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ABSTRACT 

The parameters of a Photovoltaic (PV) model are pivotal in gauging its efficiency under varying sunlight 

irradiances, temperatures, and different load scenarios. Determining these PV model parameters poses a 

complex non-linear optimization challenge. This study is based on a new metaheuristic optimization 

algorithm called the Pelican Optimization Algorithm (POA) to discern the unknown parameters of the PV 

model. The suggested POA algorithm underwent testing using a monocrystalline panel, encompassing its 

single-diode configuration. The objective function is designed to minimize the root of the mean squared 

errors between the predicted and actual current values, adhering to specific parameter constraints. 

Various statistical error metrics were utilized to emphasize the performance of the proposed algorithm. A 

comparative analysis with other well-established algorithms was conducted, indicating that POA stands 

out as highly competitive since it showcases superior efficiency in parameter identification compared to its 

counterparts. 

Keywords-PV cells; parameter extraction; modeling; POA; optimization 

I. INTRODUCTION  

Parameter estimation of solar PV (photovoltaic) models is 
crucial for accurately predicting the performance, efficiency, 
and behavior of solar panels under various environmental and 
operating conditions. By determining the precise values of 
these parameters, researchers and engineers can optimize the 
design, operation, and integration of solar panels into larger 
systems, ensuring they produce maximum power output and 
operate efficiently. Furthermore, accurate parameter estimation 
aids in system diagnostics and health monitoring, allowing for 
timely maintenance, longer lifespan, and consistent energy 
production, which is essential for the viability and cost-
effectiveness of solar energy solutions. 

PV datasheets typically highlight three primary points 
concerning the I/V relationship under standard test conditions 
(STC) – ambient temperature (T) of 25°C, solar irradiance (G) 
of 1 kW/m2, and 1.5 air mass [1]. These are the no-load 

terminal voltage (V), short-circuit current (Isc), and both voltage 
(Vmp) and current at peak power (Pmax). However, these 
specified data points alone are insufficient for extended PV 
system studies, as environmental conditions constantly 
fluctuate. A precise I/V representation across all operating 
conditions is crucial for an in-depth performance analysis of 
PV systems. The I/V characteristics of PV cells are typically 
represented using two prevalent models: the One-Diode Model 
(ODM) and the Two-Diode Model (TDM) [2-4]. Notably, 
while the TDM demands more computational resources than 
the ODM, the performance efficiency difference between them 
is marginal. The ODM requires the accurate determination of 
five parameters, whereas the TDM needs seven. There is also a 
triple diode model, which requests the identification of nine 
parameters. However, this research primarily focuses on ODM. 

The characterization of solar cell behavior typically relies 
on the ODM usage. For effective enhancement of PV system 
efficiency through simulation studies, it is imperative to 
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accurately estimate and identify model parameters [5, 6]. Many 
researchers focus on refining PV model parameters using 
diverse design methodologies. These optimization techniques 
can be primarily categorized as deterministic or heuristic when 
examined from an algorithmic point of view. Both approaches 
address parameter extraction by transforming it into an 
optimization task, drawing on specific reference points from 
the given I-V characteristic curve. Deterministic techniques, 
such as the least squares (based on the Newton method [3] and 
Lambert W-functions [7, 8], place certain constraints on the 
objective functions, namely continuity, convexity, and 
differentiability. Moreover, they are prone to influences from 
initial conditions and gradient details. This makes them 
susceptible to becoming ensnared in local optima, especially 
when navigating multifaceted multimodal challenges. These 
constraints lead deterministic strategies to face obstacles when 
tasked with solving nonlinear, multimodal parameter extraction 
issues. On the other hand, heuristic strategies are more 
versatile, not being bound by strict conditions related to the 
optimization problem's structure. This allows them to bypass 
the pitfalls of sensitivity to initial conditions and gradient 
details. As a result, there has recently been a surge in interest 
regarding these methods. Some of the successfully employed 
heuristic techniques for PV model parameter extraction 
encompass Genetic Algorithms (GAs) [9], Particle Swarm 
Optimization (PSO) [10], Differential Evolution (DE) [11], 
Artificial Bee Colony (ABC) optimization [12], Harmony 
Search (HS) [13], teaching–learning-based optimization [14], 
Chaotic Whale Optimization Algorithm (CWOA) [15], Lévy 
flight trajectory-based Whale Optimization Algorithm (LWOA) 
[16], hybrid PSO-WOA [17], IJAYA [5], and Hybrid Firefly 
and Pattern Search Algorithm (HFAPS) [18]. 

In this study, we have integrated the Pelican Optimization 
Algorithm (POA) for parameter extraction of PV cells [19]. 
The POA is founded on simulating the natural hunting 
behaviors of pelicans. In this algorithm, the search agents are 
depicted as pelicans in search of food sources. 

This article presents several notable contributions, which 
are: 

 A novel approach to identifying parameters in solar PV 
models using the POA is proposed. 

 The POA is applied to estimate unknown parameters for 
ODM.  

 The experiments are conducted using monocrystalline PV 
panels. 

 The proposed POA and five additional algorithms (CWOA, 
LWOA, PSO-WOA, IJAYA, and HFAPS) were simulated 
and their outcomes were compared. The comparison was 
primarily based on statistical error and cost function values. 

II. MODELING OF A SOLAR PV SYSTEM 

The estimation of PV module performance and the design 
of power systems hinge upon the current-voltage (I-V) 
electrical characteristics exhibited by the modules across 
varying solar radiation degrees and diverse temperatures [19]. 
For simulating PV cells and modules, equations mirroring the 

intrinsic attributes of the cells have been suggested. The 
literature has put forth numerous electrical models to simulate 
PV cells under different conditions. These models vary in 
complexity based on the number of parameters to be identified, 
such as the Rs (series resistance) and Rsh (shunt resistance). At 
their core, these models enhance the fundamental model, which 
is composed of a diode symbolizing the PN junction and a 
current source indicative of the received solar energy [20]. To 
achieve a more accurate representation of PV cell behavior in 
specific operating conditions, several additional elements can 
be incorporated. The most utilized models are ODM and TDM.  

A. Solar PV System Modeling. The One-Diode Model  

The ODM, also known as the single diode model or simply 
the diode model, is a widely used mathematical representation 
of the electrical behavior of a solar cell or of a PV cell. This 
model is applicable to various types of solar cells, including 
monocrystalline and polycrystalline cells. 

 

 
Fig. 1.  The one-diode model. 

Equation (1) models how the output current (I) of the PV 
cell varies with voltage (V), considering factors like 
photocurrent (Iph), diode current (Id1), reverse saturation current 
(Isd1), diode ideality factor (α1), temperature (T), the constant of 
Boltzmann (K), the electron charge (q), and series and shunt 
resistance (Rs,Rsh). 

1ph d shI I I I       (1) 

with: 
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B. Objective Functions for Extracting PV Parameters 

The objective functions in the parameter extraction process 
serve as mathematical criteria that guide the optimization 
process. The procedure of obtaining optimal parameter values 
involves comparing the estimated current values to the actual 
experimental ones. To achieve this, it is essential to utilize an 
objective function that aims to minimize the Root Mean Square 
Error (RMSE) across various measured data points [21, 22]: 
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where N is the number of samples, which must be big enough 
to attain the global optimum, while the measured and estimated 
current are denoted by Im and Ie. 



Engineering, Technology & Applied Science Research Vol. 14, No. 2, 2024, 13112-13117 13114  
 

www.etasr.com Ahmed et al.: Extraction of Solar Module Parameters using a Novel Optimization Technique 

 

The objective function is employed with the primary goal 
of reducing the RMS) across a diverse range of measured data 
points. In the case of the ODM, the objective function is 
formulated as depicted in (3): 
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III. PELICAN OPTIMIZATION ALGORITHM FOR PV 
PARAMETER ESTIMATION  

In this section, the conceptual foundation and mathematical 
framework of the proposed swarm-inspired POA are 
introduced. 

A. Hunting Strategies and Characteristics of Pelicans 

Pelicans are social birds with elongated beaks and pouches 
for catching prey. They often live in sizable groups and 
predominantly feed on fish [23, 24]. These birds hunt 
collaboratively, diving from heights to corner fish in shallow 
waters. Upon capturing, they expel excess water from their 
pouch before consuming it [25]. Their strategic hunting 
techniques showcase their natural intelligence. This behavior 
serves as the foundation of the proposed algorithm. 

B. Mathematical Modeling  

The suggested POA operates as a population-centric 
algorithm, with pelicans representing its constituents. Within 
such algorithms, every constituent signifies a potential solution. 
Each constituent recommends variable values for the 
optimization challenge based on their location within the search 
domain. At the outset, these constituents are randomly set 
based on the problem's lower and upper constraints, as 
described by (4). 

 , .i j j j jx l rand u l      (4) 

where i = =1, 2, …..N,  j = 1, 2,…..m. 

Let xi,j denote the value of the jth variable determined by the 
ith potential solution. Here, N signifies the total number of 
population members, m represents the count of problem 
variables, and rand is a random number between [0, 1], 
whereas lj and uj are the lower and upper boundaries of the jth 
problem variable, respectively. In POA, the members of the 
pelican population are depicted using a matrix termed as the 
population matrix, as shown in (5). In this matrix, each row 
corresponds to a potential solution, and the columns highlight 
the suggested values for the variables in question. 
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Let X represent the pelican population matrix, with Xi 
signifying the ith pelican. In POA, every member of the 
population corresponds to a pelican, representing a potential 
solution for the given challenge. As a result, the problem's 
objective function can be gauged for each potential solution. 
The outcomes of this function are expressed using a vector, 
referred to as the objective function vector, depicted in (6): 
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where F represents the vector of the objective function and Fi 
signifies the computed value of the objective function 
corresponding to the ith pelican. 

The suggested POA emulates the tactics and actions of 
pelicans during their predatory pursuits to refine potential 
solutions. The pelicans' hunting approach is replicated through 
two phases. 

 Approaching prey (exploratory phase). 

 Gliding over the water's surface (refinement phase). 

1) Phase 1: Approaching Prey  

During the initial stage, pelicans determine the position of 
their prey and navigate towards this pinpointed zone. 
Emulating this behavior enhances the scanning and exploration 
capacity of the POA across various regions of the search 
domain. A key aspect in the POA is the random generation of 
the prey's location within the search area. This amplifies the 
exploratory efficiency of the POA in thoroughly probing the 
solution space. The pelican's method in moving to the prey's 
location is represented mathematically in (7): 

 
 

1
, ,

,

, i,

+ . , < ; 
=

+ , else

i j j i j p iP
i j

i j j j

x rand p I x F F
x

x rand x p

 




 (7) 

where 1

,
P
i jx  represents the updated state of the ith pelican in the 

jth dimension according to phase 1, I is a random variable 
taking values of either 1 or 2, pj denotes the prey's location in 
the jth dimension, and Fp represents its corresponding objective 
function value. The parameter I, is chosen anew for each 
iteration and member. When this parameter assumes a value of 
2, it induces a greater shift for a member, potentially directing 
that member to uncharted regions of the search domain. Hence, 
the parameter I significantly influences the explorative capacity 
of the POA in thoroughly investigating the search domain. 

In POA, a pelican's new location is adopted if there is an 
improvement in the objective function value at that spot. This 
kind of update, termed as "efficient updating," prevents the 
algorithm from venturing into sub-optimal regions. This 
methodology is captured in (8): 
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where 1P
iX  represents the newly computed position for the ith 

pelican, derived during the first phase. Within this context, 
1

,
P
i jx signifies the jth dimension of this new position, while 1 P

iF  

represents its corresponding objective function value. 

2) Phase 2: Gliding over the Water's Surface 

During this phase, once the pelicans arrive at the water 
surface, they spread their wings across it, pushing fish upwards 
before scooping them up with their throat pouch. This tactic 
ensures that more fish in the targeted region are captured. 
Replicating this activity enables the proposed POA to hone in 
on superior points within the hunt zone. This step enhances the 
localized search capability and the refinement efficiency of the 
POA. Mathematically speaking, the algorithm scrutinizes 
points around the pelican's position to converge to an optimized 
solution. This hunting behavior is represented in (9): 
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where 2

,
P
i jx  denotes the updated position of the ith pelican in the 

jth dimension. The constant R is set at 0.2. The term R(1−t/T) 
defines the neighborhood radius around xi,j, t stands for the 
current iteration, and T represents the total number of iterations. 
This term acts as a measure for localized searching around each 
member, aiding convergence to a superior solution. In the 
initial stages, its value is high, implying broader search vicinity 
for each member. However, as iterations progress, this value 
shrinks, narrowing the search vicinity. Consequently, the 
algorithm refines its search, allowing to gravitate towards 
solutions that are closer, if not exactly, to the global optimum. 
During this phase, effective updating is utilized to determine 
whether to accept or decline the new position of the pelican, as 
represented in (10): 
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                   (10) 

where 2P
iX  represents the newly computed position of the ith 

pelican, derived during the second phase. Within this context, 
2

,
P
i jx signifies the jth dimension of this new position, while 

2 P
iF  represents its corresponding objective function value. 

Once all members of the population have undergone 
updates from the two phases, the top solution is refreshed 
considering the current population state and objective function 
values. The algorithm then proceeds to the next cycle, and the 
steps outlined based on (7)–(10), are reiterated until the process 
concludes. At the end, the most favorable solution identified 
across all iterations is offered as a near-optimal answer to the 
specified issue. Figure 2 depicts the steps of the POA in 
flowchart form. 

 
Fig. 2.  POA flowchart 

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS 

Utilizing MATLAB Simulink 2021, we conducted 
simulations with the RTC France Company mono-crystalline 
module under specific conditions of solar irradiance G = 1000 
W/m2 and temperature T = 33 °C. We contrasted the results 
from our parameter identification approach with those from 
other optimization algorithms to assess the precision of POA. 

A. Comparative Analysis of ODM Parameter Extraction 

The ODM estimated parameters from all considered 
algorithms are shown in Table I. Figure 3 graphically 
represents the various outcomes. It is evident that the results 
achieved from POA, have the smallest error for the majority of 
the values. 

TABLE I.  EXTRACTED ODM PARAMETERS 

Approach Iph (A) I0 (µA) Rp (Ω) Rs (Ω) α 
POA 0.7607 0.3107 52.89 0.036 1.477 

CWOA 0.7600  0.2831  62.61 0.0371 0.0371 
LWOA 0.7602 0.4607 0.035 75.46 1.5177 

PSO-WOA 0.7597 0.314 0.0366 58.80 1.4783 
IJAYA 0.7608 0.3228 0.0364 53.75 1.4811 
HFAPS 0.7607 0.3226 0.0363 1.481 53.67 
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TABLE II.  STATISTICAL RESULTS  

POA CWOA LWOA 
PSO- 

WOA 
IJAYA HFAPS   

0.01845 0.0208 0.0222 0.02267 0.02151 0.0217 IAT 

0.0008441 0.00096 0.0010 0.00101 0.00098 0.000992 RMSE 

1.85E-05 2.41E-05 2.93E-05 2.69E-05 2.50E-05 2.56E-05 SSE 

0.0007096 0.0008 0.00085 0.00087 0.00082 0.0008346 MAE 

 

 
Fig. 3.  Calculated errors obtained by POA, CWOA, LWOA, PSO-WOA, 
IJAYA, and HFAPS algorithms for the ODM case. 

To assess the accuracy of the derived parameters, we 
compare the current-voltage and power-voltage characteristics 
obtained from the estimated parameters via the POA method 
with the experimental and estimated data. Figure 4 provides a 
visual representation of this comparison, focusing on the ODM 
scenario. 

 

 
Fig. 4.  Experimental and measured I-V characteristics achieved through 
the proposed POA for the ODM case. 

The characteristics results presented in Figure 5 
demonstrate a strong agreement between the reconstructed 
ODM and the measured data. Figure 5 depicts the convergence 
curves for various PV cell models. Overall, all the models 
display a satisfactory with POA results showing the most rapid 
convergence rate. In Figure 5, the illustrated average fitness 
functions are essentially a representation of the fitness 
associated with the extraction parameters for PV cells. The 
standout advantage of the results delivered by POA, especially 
when juxtaposed against other optimization algorithms, lies in 
its distinct capability to minimize error and ensure rapid 
convergence. This is evident particularly with ODM and TDM. 
The efficient and precise performance of POA makes it an 
invaluable tool for applications that require high accuracy and 
quick adaptability. 

(a) 

 

(b) 

 

(c) 

 

Fig. 5.  Average fitness functions. Values obtained for (a) ODM, (b) TDB 
by various optimization algorithms [16]. (c) Fitness function for ODM using 
POA. 

V. CONCLUSION 

The Pelican Optimization Algorithm (POA) was designed 
to boost the accuracy of parameter extraction in solar cells. Its 
efficacy was assessed with regard to monocrystalline PV cell 
types within a single diode model. To ascertain its relative 
performance, the POA results were compared with the ones of 
other methods documented in prior studies. Both statistical 
evaluations and graphical representations indicated the notable 
precision and stability of POA, positioning it ahead of the other 
known methods. 
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