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ABSTRACT 

Software-Defined Networks (SDNs) provide a contemporary approach to networking technology, offering 

a versatile and dynamically efficient network architecture for enhanced surveillance and performance. 

However, SDN architectures may encounter flow conflicts. These conflicts arise when modifications are 

made to specific flow properties, such as priority, match field, and action. Despite the existence of 

recommended solutions, the process of resolving conflicts in SDN continues to encounter difficulties. This 

study proposes an Extremely Fast Decision Tree (EFDT) classification technique to detect and categorize 

conflicts inside the flow table. The novelty of this method is based on the development of an accurate and 

effective machine-learning technique implemented on the Ryu controller plane and validated using the 

Mininet simulator. The effectiveness and efficiency of the proposed method were evaluated using various 

indicators, demonstrating superior performance in recognizing and categorizing conflict flow types in all 

flow sizes ranging from 10,000 to 100,000. 
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I. INTRODUCTION  

Software-Defined Networks (SDNs) can improve network 
performance through dynamic and customizable network 
design [1]. This architecture enables easy modifications using a 
centralized control console for network engineers and 
administrators to meet the evolving business needs. It also 
enables easy modifications using a centralized control console 
for network engineers and administrators to meet evolving 

business needs [2]. SDNs integrate network technologies to 
enhance flexibility and agility by separating control functions 
from forwarding planes [3]. This split could allow independent 
configuration of the network control plane, giving system 
specialists complete control over its operations [4-5]. In 
addition to its fundamental advantages, an SDN is dynamic, 
controllable, adaptive, and cost-effective, making it a perfect 
solution for the ever-expanding size and high-bandwidth 
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applications of the Internet [6]. OpenFlow is a key 
advancement in SDN. The controller is a vital element in the 
architecture, enabling the creation of diverse applications 
through an Application Programming Interface (API). The 
controller's activities influence the success of an SDN. An 
OpenFlow switch has multiple flow tables linked to the 
controller via the OpenFlow protocol to distribute, classify, and 
assign packets based on flow entries [7-11]. 

SDN systems can be optimized using Machine Learning 
(ML) to handle data more effectively when comprehending and 
extracting patterns from data is difficult [12]. With the increase 
in available datasets, ML is becoming more common in fields 
such as medicine and government that require relevant data 
[13-14]. ML aims to learn from data, and many studies have 
been conducted to improve such methods [15]. The Transaction 
Conflict Detection and Resolution (TCDR) framework was 
created to eliminate flow policy conflicts, which improves 
controller layer performance while maintaining low cost [16]. 
In [17], a new technique was proposed to anticipate conflicts 
while evaluating the effectiveness of an application. The 
algorithm predicts network failure by analyzing remaining 
actions, based on the guidelines created by the developer. 
Conflict prediction identifies unwanted system behavior, and 
prediction-related capabilities should be incorporated based on 
the evaluation of the prediction model to ensure practical 
control applications. In [18], cross-layering between flow 
components was investigated using OpenFlow table variables, 
and an accurate approach was recommended by analyzing the 
entire input table. 

This study examines seven types of conflict, including 
redundancy, shadowing, overlapping, correlation (A and B), 
generalization, and imbrication using conflict rules derived 
from relevant studies as a guide [19-21]. Flow conflicts in an 
OpenFlow switch can be categorized by type, priority, action, 
protocol, and IP source address. These conflicts can have a 
significant impact on SDN operations in a variety of scenarios. 
This study aims to reduce the negative impact of conflicts in 
the SDN environment. To achieve this, the Extremely Fast 
Decision Tree (EFDT) algorithm was used, which depends on 
the decision tree structure. This study introduces several novel 
principles, including the EFDT algorithm, which identifies 
flow conflicts in SDN. The algorithm is used with varying 
amounts of flows to identify and categorize conflicting flows. 
To the best of our knowledge, this is the first study that applies 
ML algorithms to classify seven distinct categories of conflict 
flows. 

II. PROBLEM DEFINITION 

Multiple conflict types adversely influence efficiency 
across conventional networks and SDNs [20]. Two primary 
categories of conflicts are based on their rules and outcomes: 
Interpretative conflicts (generalization, correlation, 
imbrication) and intelligible conflicts (redundancy, shadowing, 
overlapping). This study focuses on discussing the limitations 
of flow entry in terms of priority, match fields, and action 
fields. Packet counters and timeout values are not critical in 
handling flow conflicts. Conflicts in SDN can arise due to 
changes made to attributes such as action and priority. 
Conflicts may occur in the controller and flow table depending 

on changes made to the flow rule policies or entries. It is 
essential to identify priorities and take action to create SDN 
rules and flow entries [10, 22]. Traditional networks and SDNs 
are widely recognized to differ significantly in features, 
particularly priority and action [21]. Additionally, the flow 
table can create conflicts in various situations, including 
inconsistencies in rules caused by the following factors [20]: 

 Conflicting behavior may occur when the network 
management system addresses similar flows in multiple 
tables. 

 VPN programs that modify header information may 
unintentionally apply flow rules to a particular flow. 

 The injection of different subsystems, which used the 
northbound as primary sources from a controller, may cause 
the flow rule to exhibit conflicting behavior for identical 
flows. 

III. OBJECTIVES 

This study aims to develop a method for recognizing flow 
conflicts in SDNs. The proposed algorithm will be capable of 
identifying and categorizing each flow in the OpenFlow switch, 
which will help reduce conflicts among the numerous flows. 
The proposed method aims to achieve the following specific 
goals:  

 Creating and integrating the EFDT algorithm into the SDN 
Ryu controller. 

 Utilizing the conflict classification technique to categorize 
and identify various conflicting flows. 

IV. MATERIALS AND METHODS  

A. Environment Setup for SDN Platform 

The proposed SDN solution was built using Ryu, a network 
controller, in combination with the Mininet simulator. Mininet 
can be operated in VirtualBox, which is one of the virtual 
network simulators. However, it is crucial to consider and 
prepare for the specific requirements related to the virtual 
machine, SDN controller, and OpenFlow switch version. Table 
I provides a list of specifications for the simulation 
environment. 

TABLE I.  SYSTEM AND ENVIRONMENT SPECIFICATION 

Software and Hardware Specifications of Machine 

Processor Core i7 
RAM 16 GB 

Operating system Ubuntu 18.04 
SDN controller Ryu 

Programming language Python 2.7 
OpenFlow Switch Version 1.3 

 

B. SDN Topology 

The fat-tree topology was utilized and integrated into a 
mininet connected to the Ryu controller. The Topo.py 
application established the topology of the switches and hosts. 
Similar topologies have been used in previous studies on SDN 
conflict flows, including those undertaken to pursue knowledge 
[18, 20, 22-23]. 
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C. Dataset  

The data set used was the one used in [18]. Iperf is a tool 
that generates and collects OpenFlow data in a Ryu controller 
topology, including ten performance servers per host. Each 
server can listen to a different destination port, and new flows 
are generated based on source and destination IP addresses and 
source and destination ports and protocols. The controller is 
responsible for installing a new flow on the switch, updating 
policy rules, and capturing all flow entries in a CSV file. The 
analysis proposed a new method to create flows in an SDN 
controller. This was necessary because there is a lack of SDN 
datasets that have important flow entry properties such as 
priority and action features. The algorithm was developed and 
executed using OpenFlow Switch version 1.3 and the Ryu 
controller. The dataset used in the study was created by 
extracting flow entries from the switch OpenFlow table. These 
flow entries represent the network flows identified and 
processed by the switch. The study analyzed this dataset to gain 
insight into network behavior and identify potential 
performance issues or anomalies. Figure 1 provides a visual 
representation of the dataset used in the study. 

 

 
Fig. 1.  Flow entries from the OpenFlow table in the switch. 

D. Conflict Classification Model 

The proposed method involves classifying the conflict 
categories present in conflict flows across all flow data sizes 
using the Conflict Classification Model (CCM). The EFDT, 
combined with the Hoeffding Anytime Tree SEA Generator, is 
an innovative learning technique that consistently exceeds the 
traditional decision tree approach. The EFDT has been shown 
to outperform the Hoeffding Tree version of the Very Fast 
Decision Tree (VFDT) on multiple standard evaluation 
workloads, specifically with respect to prequential reliability. 
This impressive performance highlights the remarkable 
potential of the EFDT for application in various business and 
academic settings. The EFDT's ability to produce more reliable 
outcomes than traditional decision tree methods makes it a 
compelling option, especially in time-sensitive situations where 
high accuracy is critical. As such, the EFDT is a valuable 
addition to the range of data-driven techniques available for 
decision-making. The CCM comprises four primary activities: 
compiling conflict flow data, setting up the Ryu controller to 
use the implemented classification algorithm, learning the 
EFDT algorithm with various conflicts, and evaluating the 
algorithm. Figure 2 illustrates the design and implementation of 
the CCM. Gathering and classifying conflict flows is the first 
stage in the CCM process. Next, two distinct categories are 
created from the flows gathered using preprocessing: 70% for 
training and 30% for testing the EFDT classification algorithm. 
Then, each of the conflict types is classified using the 
classification method. The following steps are used to organize 

conflict flows and serve as a guide for designing the 
classification algorithm. 

 Step 1: Implement and execute the EFDT classification 
algorithm. 

 Step 2: Start by analyzing the detection flows. 

 Step 3: Check the priority features of conflicting flows. 

 Step 4: Check the conflicting flows' Internet Protocol (IP) 
addresses. 

 Step 5: Based on the results of Steps 4 and 5, categorize the 
different types of conflict. 

 

 
Fig. 2.  Conflict classification model. 

E. Implementation of the Classification Algorithm 

The EFDT algorithm was integrated into the Ryu controller 
to identify conflicting flows. The algorithm creates a 
conditional filter that is used to identify flows that may conflict 
with each other. Once these flows are identified, the Hoeffding 
tree is used to categorize them into one of the seven conflict 
types. The criteria used to categorize flows into these conflict 
types are based on several factors, such as type of traffic, 
priority of the flows, and current state of the network. The 
implementation steps of the EFDT algorithm in the Ryu 
controller can be summarized as follows: 

 Create the SEA Generator with decision tree elements. 

 Integrate the classifier with the Hoeffding tree.  

 Set up the Hoeffding Tree estimator to verify the actions 
and IP address rules for the produced flows and implement 
any required adjustments. 

 Develop new parameters to supervise the cycle to verify 
actions and IP address rules. 

 Retrieve and include all streams produced in the OpenFlow 
switch for various stream sizes and make it ready for 
deployment. 

 Utilize 70% of the generated flows to train the EFDT 
algorithm and 30% to test it. 



Engineering, Technology & Applied Science Research Vol. 14, No. 2, 2024, 13261-13265 13264  
 

www.etasr.com Khariri et al.: Utilizing Extremely Fast Decision Tree (EFDT) Algorithm to Categorize Conflict Flow on … 

 

F. Classification Process 

Figure 3 presents the process used to identify seven 
different types of conflict. The first step is to collect all data 
flows. Then, the EFDT classification method is applied to the 
data on conflict flow to classify the different types of conflict at 
the topology controller level. The conflict flow data are divided 
into two groups and the algorithm is trained to learn all conflict 
rules for each type of conflict. This is done to allow the 
prediction algorithm to be prepared and evaluated. 

 

 
Fig. 3.  Classification process. 

V. RESULTS AND DISCUSSION  

Figure 4 displays the results of the EFDT classifier's 
production for different flow conflict sizes. The results show 
that all seven conflict categories were identified correctly, and 
no conflicts were missed. The classifier accurately identified all 
conflict flows of various sizes. The two-line sets represent 
conflicts related to shadowing, overlapping, generalization, 
imbrication, redundancy, correlation (A), and correlation (B), 
including shadowing and overlapping conflicts. All conflicts 
were classified linearly. 

 

 
Fig. 4.  Types of conflict classified by EFDT. 

Figure 4 shows that different types of imbrication conflicts 
arise in flows containing 50,000 entries. This is a critical 
observation because the number of conflicts has been 
increasing during the implementation phase. As a result, the 

number of conflicts has also increased to ensure that each 
conflict flow is handled appropriately. During the OpenFlow 
transition, the flow entries are transferred to a new set of tables, 
and the size of the flow tables is significant in this case of 
50,000 flows. One of the primary criteria used to identify the 
connection between two sets of flow tables is the MAC address 
of the flow entries involved. The MAC address is also used to 
implement several imbrication conflicts, which are classified 
into seven conflict types by the EFDT algorithm. 

Tables II and III extensively investigate the seven conflict 
groups identified using the EFDT classification approach. 
These conflict groups were derived using conflict flow data of 
different sizes. The initial row of the data table displays the 
aggregate count of flows managed by the OpenFlow switch. In 
contrast, the remaining rows show the distribution of the 
discovered conflicts among the seven distinct conflicts 
categorized by the EFDT and its classification method. As the 
volume of flow data increases for each conflict type, the 
number of conflict types also increases. Moreover, the results 
indicate that the classification method accurately categorizes all 
flow data into specific conflict types. This is remarkably 
accurate when considering the rising number of conflict kinds. 
Tables II and III present the flows classified by the EFDT 
algorithm for flow ranges of 10,000-50,000 and 60,000-
100,000, respectively. A comprehensive analysis was 
performed to compare the effectiveness of two algorithms in 
categorizing various types of conflict: the proposed EFDT and 
the Brew security [14] algorithms. The performance of these 
algorithms was evaluated using a dataset ranging from 10,000 
to 100,000 flows for learning and classification purposes. The 
results showed that the EFDT algorithm outperformed the 
Brew security algorithm in classification. Moreover, the EFDT 
algorithm could identify and categorize seven distinct forms of 
conflict, while the prior method could only detect six of them. 

TABLE II.  NUMBER OF FLOWS CLASSIFIED BY THE EFDT 
ALGORITHM FOR (10000–50000) FLOWS. 

Number of flows 10000 20000 30000 40000 50000 

Redundancy  85 198 287 373 477 
Shadowing 89 185 272 372 491 

Correlation (A) 110 190 282 360 458 
Correlation (B) 131 169 283 351 446 
Generalization 195 353 611 714 914 

Imbrication 190 392 580 751 1011 
Overlapping 182 387 569 756 949 

TABLE III.  NUMBER OF FLOWS CLASSIFIED BY THE EFDT 
ALGORITHM FOR (60000–100000) FLOWS. 

Number of flows 60000 70000 80000 90000 100000 

Redundancy 537 656 755 853 943 
Shadowing 577 669 770 849 933 

Correlation (A) 550 670 722 826 934 
Correlation (B) 521 610 714 801 930 
Generalization 1093 1297 1493 1683 1873 

Imbrication 1117 1319 1496 1721 1811 
Overlapping 1141 1325 1498 1700 1877 

 

VI. CONCLUSION  

This study introduces a new ML approach, called EFDT, 
that efficiently classifies conflict flows in the SDN 
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infrastructure. The algorithm identifies different types of 
conflict based on flow rule priority, action, protocol, and IP 
source address. The algorithm was developed using the 
Hoeffding tree function to enhance its effectiveness and 
efficiency. A Mininet emulation and the Ryu controller were 
used to connect a fat tree topology and carry out the 
experiments. The experiment involved selecting flows from 
10,000 to 100,000, increasing 10,000 flows per dataset. 
According to the results obtained, the EFDT algorithm 
demonstrated superior classification performance compared to 
the Brew security algorithm. This means that the EFDT 
algorithm was better at identifying and categorizing the various 
conflict types in the dataset. The EFDT algorithm identified 
and categorized seven distinct forms of conflict, while the 
Brew security algorithm could only detect six types. This 
indicates that the EFDT algorithm is more comprehensive and 
effective in analyzing complex conflict scenarios, which could 
be helpful in various fields such as social sciences, conflict 
resolution, and international relations. This study is the first 
attempt to classify multiple conflict flows in SDN using such 
methods. Further studies will explore other ML techniques and 
evaluate them on the same dataset. 
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