
Engineering, Technology & Applied Science Research Vol. 14, No. 2, 2024, 13261-13265 13261

www.etasr.com Khariri et al.: Utilizing Extremely Fast Decision Tree (EFDT) Algorithm to Categorize Conflict Flow on …

Utilizing Extremely Fast Decision Tree (EFDT)
Algorithm to Categorize Conflict Flow on a
Software-Defined Network (SDN) Controller

Mutaz H. H. Khairi

Future University, Sudan
Taza1040@gmail.com

Bushra Mohammed Ali Abdalla

Faculty of Computer Science and Information Technology, Ibn Sina University, Sudan
bushra0912115@gmail.com (corresponding author)

Mohamed Khalafalla Hassan

University Technology Malaysia, Malaysia | Future University, Sudan
mohamed.khalafala.hassan@gmail.com

Sharifah H. S. Ariffin

University Technology Malaysia, Malaysia
shafizah@utm.my

Mosab Hamdan

Interdisciplinary Research Center for Intelligent Secure Systems, King Fahd University of Petroleum and
Minerals, Saudi Arabia
mosab.mohamed@kfupm.edu.sa

Received: 21 December 2023 | Revised: 11 January 2024 and 27 January 2024 | Accepted: 29 January 2024

Licensed under a CC-BY 4.0 license | Copyright (c) by the authors | DOI: https://doi.org/10.48084/etasr.6793

ABSTRACT

Software-Defined Networks (SDNs) provide a contemporary approach to networking technology, offering

a versatile and dynamically efficient network architecture for enhanced surveillance and performance.

However, SDN architectures may encounter flow conflicts. These conflicts arise when modifications are

made to specific flow properties, such as priority, match field, and action. Despite the existence of

recommended solutions, the process of resolving conflicts in SDN continues to encounter difficulties. This

study proposes an Extremely Fast Decision Tree (EFDT) classification technique to detect and categorize

conflicts inside the flow table. The novelty of this method is based on the development of an accurate and

effective machine-learning technique implemented on the Ryu controller plane and validated using the

Mininet simulator. The effectiveness and efficiency of the proposed method were evaluated using various

indicators, demonstrating superior performance in recognizing and categorizing conflict flow types in all

flow sizes ranging from 10,000 to 100,000.

Keywords-software-defined network; conflict flow; machine learning; extremely fast decision tree

I. INTRODUCTION

Software-Defined Networks (SDNs) can improve network
performance through dynamic and customizable network
design [1]. This architecture enables easy modifications using a
centralized control console for network engineers and
administrators to meet the evolving business needs. It also
enables easy modifications using a centralized control console
for network engineers and administrators to meet evolving

business needs [2]. SDNs integrate network technologies to
enhance flexibility and agility by separating control functions
from forwarding planes [3]. This split could allow independent
configuration of the network control plane, giving system
specialists complete control over its operations [4-5]. In
addition to its fundamental advantages, an SDN is dynamic,
controllable, adaptive, and cost-effective, making it a perfect
solution for the ever-expanding size and high-bandwidth

Engineering, Technology & Applied Science Research Vol. 14, No. 2, 2024, 13261-13265 13262

www.etasr.com Khariri et al.: Utilizing Extremely Fast Decision Tree (EFDT) Algorithm to Categorize Conflict Flow on …

applications of the Internet [6]. OpenFlow is a key
advancement in SDN. The controller is a vital element in the
architecture, enabling the creation of diverse applications
through an Application Programming Interface (API). The
controller's activities influence the success of an SDN. An
OpenFlow switch has multiple flow tables linked to the
controller via the OpenFlow protocol to distribute, classify, and
assign packets based on flow entries [7-11].

SDN systems can be optimized using Machine Learning
(ML) to handle data more effectively when comprehending and
extracting patterns from data is difficult [12]. With the increase
in available datasets, ML is becoming more common in fields
such as medicine and government that require relevant data
[13-14]. ML aims to learn from data, and many studies have
been conducted to improve such methods [15]. The Transaction
Conflict Detection and Resolution (TCDR) framework was
created to eliminate flow policy conflicts, which improves
controller layer performance while maintaining low cost [16].
In [17], a new technique was proposed to anticipate conflicts
while evaluating the effectiveness of an application. The
algorithm predicts network failure by analyzing remaining
actions, based on the guidelines created by the developer.
Conflict prediction identifies unwanted system behavior, and
prediction-related capabilities should be incorporated based on
the evaluation of the prediction model to ensure practical
control applications. In [18], cross-layering between flow
components was investigated using OpenFlow table variables,
and an accurate approach was recommended by analyzing the
entire input table.

This study examines seven types of conflict, including
redundancy, shadowing, overlapping, correlation (A and B),
generalization, and imbrication using conflict rules derived
from relevant studies as a guide [19-21]. Flow conflicts in an
OpenFlow switch can be categorized by type, priority, action,
protocol, and IP source address. These conflicts can have a
significant impact on SDN operations in a variety of scenarios.
This study aims to reduce the negative impact of conflicts in
the SDN environment. To achieve this, the Extremely Fast
Decision Tree (EFDT) algorithm was used, which depends on
the decision tree structure. This study introduces several novel
principles, including the EFDT algorithm, which identifies
flow conflicts in SDN. The algorithm is used with varying
amounts of flows to identify and categorize conflicting flows.
To the best of our knowledge, this is the first study that applies
ML algorithms to classify seven distinct categories of conflict
flows.

II. PROBLEM DEFINITION

Multiple conflict types adversely influence efficiency
across conventional networks and SDNs [20]. Two primary
categories of conflicts are based on their rules and outcomes:
Interpretative conflicts (generalization, correlation,
imbrication) and intelligible conflicts (redundancy, shadowing,
overlapping). This study focuses on discussing the limitations
of flow entry in terms of priority, match fields, and action
fields. Packet counters and timeout values are not critical in
handling flow conflicts. Conflicts in SDN can arise due to
changes made to attributes such as action and priority.
Conflicts may occur in the controller and flow table depending

on changes made to the flow rule policies or entries. It is
essential to identify priorities and take action to create SDN
rules and flow entries [10, 22]. Traditional networks and SDNs
are widely recognized to differ significantly in features,
particularly priority and action [21]. Additionally, the flow
table can create conflicts in various situations, including
inconsistencies in rules caused by the following factors [20]:

 Conflicting behavior may occur when the network
management system addresses similar flows in multiple
tables.

 VPN programs that modify header information may
unintentionally apply flow rules to a particular flow.

 The injection of different subsystems, which used the
northbound as primary sources from a controller, may cause
the flow rule to exhibit conflicting behavior for identical
flows.

III. OBJECTIVES

This study aims to develop a method for recognizing flow
conflicts in SDNs. The proposed algorithm will be capable of
identifying and categorizing each flow in the OpenFlow switch,
which will help reduce conflicts among the numerous flows.
The proposed method aims to achieve the following specific
goals:

 Creating and integrating the EFDT algorithm into the SDN
Ryu controller.

 Utilizing the conflict classification technique to categorize
and identify various conflicting flows.

IV. MATERIALS AND METHODS

A. Environment Setup for SDN Platform

The proposed SDN solution was built using Ryu, a network
controller, in combination with the Mininet simulator. Mininet
can be operated in VirtualBox, which is one of the virtual
network simulators. However, it is crucial to consider and
prepare for the specific requirements related to the virtual
machine, SDN controller, and OpenFlow switch version. Table
I provides a list of specifications for the simulation
environment.

TABLE I. SYSTEM AND ENVIRONMENT SPECIFICATION

Software and Hardware Specifications of Machine

Processor Core i7
RAM 16 GB

Operating system Ubuntu 18.04
SDN controller Ryu

Programming language Python 2.7
OpenFlow Switch Version 1.3

B. SDN Topology

The fat-tree topology was utilized and integrated into a
mininet connected to the Ryu controller. The Topo.py
application established the topology of the switches and hosts.
Similar topologies have been used in previous studies on SDN
conflict flows, including those undertaken to pursue knowledge
[18, 20, 22-23].

Engineering, Technology & Applied Science Research Vol. 14, No. 2, 2024, 13261-13265 13263

www.etasr.com Khariri et al.: Utilizing Extremely Fast Decision Tree (EFDT) Algorithm to Categorize Conflict Flow on …

C. Dataset

The data set used was the one used in [18]. Iperf is a tool
that generates and collects OpenFlow data in a Ryu controller
topology, including ten performance servers per host. Each
server can listen to a different destination port, and new flows
are generated based on source and destination IP addresses and
source and destination ports and protocols. The controller is
responsible for installing a new flow on the switch, updating
policy rules, and capturing all flow entries in a CSV file. The
analysis proposed a new method to create flows in an SDN
controller. This was necessary because there is a lack of SDN
datasets that have important flow entry properties such as
priority and action features. The algorithm was developed and
executed using OpenFlow Switch version 1.3 and the Ryu
controller. The dataset used in the study was created by
extracting flow entries from the switch OpenFlow table. These
flow entries represent the network flows identified and
processed by the switch. The study analyzed this dataset to gain
insight into network behavior and identify potential
performance issues or anomalies. Figure 1 provides a visual
representation of the dataset used in the study.

Fig. 1. Flow entries from the OpenFlow table in the switch.

D. Conflict Classification Model

The proposed method involves classifying the conflict
categories present in conflict flows across all flow data sizes
using the Conflict Classification Model (CCM). The EFDT,
combined with the Hoeffding Anytime Tree SEA Generator, is
an innovative learning technique that consistently exceeds the
traditional decision tree approach. The EFDT has been shown
to outperform the Hoeffding Tree version of the Very Fast
Decision Tree (VFDT) on multiple standard evaluation
workloads, specifically with respect to prequential reliability.
This impressive performance highlights the remarkable
potential of the EFDT for application in various business and
academic settings. The EFDT's ability to produce more reliable
outcomes than traditional decision tree methods makes it a
compelling option, especially in time-sensitive situations where
high accuracy is critical. As such, the EFDT is a valuable
addition to the range of data-driven techniques available for
decision-making. The CCM comprises four primary activities:
compiling conflict flow data, setting up the Ryu controller to
use the implemented classification algorithm, learning the
EFDT algorithm with various conflicts, and evaluating the
algorithm. Figure 2 illustrates the design and implementation of
the CCM. Gathering and classifying conflict flows is the first
stage in the CCM process. Next, two distinct categories are
created from the flows gathered using preprocessing: 70% for
training and 30% for testing the EFDT classification algorithm.
Then, each of the conflict types is classified using the
classification method. The following steps are used to organize

conflict flows and serve as a guide for designing the
classification algorithm.

 Step 1: Implement and execute the EFDT classification
algorithm.

 Step 2: Start by analyzing the detection flows.

 Step 3: Check the priority features of conflicting flows.

 Step 4: Check the conflicting flows' Internet Protocol (IP)
addresses.

 Step 5: Based on the results of Steps 4 and 5, categorize the
different types of conflict.

Fig. 2. Conflict classification model.

E. Implementation of the Classification Algorithm

The EFDT algorithm was integrated into the Ryu controller
to identify conflicting flows. The algorithm creates a
conditional filter that is used to identify flows that may conflict
with each other. Once these flows are identified, the Hoeffding
tree is used to categorize them into one of the seven conflict
types. The criteria used to categorize flows into these conflict
types are based on several factors, such as type of traffic,
priority of the flows, and current state of the network. The
implementation steps of the EFDT algorithm in the Ryu
controller can be summarized as follows:

 Create the SEA Generator with decision tree elements.

 Integrate the classifier with the Hoeffding tree.

 Set up the Hoeffding Tree estimator to verify the actions
and IP address rules for the produced flows and implement
any required adjustments.

 Develop new parameters to supervise the cycle to verify
actions and IP address rules.

 Retrieve and include all streams produced in the OpenFlow
switch for various stream sizes and make it ready for
deployment.

 Utilize 70% of the generated flows to train the EFDT
algorithm and 30% to test it.

Engineering, Technology & Applied Science Research Vol. 14, No. 2, 2024, 13261-13265 13264

www.etasr.com Khariri et al.: Utilizing Extremely Fast Decision Tree (EFDT) Algorithm to Categorize Conflict Flow on …

F. Classification Process

Figure 3 presents the process used to identify seven
different types of conflict. The first step is to collect all data
flows. Then, the EFDT classification method is applied to the
data on conflict flow to classify the different types of conflict at
the topology controller level. The conflict flow data are divided
into two groups and the algorithm is trained to learn all conflict
rules for each type of conflict. This is done to allow the
prediction algorithm to be prepared and evaluated.

Fig. 3. Classification process.

V. RESULTS AND DISCUSSION

Figure 4 displays the results of the EFDT classifier's
production for different flow conflict sizes. The results show
that all seven conflict categories were identified correctly, and
no conflicts were missed. The classifier accurately identified all
conflict flows of various sizes. The two-line sets represent
conflicts related to shadowing, overlapping, generalization,
imbrication, redundancy, correlation (A), and correlation (B),
including shadowing and overlapping conflicts. All conflicts
were classified linearly.

Fig. 4. Types of conflict classified by EFDT.

Figure 4 shows that different types of imbrication conflicts
arise in flows containing 50,000 entries. This is a critical
observation because the number of conflicts has been
increasing during the implementation phase. As a result, the

number of conflicts has also increased to ensure that each
conflict flow is handled appropriately. During the OpenFlow
transition, the flow entries are transferred to a new set of tables,
and the size of the flow tables is significant in this case of
50,000 flows. One of the primary criteria used to identify the
connection between two sets of flow tables is the MAC address
of the flow entries involved. The MAC address is also used to
implement several imbrication conflicts, which are classified
into seven conflict types by the EFDT algorithm.

Tables II and III extensively investigate the seven conflict
groups identified using the EFDT classification approach.
These conflict groups were derived using conflict flow data of
different sizes. The initial row of the data table displays the
aggregate count of flows managed by the OpenFlow switch. In
contrast, the remaining rows show the distribution of the
discovered conflicts among the seven distinct conflicts
categorized by the EFDT and its classification method. As the
volume of flow data increases for each conflict type, the
number of conflict types also increases. Moreover, the results
indicate that the classification method accurately categorizes all
flow data into specific conflict types. This is remarkably
accurate when considering the rising number of conflict kinds.
Tables II and III present the flows classified by the EFDT
algorithm for flow ranges of 10,000-50,000 and 60,000-
100,000, respectively. A comprehensive analysis was
performed to compare the effectiveness of two algorithms in
categorizing various types of conflict: the proposed EFDT and
the Brew security [14] algorithms. The performance of these
algorithms was evaluated using a dataset ranging from 10,000
to 100,000 flows for learning and classification purposes. The
results showed that the EFDT algorithm outperformed the
Brew security algorithm in classification. Moreover, the EFDT
algorithm could identify and categorize seven distinct forms of
conflict, while the prior method could only detect six of them.

TABLE II. NUMBER OF FLOWS CLASSIFIED BY THE EFDT
ALGORITHM FOR (10000–50000) FLOWS.

Number of flows 10000 20000 30000 40000 50000

Redundancy 85 198 287 373 477
Shadowing 89 185 272 372 491

Correlation (A) 110 190 282 360 458
Correlation (B) 131 169 283 351 446
Generalization 195 353 611 714 914

Imbrication 190 392 580 751 1011
Overlapping 182 387 569 756 949

TABLE III. NUMBER OF FLOWS CLASSIFIED BY THE EFDT
ALGORITHM FOR (60000–100000) FLOWS.

Number of flows 60000 70000 80000 90000 100000

Redundancy 537 656 755 853 943
Shadowing 577 669 770 849 933

Correlation (A) 550 670 722 826 934
Correlation (B) 521 610 714 801 930
Generalization 1093 1297 1493 1683 1873

Imbrication 1117 1319 1496 1721 1811
Overlapping 1141 1325 1498 1700 1877

VI. CONCLUSION

This study introduces a new ML approach, called EFDT,
that efficiently classifies conflict flows in the SDN

Engineering, Technology & Applied Science Research Vol. 14, No. 2, 2024, 13261-13265 13265

www.etasr.com Khariri et al.: Utilizing Extremely Fast Decision Tree (EFDT) Algorithm to Categorize Conflict Flow on …

infrastructure. The algorithm identifies different types of
conflict based on flow rule priority, action, protocol, and IP
source address. The algorithm was developed using the
Hoeffding tree function to enhance its effectiveness and
efficiency. A Mininet emulation and the Ryu controller were
used to connect a fat tree topology and carry out the
experiments. The experiment involved selecting flows from
10,000 to 100,000, increasing 10,000 flows per dataset.
According to the results obtained, the EFDT algorithm
demonstrated superior classification performance compared to
the Brew security algorithm. This means that the EFDT
algorithm was better at identifying and categorizing the various
conflict types in the dataset. The EFDT algorithm identified
and categorized seven distinct forms of conflict, while the
Brew security algorithm could only detect six types. This
indicates that the EFDT algorithm is more comprehensive and
effective in analyzing complex conflict scenarios, which could
be helpful in various fields such as social sciences, conflict
resolution, and international relations. This study is the first
attempt to classify multiple conflict flows in SDN using such
methods. Further studies will explore other ML techniques and
evaluate them on the same dataset.

REFERENCES

[1] S. Bera, S. Misra, and A. V. Vasilakos, "Software-Defined Networking
for Internet of Things: A Survey," IEEE Internet of Things Journal, vol.
4, no. 6, pp. 1994–2008, Sep. 2017, https://doi.org/10.1109/JIOT.
2017.2746186.

[2] M. H. H. Khairi, S. H. S. Ariffin, N. M. A. Latiff, A. S. Abdullah, and
M. K. Hassan, "A Review of Anomaly Detection Techniques and
Distributed Denial of Service (DDoS) on Software Defined Network
(SDN)," Engineering, Technology & Applied Science Research, vol. 8,
no. 2, pp. 2724–2730, Apr. 2018, https://doi.org/10.48084/etasr.1840.

[3] M. Karakus and A. Durresi, "A survey: Control plane scalability issues
and approaches in Software-Defined Networking (SDN)," Computer
Networks, vol. 112, pp. 279–293, Jan. 2017, https://doi.org/10.1016/
j.comnet.2016.11.017.

[4] E. T. B. Hong and C. Y. Wey, "An optimized flow management
mechanism in OpenFlow network," in 2017 International Conference on
Information Networking (ICOIN), Da Nang, Vietnam, Jan. 2017, pp.
143–147, https://doi.org/10.1109/ICOIN.2017.7899493.

[5] M. H. H. Khairi, P. I. D. S. H. S. Ariffin, P. M. D. N. M. A. Latiff, D. K.
M. Yusof, and M. K. Hassan, "A Review of Flow Conflicts and
Solutions in Software Defined Networks (SDN)," IIUM Engineering
Journal, vol. 22, no. 2, pp. 178–187, Jul. 2021, https://doi.org/10.31436/
iiumej.v22i2.1613.

[6] P. P. Ray and N. Kumar, "SDN/NFV architectures for edge-cloud
oriented IoT: A systematic review," Computer Communications, vol.
169, pp. 129–153, Mar. 2021, https://doi.org/10.1016/j.comcom.2021.
01.018.

[7] W. Hao, Y. Jiang, and J. Gao, "Detection mechanisms of rule conflicts in
SDN based on a path-tree model," in 2017 8th IEEE International
Conference on Software Engineering and Service Science (ICSESS),
Aug. 2017, pp. 336–339, https://doi.org/10.1109/ICSESS.2017.8342927.

[8] M. S. Tok and M. Demirci, "Security analysis of SDN controller-based
DHCP services and attack mitigation with DHCPguard," Computers &
Security, vol. 109, Oct. 2021, Art. no. 102394, https://doi.org/10.1016/
j.cose.2021.102394.

[9] C. N. Tran and V. Danciu, "A General Approach to Conflict Detection in
Software-Defined Networks," SN Computer Science, vol. 1, no. 1,Jul.
2019, Art. no. 9, https://doi.org/10.1007/s42979-019-0009-9.

[10] M. K. Hassan, S. H. S. Ariffin, S. K. Syed-Yusof, N. E. Ghazali, and K.
A. Obeng, "A Short Review on the Dynamic Slice Management in
Software-Defined Network Virtualization," Engineering, Technology &

Applied Science Research, vol. 13, no. 6, pp. 12074–12079, Dec. 2023,
https://doi.org/10.48084/etasr.6394.

[11] M. H. H. Khairi et al., "The Impact of conflict flows on TCP And UDP
Transfer Rate in Software Defined Network," Innovative Networking
Technologies Series 1, no. 978, 2022.

[12] M. K. Hassan, A. Babiker, M. Baker, and M. Hamad, "SLA
Management For Virtual Machine Live Migration Using Machine
Learning with Modified Kernel and Statistical Approach," Engineering,
Technology & Applied Science Research, vol. 8, no. 1, pp. 2459–2463,
Feb. 2018, https://doi.org/10.48084/etasr.1692.

[13] M. K. Hassan et al., "DLVisor: Dynamic Learning Hypervisor for
Software Defined Network," IEEE Access, vol. 11, pp. 84144–84167,
2023, https://doi.org/10.1109/ACCESS.2023.3302266.

[14] B. Mahesh, "Machine Learning Algorithms - A Review," International
Journal of Science and Research, vol. 9, no. 1, pp. 381–386, 2018.

[15] N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, and A. Galstyan, "A
Survey on Bias and Fairness in Machine Learning," ACM Computing
Surveys, vol. 54, no. 6, Apr. 2021, Art. no. 115, https://doi.org/10.1145/
3457607.

[16] J. Cui, S. Zhou, H. Zhong, Y. Xu, and K. Sha, "Transaction-Based Flow
Rule Conflict Detection and Resolution in SDN," in 2018 27th
International Conference on Computer Communication and Networks
(ICCCN), Hangzhou, China, Jul. 2018, pp. 1–9, https://doi.org/10.1109/
ICCCN.2018.8487415.

[17] V. Danciu and C. N. Tran, "Side-Effects Causing Hidden Conflicts in
Software-Defined Networks," SN Computer Science, vol. 1, no. 5, Aug.
2020, Art. no. 278, https://doi.org/10.1007/s42979-020-00282-0.

[18] M. H. H. Khairi, S. H. S. Ariffin, N. M. A. Latiff, and K. M. Yusof,
"Generation and collection of data for normal and conflicting flows in
software defined network flow table," Indonesian Journal of Electrical
Engineering and Computer Science, vol. 22, no. 1, pp. 307–314, Apr.
2021, https://doi.org/10.11591/ijeecs.v22.i1.pp307-314.

[19] R. Aryan, A. Yazidi, P. E. Engelstad, and Ø. Kure, "A General
Formalism for Defining and Detecting OpenFlow Rule Anomalies," in
2017 IEEE 42nd Conference on Local Computer Networks (LCN),
Singapore, Jul. 2017, pp. 426–434, https://doi.org/10.1109/LCN.
2017.94.

[20] S. Pisharody, J. Natarajan, A. Chowdhary, A. Alshalan, and D. Huang,
"Brew: A Security Policy Analysis Framework for Distributed SDN-
Based Cloud Environments," IEEE Transactions on Dependable and
Secure Computing, vol. 16, no. 6, pp. 1011–1025, Aug. 2019,
https://doi.org/10.1109/TDSC.2017.2726066.

[21] Mutaz Hamed Hussien Khairi, "Flow Conflict Eliminations through
Machine Learning for Software Defined Network," Ph.D. dissertation,
Universiti Teknologi Malaysia, 2021.

[22] M. H. H. Khairi et al., "Detection and Classification of Conflict Flows in
SDN Using Machine Learning Algorithms," IEEE Access, vol. 9, pp.
76024–76037, 2021, https://doi.org/10.1109/ACCESS.2021.3081629.

[23] M. Hamdan et al., "Flow-Aware Elephant Flow Detection for Software-
Defined Networks," IEEE Access, vol. 8, pp. 72585–72597, 2020,
https://doi.org/10.1109/ACCESS.2020.2987977.

