things: Smart Innovation and Usages,
Ghaziabad, India, Apr. 2019, pp. 1–5, https://doi.org/10.1109/IoT-

SIU.2019.8777494.

[2] K. Punitha and B. Latha, "Validation of Medical Imaging Software Using

Metaheuristic Knowledge Discovery," Journal of Medical Imaging and

Health Informatics, vol. 6, no. 8, pp. 1966–1971, Dec. 2016,

https://doi.org/10.1166/jmihi.2016.1958.

[3] C. Shyamala and S. A. Sahaaya Arul Mary, "Defect Prediction in Medical
Software Using Hybrid Genetic Optimized Support Vector Machines,"

Journal of Medical Imaging and Health Informatics, vol. 6, no. 7, pp.
1600–1604, Nov. 2016, https://doi.org/10.1166/jmihi.2016.1857.

[4] J. Hryszko and L. Madeyski, "Cost Effectiveness of Software Defect

Prediction in an Industrial Project," Foundations of Computing and

Decision Sciences, vol. 43, no. 1, pp. 7–35, Mar. 2018.

[5] E. Elahi, A. Ayub, and I. Hussain, "Two staged data preprocessing

ensemble model for software fault prediction," in International Bhurban

Conference on Applied Sciences and Technologies, Islamabad, Pakistan,

Jan. 2021, pp. 506–511, https://doi.org/10.1109/IBCAST51254.
2021.9393182.

[6] C. L. Prabha and N. Shivakumar, "Software Defect Prediction Using

Machine Learning Techniques," in 4th International Conference on

Trends in Electronics and Informatics, Tirunelveli, India, Jun. 2020, pp.

728–733, https://doi.org/10.1109/ICOEI48184.2020.9142909.

[7] O. A. Qasem and M. Akour, "Software Fault Prediction Using Deep
Learning Algorithms," International Journal of Open Source Software

and Processes, vol. 10, no. 4, pp. 1–19, Oct. 2019, https://doi.org/
10.4018/IJOSSP.2019100101.

[8] S. Dhankhar, H. Rastogi, and M. Kakkar, "Software fault prediction
performance in software engineering," in 2nd International Conference

on Computing for Sustainable Global Development, New Delhi, India,
Mar. 2015, pp. 228–232.

[9] R. Malhotra, "A systematic review of machine learning techniques for

software fault prediction," Applied Soft Computing, vol. 27, pp. 504–518,
Feb. 2015, https://doi.org/10.1016/j.asoc.2014.11.023.

[10] G. P. Bhandari and R. Gupta, "Machine learning based software fault

prediction utilizing source code metrics," in 3rd International Conference

on Computing, Communication and Security, Kathmandu, Nepal, Oct.
2018, pp. 40–45, https://doi.org/10.1109/CCCS.2018.8586805.

[11] X. Chen, D. Zhang, Y. Zhao, Z. Cui, and C. Ni, "Software defect number

prediction: Unsupervised vs supervised methods," Information and

Software Technology, vol. 106, pp. 161–181, Feb. 2019, https://doi.org/

10.1016/j.infsof.2018.10.003.

[12] C. Pan, M. Lu, and B. Xu, "An Empirical Study on Software Defect
Prediction Using CodeBERT Model," Applied Sciences, vol. 11, no. 11,

Jan. 2021, Art. no. 4793, https://doi.org/10.3390/app11114793.

[13] M. Massoudi, N. K. Jain, and P. Bansal, "Software Defect Prediction

using Dimensionality Reduction and Deep Learning," in Third

International Conference on Intelligent Communication Technologies

and Virtual Mobile Networks, Tirunelveli, India, Feb. 2021, pp. 884–893,
https://doi.org/10.1109/ICICV50876.2021.9388622.

[14] S. S. Rathore and S. Kumar, "A Decision Tree Regression based

Approach for the Number of Software Faults Prediction," ACM SIGSOFT

Software Engineering Notes, vol. 41, no. 1, pp. 1–6, Oct. 2016,

https://doi.org/10.1145/2853073.2853083.

[15] H. Alsawalqah, H. Faris, I. Aljarah, L. Alnemer, and N. Alhindawi,
"Hybrid SMOTE-Ensemble Approach for Software Defect Prediction," in

6th Computer Science On-line Conference, Prague, Czech Republic, Apr.
2017, pp. 355–366, https://doi.org/10.1007/978-3-319-57141-6_39.

[16] K. Wongpheng and P. Visutsak, "Software Defect Prediction using

Convolutional Neural Network," in 35th International Technical

Conference on Circuits/Systems, Computers and Communications,

Nagoya, Japan, Jul. 2020, pp. 240–243.

[17] A. Hasanpour, P. Farzi, A. Tehrani, and R. Akbari, "Software Defect
Prediction Based On Deep Learning Models: Performance Study." arXiv,

Apr. 02, 2020, https://doi.org/10.48550/arXiv.2004.02589.

[18] T. Liu, S. Fang, Y. Zhao, P. Wang, and J. Zhang, "Implementation of
Training Convolutional Neural Networks." arXiv, Jun. 03, 2015,

https://doi.org/10.48550/arXiv.1506.01195.

[19] L. B. Salah and F. Fourati, "Systems Modeling Using Deep Elman Neural

Network," Engineering, Technology & Applied Science Research, vol. 9,
no. 2, pp. 3881–3886, Apr. 2019, https://doi.org/10.48084/etasr.2455.

[20] S. Sahel, M. Alsahafi, M. Alghamdi, and T. Alsubait, "Logo Detection

Using Deep Learning with Pretrained CNN Models," Engineering,

Technology & Applied Science Research, vol. 11, no. 1, pp. 6724–6729,

Feb. 2021, https://doi.org/10.48084/etasr.3919.

[21] E. E. Miandoab and F. S. Gharehchopogh, "A Novel Hybrid Algorithm
for Software Cost Estimation Based on Cuckoo Optimization and K-

Nearest Neighbors Algorithms," Engineering, Technology & Applied

Science Research, vol. 6, no. 3, pp. 1018–1022, Jun. 2016, https://doi.org/

10.48084/etasr.701.

[22] L. Qiao, G. Li, D. Yu, and H. Liu, "Deep Feature Learning to
Quantitative Prediction of Software Defects," in 45th Annual Computers,

Software, and Applications Conference, Madrid, Spain, Jul. 2021, pp.
1401–1402, https://doi.org/10.1109/COMPSAC51774.2021.00204.

[23] R. Jothi, "A Comparative Study of Unsupervised Learning Algorithms for

Software Fault Prediction," in Second International Conference on

Intelligent Computing and Control Systems, Madurai, India, Jun. 2018,

pp. 741–745, https://doi.org/10.1109/ICCONS.2018.8663154.

[24] H. Wang and T. M. Khoshgoftaar, "A Study on Software Metric
Selection for Software Fault Prediction," in 18th IEEE International

Conference On Machine Learning And Applications, Boca Raton, FL,
USA, Dec. 2019, pp. 1045–1050, https://doi.org/10.1109/ICMLA.

2019.00176.

[25] S. S. Rathore and S. Kumar, "An empirical study of ensemble techniques

for software fault prediction," Applied Intelligence, vol. 51, no. 6, pp.
3615–3644, Jun. 2021, https://doi.org/10.1007/s10489-020-01935-6.

[26] S. S. Rathore and S. Kumar, "An empirical study of some software fault

prediction techniques for the number of faults prediction," Soft

Computing, vol. 21, no. 24, pp. 7417–7434, Dec. 2017, https://doi.org/

10.1007/s00500-016-2284-x.

[27] S. S. Rathore and S. Kuamr, "Comparative analysis of neural network and
genetic programming for number of software faults prediction," in

National Conference on Recent Advances in Electronics & Computer

Engineering, Technology & Applied Science Research Vol. 14, No. 2, 2024, 13222-13231 13231

www.etasr.com Alkaberi & Assiri: Predicting the Number of Software Faults using Deep Learning

Engineering, Roorkee, India, Feb. 2015, pp. 328–332, https://doi.org/
10.1109/RAECE.2015.7510216.

[28] A. Agrawal and T. Menzies, "Is ‘better data’ better than ‘better data

miners’? on the benefits of tuning SMOTE for defect prediction," in 40th

International Conference on Software Engineering, Gothenburg, Sweden,

Jun. 2018, pp. 1050–1061, https://doi.org/10.1145/3180155.3180197.

[29] G. P. Bhandari and R. Gupta, "Measuring the Fault Predictability of
Software using Deep Learning Techniques with Software Metrics," in 5th

IEEE Uttar Pradesh Section International Conference on Electrical,

Electronics and Computer Engineering, Gorakhpur, India, Nov. 2018, pp.

1–6, https://doi.org/10.1109/UPCON.2018.8597154.

[30] I. Batool and T. A. Khan, "Software fault prediction using deep learning

techniques," Software Quality Journal, vol. 31, no. 4, pp. 1241–1280,
Dec. 2023, https://doi.org/10.1007/s11219-023-09642-4.

[31] E. Borandag, "Software Fault Prediction Using an RNN-Based Deep

Learning Approach and Ensemble Machine Learning Techniques,"
Applied Sciences, vol. 13, no. 3, Jan. 2023, Art. no. 1639, https://doi.org/

10.3390/app13031639.

[32] M. Jureczko, "Significance of Different Software Metrics in Defect
Prediction," Software Engineering: An International Journal, vol. 1, no.

1, pp. 86–95, 2011.

[33] L. Qiao, X. Li, Q. Umer, and P. Guo, "Deep learning based software
defect prediction," Neurocomputing, vol. 385, pp. 100–110, Apr. 2020,

https://doi.org/10.1016/j.neucom.2019.11.067.

J. M. Johnson and T. M. Khoshgoftaar, "Survey on deep learning with
class imbalance," Journal of Big Data, vol. 6, no. 1, Mar. 2019, Art. no.

27, https://doi.org/10.1186/s40537-019-0192-5.

