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ABSTRACT 

Object recognition presents considerable difficulties within the domain of computer vision. Field-

Programmable Gate Arrays (FPGAs) offer a flexible hardware platform, having exceptional computing 

capabilities due to their adaptable topologies, enabling highly parallel, high-performance, and diverse 

operations that allow for customized reconfiguration of integrated circuits to enhance the effectiveness of 

object detection accelerators. However, there is a scarcity of assessments that offer a comprehensive 

analysis of FPGA-based object detection accelerators, and there is currently no comprehensive framework 

to enable object detection specifically tailored to the unique characteristics of FPGA technology. The You 

Only Look Once (YOLO) algorithm is an innovative method that combines speed and accuracy in object 

detection. This study implemented the YOLOv5 algorithm on a Xilinx® Zynq-7000 System on a Chip 

(SoC) to perform real-time object detection. Using the MS-COCO dataset, the proposed study showed an 
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improvement in resource utilization with approximately 42 thousand (78%) look-up tables, 56 thousand 

(52%) flip-flops, 65 (46%) BRAMs, and 19 (9%) DSPs at a frequency of 250 MHz, improving the 

effectiveness compared to previous simulated results. 

Keywords-object detection; YOLOv5; high level synthesis; FPGA; HDL coder 

I. INTRODUCTION  

Using state-of-the-art hardware platforms, such as GPUs 
and FPGAs, has substantially improved deep learning 
performance in object detection. Several industries find these 
platforms useful, including video surveillance, industrial 
design, target tracking, and Advanced Driver Assistance 
Systems (ADAS). Deep learning object identification has been 
considerably improved by the progress of many techniques, 
such as the Single-Shot Detector (SSD) [1], the Spatial 
Pyramid clustering network (SPP-net) [2], and the Region-
based Convolutional Neural System [3]. You Only Look Once 
(YOLO) [4] and Faster R-CNN [5] are two referenced 
methodological approaches. Among the many effective deep 
learning techniques, the YOLO approach stands out for its 
remarkable speed and reliability in object detection [6]. The 
YOLO method uses a single convolutional neural network to 
predict the item's confidence level, the likelihood of classes 
linked to the bounding boxes, and the coordinates of the boxes. 
Standard Application-Specific Integrated Circuits (ASICs) are 
not very effective in some tasks. As FPGAs use reconfiguration 
to maximize the adaptability-performance trade-off [7], they 
are preferred for the execution of deep learning algorithms 
compared to ASICs and GPUs [7]. This study used YOLO 
networks to identify objects in the MS-COCO benchmark 
dataset, which includes a wider variety of categories and 
occurrences compared to the PASCAL VOC and ImageNet 
datasets [8]. The MS-COCO dataset consists of photographs 
showcasing 91 unique item types, with almost 2.5 million 
accurately annotated instances. This dataset comprises around 
10% of a certain category per image, in contrast to the 
PASCAL VOC and ImageNet benchmark datasets, which 
encompass 60% of both categories. 

Many studies have discussed the design and 
implementation of FPGAs for deep learning algorithms due to 
their suitability for this purpose [9-10]. Several FPGA 
topologies have been proposed for the execution of YOLO 
algorithms. In [10], the REQ-YOLO framework was proposed, 
which was specifically designed for object identification and 
fine-tuned for FPGA implementation and incorporated an 
innovative Processing Element (PE) arrangement. However, 
this framework demonstrated an exceptionally high amount of 
resource utilization. In [11], the rapid Finite Impulse Response 
(FIR) technique, often known as FFA, was proposed to 
improve resource use. This technique was specifically designed 
to efficiently compute CNN models and was successfully 
implemented on a Xilinx Zynq ZC706. MiniYOLOv3 is an 
embedded software that has been built and tested using the 
MS-COCO dataset for real-time applications. In [12], a Multi-
Scale Feature Pyramid Network (MSFPN) was specifically 
built to extract features in a very efficient manner. The design 
used both group and depth-wise convolution, however, it did 
not achieve better accuracy and speed than the proposed 
technique. 

In [13], a literature survey was conducted for hardware 
implementations of visual trackers, highlighting the lack of 
hardware implementations of state-of-the-art tracking 
algorithms. In [14], VGG16 was implemented on Xilinx Zynq 
ZC706 and Virtex VC707 boards, respectively. In [15], the 
REQ-YOLO was proposed as a resource-aware, systematic 
weight quantization framework for object detection. In [16], the 
binary network was combined with a Support Vector Machine 
(SVM) regression to specifically target lightweight YOLO-v2 
using a Xilinx Zynq® Ultrascale+ MPSoC. The use of a shared 
streaming binarized CNN to sequentially process each layer 
can effectively decrease the computing complexity of the 
procedure but does not adequately address the problem of 
decreasing external memory access. To achieve this objective, 
a hardware architecture using the VC707 FGPA was 
introduced in [16] that integrated fast processing capabilities 
with low power usage, specifically designed for object 
detection. The resource use for this architecture remained 
consistently high, regardless of the total efficiency and power. 
Another limitation was the need to optimize latency, as stated 
in [12], and the use of a compact YOLOv3 architecture 
specifically optimized for low-end FPGAs was proposed. 
Although many FPGA-based hardware solutions have shown 
the ability to improve CNNs, only a limited number of these 
systems have extensively studied the complete design process 
to achieve fast deployment and outstanding power efficiency. 

This study proposes the utilization of FPGAs to accelerate 
the YOLOv5 algorithm, aiming to reduce prediction time while 
maintaining a high level of accuracy. The YOLOv5 object 
identification algorithm was accelerated on the Zynq-7000 SoC 
using efficient resource use, and its performance was compared 
to other existing approaches. The YOLOv5 algorithm was 
implemented with hardware acceleration using Vivado 2017.4. 

II. YOLO FOR OBJECT DETECTION 

The YOLO approach employs the Darknet-53 framework 
[17] for object detection, which is a cutting-edge algorithm 
known for its exceptional efficiency and accuracy. The Darknet 
architecture consists of 53 convolutional layers, which is 
evident from its name. YOLO v5 has superior speed compared 
to its predecessors. YOLOv5 employs the Darknet framework 
as its foundational structure, incorporating YOLOv3 on top. 
The intermediate layer comprises the Path Aggregation 
Network (PAN) [18], Spatial Pyramid Pooling (SPP) [19], and 
the Feature Pyramid Network (FPN) [20]. Figure 1 illustrates 
the conventional structure of YOLOv5. Extracting features 
from images involves the deployment of convolutional layers 
and the use of anchor boxes with a kernel size of k×k to predict 
the bounding boxes and perform regression, finally producing a 
feature map. Additionally, it incorporates pooling layers that 
are used to sample each input map. A Fully Connected (FC) 
layer can operate as a classifier. Neural networks use activation 
functions to enhance their ability to accurately represent data, 
which is achieved by incorporating layers of nonlinearity. The 
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activation functions often employed in neural networks include 
the Rectified Linear Unit (ReLU), Leaky ReLU, Sigmoid, and 
Hyperbolic Tangent functions. 

YOLO denotes the phrase "You Only Look Once". This 
study used version 5, a cutting-edge object detection algorithm 
that currently stands as the most advanced algorithm of its 
kind. This is a revolutionary CNN that accurately detects 
objects in real-time. This method uses a singular neural 
network to analyze the entirety of the image, subsequently 
segmenting it into distinct components and making predictions 
on the bounding boxes and probabilities associated with each 
individual element. The bounding boxes are assigned weights 
based on the anticipated probability. The "just looks once" 
method examines the image by making predictions after a 
single forward propagation pass through the neural network. 
After performing non-maximum suppression, which guarantees 
that each object is only identified once, the algorithm presented 
in Figure 2 proceeds to provide the discovered items. 

 

 
Fig. 1.  YOLOv5 system for object detection. 

 
Fig. 2.  The algorithm of the YOLOv5 model. 

III. PROPOSED ARCHITECTURE 

Figure 3 shows the proposed hardware implementation for 
YOLOv5, illustrating how the Zynq platform can execute the 
algorithm. Xilinx Programmable Logic (PL) from the 7-series 
[13], AMBA Interconnects, DDR3 component memory, an 
ARM Cortex-A9 Processing System (PS), and some 
peripherals are part of the ZynqTM 7000 XC7Z020-CLG484-1 
SoC that was used in the implementation.  

Vivado 20.17.4 has a plethora of libraries for the 
implementation of deep learning algorithms [16]. Deep 
learning algorithms are implemented using Vivado High-Level 
Synthesis (HLS) in conjunction with certain Targeted 
Reference Designs (TRDs) [1]. Each layer is processed 
sequentially in hardware acceleration. The designer has the 
option to change the 3×3 kernel size of the CONV layer. When 
designing the streaming system, it is essential to optimize the 
timing for each layer. To increase the system throughput in 
high-level synthesis, loop pipelining is used because of the 
large amount of incoming data. The Leaky ReLU activation 
function is used in the network model to solve the gradient 
vanishing problem [1]. 

 

 
Fig. 3.  Proposed architecture of YOLOv5. 

A. Design Overview 

The YOLOv5 network processes each layer in a specific 
order, except for the routing layer. It is possible to 
predetermine the routing layer by providing an address. A 
memory-data connection is needed for the hardware accelerator 
to read, process, and write data [2]. By recycling data and tiling 
the convolution loops, the loop tiling technique optimizes 
memory access time, which is especially useful for huge 
amounts of data. When the burst duration exceeds a specific 
threshold, the effective bandwidth of the FPGA begins to 
plateau after initially increasing with the burst length. In terms 
of data layout, the data tiling approach frequently causes 
DRAM to have non-continuous access. Combining them into a 
single block, the proposed technique improves the placement of 
kernel weights inside a tile. This improves effective memory 
bandwidth by making the most of available external memory 
bandwidth while reducing the number of memory accesses. 
Enhancing computational performance through the use of input 
and output parallelism is crucial for convolutional layer 
acceleration. Achieving parallelism requires the construction of 
many parallel addition trees and multiplication units. 

Data received from DRAM are distributed to the on-chip 
buffers by the Data Scatter module, which is also responsible 
for producing the correct write address. Transferring data from 
the output buffer back to the DRAM and producing the DRAM 
write-back address are the two main functions of the Data 
Gather module. Computations for the Pool, Conv, and Reorg 
layers, two convolutional layers and one with a Leaky ReLU, 
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are handled by the pixel buffers. For data translation, the 
upgraded hardware has one AXI4-Lite slave interface in 
addition to two AXI4 master interfaces. A link is formed 
between the weighted buffers and the FC layer using the 
proposed technique. 

B. Hardware Ιmplementation 

Several components are part of the proposed FPGA 
implementation, including an Interrupt Controller, Direct 
Memory Access (DMA), and General Purpose Input/Output 
(GPIO). A parameter and processing array, data decoding and 
rearranging modules, and the PL itself make up the program. 
The DDR memory in both components is used to connect to the 
SoC through the Memory Generator Interface, which also 
carries out the storage of network parameters and mapping of 
features. 

The Deep Learning HDL Toolbox2 in MATLAB R2018b 
(MathWorks Inc.) is compatible with Xilinx and Intel FPGAs 
and SoCs for inference purposes. This toolbox allows users to 
create personalized deep-learning models and assess the 
performance of hardware implementation. It is feasible to 
construct and train DL models in MATLAB, as it is also 
possible to import pre-trained models from different 
frameworks. The HDL toolkit facilitates the use of 8-bit integer 
quantization for weight optimization, resulting in enhanced 
throughput, memory efficiency, power consumption, and 
computing demands. The DL model can be transformed into 
portable and synthesizable Verilog or VHDL code using HDL 
Coder and Simulink. This code can then be deployed on 
hardware such as FPGA and SoCs. An advantage of this 

toolbox is its ability to automatically produce FPGA 
instructions through the compile command, eliminating the 
need for human reprogramming. The FPGA can be connected 
and instructions can be deployed using either the Ethernet or 
JTAG interface, utilizing the DL processor IP core. When 
making predictions, it is possible to assess the real-time device 
performance parameters, such as latency at the layer level, to 
identify any limitations. The synthesizable Register Transfer 
Level (RTL) generated by HDL Coder is capable of 
accommodating various workflows and devices. A 
customizable IP core that features standard AXI interfaces can 
be developed for seamless integration into SoCs. 

Figure 4 shows the IP core of the MATLAB HDL 
processor. The toolbox comprises a DL processor with four 
AXI4 master interfaces, DDR external memory, convolution, 
FC layer processor, activation normalization, and a controller 
with scheduling logic. The input data and parameters can be 
saved in the external DDR memory and then transferred to the 
block RAM via one of the AXI4 master interfaces. The block 
RAM supplies activations to the general convolution and fully 
connected processor. The convolution and FC processor 
execute the convolution operation and compute the FC layers. 
The activation normalization module is responsible for 
including the ReLU nonlinearity, a max-pooling layer, or 
executing Local Response Normalization (LRN). The IP core 
consists of two controllers: one for the convolution and another 
for the FC layer. The generic convolutional/fully connected 
processor with activation normalization can process only one 
layer sequentially. The subsequent layer undergoes processing 
through the controller, specifically in terms of scheduling. 

 

Fig. 4.  HDL coder proposal for object detection on Zynq7000. 
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Fig. 5.  RTL design for YOLOv5 for object detection Vivado project. 

The processing phase involves sending PL configuration 
instructions via GPIO after ARM executes them for each layer. 
Control signals are transmitted to the relevant units based on 
decoded instructions. The original picture is retrieved from the 
Programmable SoC Direct Read (PSDDR) module and 
transmitted to the PL module by the Direct Memory Access 
(DMA) module. Before transmission to the processing array, 
the pixels are rearranged by the input data reordering module. 
The PL-DDR provides the DDR controller in PL with the 
model parameters, which are then stored in the parameters 
buffer.   

The Processing Array (PA) receives its parameters from the 
parameter buffer. Processing Elements (PEs) are used to 
construct PAs to facilitate concurrent processing. These 
components of parallel processing perform calculations for 
several output channels using the same input feature maps. 
These parallel processing components use the same input 
feature mappings to compute for a large number of output 
channels. At the same time, the PEs complete the computations 
for each layer. The next step is for the PS-DDR to help get the 
feature maps from the last layer back to the host PC. To obtain 
the object detection results, the host PC uses the final feature 
maps to run Non-Maximum Suppression (NMS). 

Resource availability and data interdependence in the 
design are the limiting factors in the achieved data transmission 
rate. Figure 5 shows the proposed implementation of Zynq-
SoC-based real-time object detection. The proposed approach 
uses more BRAMs, therefore, it can be implemented with a 
suitable data processing rate and great efficiency for object 
detection in real-time. Table I shows a qualitative example of 
hardware acceleration using the MS-COCO dataset in the 
proposed system for object detection. The proposed YOLOv5-
SOC can achieve an overall performance of 120 fps while 
effectively predicting different types of items. 

 

TABLE I.  RESOURCE UTILIZATION AND MAXIMUM 
FREQUENCY FOR THE PROPOSED SYSTEM 

Xilinx platform Zynq 7020 
Maximum frequency 250 Mhz 

LUTs 42025 (78.99%) 
Flip flops 56141 (52.76) 
BRAMs 65.50 (46.79%) 

DSPs 19 (8.64%) 
 

IV. CONCLUSION  

This study aimed to enhance the performance of object 
detection by developing a reconfigurable architecture. The 
YOLOv5 algorithm for object detection was implemented with 
hardware acceleration on the Zynq SoC. The MS-COCO 
benchmark dataset was used to evaluate the YOLOv5 
algorithm for object detection when executed with hardware 
acceleration on the Zynq SoC. The Vivado HLS tool was used 
to synthesize and implement an object detection algorithm on 
an SoC. This implementation achieves superior resource 
efficiency, with 78% of Look-Up Tables (LUTs), 52% of Flip-
Flops, 42% of Block RAMs (BRAMs), and 8.4% of Digital 
Signal Processors (DSPs) being utilized. These results were 
compared with previous implementations. The proposed 
acceleration achieved a performance of 120 fps at a 250 MHz 
frequency while minimizing power consumption and 
effectively utilizing resources. The results demonstrate that the 
implementation of the YOLOv5 algorithm on FPGA hardware 
yields a performance that is twice as efficient, with 
significantly reduced prediction time. FPGAs are well-suited 
for implementing intricate algorithms, while their primary 
negative is the extensive time required for development. 
Despite the development of new tools, reconfiguration of 
FPGAs remains a tough task.  
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