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ABSTRACT 

Software Defined Networking (SDN) threats make network components vulnerable to cyber-attacks, 

creating obstacles for new model development that necessitate innovative security countermeasures, like 

Intrusion Detection Systems (IDSs). The centralized SDN controller, which has global view and control 

over the whole network and the availability of processing and storing capabilities, makes the deployment of 

artificial intelligence-based IDS in controllers a hot topic in the research community to resolve security 

issues. In order to develop effective AI-based IDSs in an SDN environment, there must be a high-quality 

dataset for training the model to offer effective and accurate attack prediction. There are some intrusion 

detection datasets used by researchers, but those datasets are either outdated or incompatible with the 

SDN environment. In this survey, an overview of the published work was conducted using the InSDN 

dataset from 2020 to 2023. Also, research challenges and future work for further research on IDS issues 

when deployed in an SDN environment are discussed, particularly when employing machine learning and 

deep learning models. Moreover, possible solutions for each issue are provided to help the researchers 

carry out and develop new methods of secure SDN. 
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I. INTRODUCTION  

SDN brings significant advantages to network security and 
has solved many security issues in conventional networks due 
to its promising features, such as centralized management, bird 
view, and statistics from forwarding devices to controller. 
These characteristics improve network security and make it 
easier to deploy threat detection systems via software 
applications that make use of open APIs. Despite the benefits 
offered by the SDN architecture compared to traditional 
networks, it is vulnerable to cyberattacks and faces new 
possible threats that do not occur in the traditional networks of 
today. SDN itself does not have security built-in [1, 2], and one 
major issue that may hinder the widespread use of SDN is the 
possibility of new assaults [3]. SDN characteristics, such as 
network programmability and centralization control introduce 
new fault and vulnerability, which open the doors for new 
threats that did not exist before [4, 5]. In [6], seven potential 
attack vectors against SDNs are listed. Three of these attacks 
are specific to SDN networks [4, 7–9]. Authors in [10] argue 
that SDN networks may be more susceptible to malicious 
traffic than traditional environments due to the decoupling of 

the control plane and data plane. A security breach in 
conventional networks causes only minor damage to a small 
portion of the network, whereas an attack on the SDN 
controller might have catastrophic consequences for the entire 
network [7-11]. The attacks target different parts of SDN, as 
depicted in Figure 1. A countermeasure step to secure SDN is 
using Intrusion Detection Systems (IDSs) due to their ability to 
locate and identify malicious activity in the network by 
examining network traffic in real time [12]. IDS is a tool, 
which can be either in the form of software or hardware, 
employed in a network system to observe and assess the 
behavior of an individual computer or oversee and evaluate the 
entire network traffic with the aim of distinguishing between 
legitimate and malicious data flows. As shown in Figure 2, 
there are two types of IDSs, signature-based and anomaly-
based. Signature-based systems are widely used commercially, 
and malicious traffic can be detected based on the predefined 
rule. The drawback of this type is that any change performed in 
the attack signature, even if it is very small, the system will not 
detect the attack making this type of system unable to detect 
zero-day attacks [13]. 
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Fig. 1.  A taxonomy of SDN security. 

Anomaly-based IDSs have attracted significant interest 
from the academic community due to their capacity to detect 
new and previously unknown attacks by pinpointing any 
deviation from the typical traffic pattern. The source of data 
that is inspected by the IDSs can be the whole data packet, 
including packet headers and packet payload in packet-based 
IDS in contrast to the flow-based IDS, which only analyzes the 
basic information of the communication found in the packet 
header. Authors in [14] argued that packet content features are 
not directly accessible in OpenFlow protocol. The amount of 
data analyzed by flow-based IDSs is less. Therefore, such 
systems are faster and more computationally efficient than 
packet-based systems [15]. It is important to note that a flow-
based approach is unable to detect attacks embedded in packet 
payloads. Therefore, to provide a high level of security, both 
approaches can be implemented together, forming a hybrid 
method [15]. Deploying IDS in an SDN controller, contrary to 
the distributed methodology used in traditional networks, not 
only reduces the expense of purchasing more detection 
equipment, but also improves detection efficiency due to the 
centralized view of the controller and the easily obtained 
statistical details for the IDS application [16]. Fortunately, the 
centralization of the SDN makes the training of a machine and 
Deep Learning (DL) based IDSs easier [17] and has become an 
active area of research [18]. With the use of training data, IDSs 
possess the ability to automatically learn and recognize patterns 

from data [20] and the controller's visibility make the 
deployment and training of AI-based IDSs easier [17]. These 
IDSs have the ability to modify their behavior based on the 
changing traffic patterns in the network, making them better 
equipped to handle emerging security risks [18].  

The quality of the detection mechanism depends on the 
quality of the dataset used for training [20]. One major issue, 
though, is the lack of high-quality datasets for network traffic 
and intrusion detection. In various fields, like language 
translation and computer vision, there are numerous high- 
publicly accessible quality datasets. The main cause of the 
intrusion detection domain's lack of publicly available datasets 
is related to privacy and legal concerns [12]. It is important to 
note that network data may include sensitive private customer 
information, and sharing such data with the public would be 
both unlawful and a breach of privacy. However, anomaly 
detection in SDN is predicted using public IDS datasets, which 
are gathered from conventional networks. It is argued [20], that 
dataset incompatibility with the SDN environment creates false 
predictions since the framework of SDN is different from the 
traditional network.   

In this survey, an overview of the current approaches that 
apply DL and Machine Learning (ML) based IDSs in SDN 
environment is provided. Recent works that used InSDN [21] 
and the novel SDN-related dataset that was designed to capture 
unique character attacks in SDN were reviewed. 

 

 

Fig. 2.  Taxonomy of IDSs. 

II. DATASETS 

Using a high-quality dataset for training AI-based IDSs has 
a great impact on the accuracy of predictions. Only a few 
datasets related to intrusion detection are publicly available. 
The primary cause for the lack of publicly available datasets is 
related to privacy and legal concerns since network data can 
contain sensitive customer information [22]. However, some 
available datasets were used for intrusion detection in 
traditional networks, such as KDDcup99, NSL_KDD, 
ISCX2012, CICIDS 2017, and CICIDS. KDDcup99 and its 
revised version, NSL-KDD, are the most popular intrusion 
detection datasets and are considered benchmarking datasets. 
However, these datasets are unreliable and outdated, since they 
were released more than two decades ago [4, 9]. Authors in 
[16, 17] analyzed both datasets in the SDN context and found 
that only six (6) features are needed over the 41 available in the 
SDN environment. Some authors still use those datasets in their 
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work to predict the performance of new models or to compare 
them to other datasets, but it is not recommended to use them 
for real-time detection systems [16]. The ISCX2012 dataset 
contains only two types of attack: DoS and brute force and 
HTTP traffic is included as normal traffic, which is not the 
current standard on the Internet today. Therefore, the dataset is 
not suitable for modern evaluation. CICIDS 2017 is the 
updated version of ISCX 2012. It involves a total of 2,830,743 
instances, with 19.7% of the total data representing attacks 
[20]. Those datasets are outdated, have a smaller number of 
attacks, or are incompatible with the SDN environment [17]. 

In 2020, a new open-source dataset known as InSDN was 
made publicly available to be used for the training and 
evaluation of IDSs within the SDN context [23]. The 
distribution of the 361,317 total samples in seven attack 
categories x in the InSDN dataset are shown in Table I. The 
normal class has 68,424 samples, while the attack class has 
292,893 examples [20]. The dataset is split into three groups, 
including attacks traffic targeting the Metasploitable Server 2 
virtual machine as well as the OpenvSwitch (OVS) VM [17]. 
The normal traffic encompassed many application services, 
entailing HTTPS, DNS, SSH, FTP, email, etc.  

Authors in [7, 15] argue that most of the existing literature 
views the intrusion detection challenge of SDN as similar to 
that of a conventional network. Using outdated datasets to train 
SDN-based IDSs can lead to severe problems, as they are only 
capable of detecting attacks that exhibit identical behavior in 
both SDN and traditional networks. The IP-traditional network 
and SDN are significantly different in their operation. 
Additionally, the protocols utilized in SDN are not the same as 
those employed in conventional networks, like OpenFlow [7]. 
Similarly, new threats have surfaced as a result of the division 
between the data plane and the control plane. The SDN 
controller itself or the data communications may be the targets 
of these assaults.  

TABLE I.  INSDN DATASET ATTACK CATEGORIES AND 
DISTRIBUTION   

Dataset 
Normal traffic/ 

Attack traffic 

Sample 

number 
Total % 

Normal 
FTP, DNS, 

HTTPS 
68424 68424 (19.9%) 

 Attack Category  

Metasploitable 
2 

DDoS 73529 

136743 (39.76%) 

Probe 61757 

DoS 1145 

Brute force attack 295 

R2L 17 

OVS 

DoS 52471 

138772 (40.34%) 

DDoS 48413 

Probe 36372 

Brute force attack 1110 

Web attack 192 

Botnet 164 

 

One example of a novel assault in a SDN environment is a 
Distributed Denial of Service (DDoS) attack that specifically 
aims at the SDN controller [24]. The OpenFlow switch will 
forward the unmatched flow packets it receives to the SDN 
controller as a packet-in message for additional analysis and 

handling [20]. An attacker can send various packets with a 
randomly spoofed destination address even if they do not have 
to spoof the source address, which is done in traditional 
networks. All traffic will be forwarded to the controller. The 
latter will overwhelm it and lead to controller failure, which 
eventually stops the entire network. Utilizing the InSDN 
dataset for assessing the effectiveness of anomaly detection 
models offers more precise outcomes, considering the types of 
assaults in SDN differ from those often observed in traditional 
networks. Thus, adopting such a dataset for model evaluation 
in SDN can serve as a reliable indicator of actual world 
circumstances. Furthermore, the InSDN dataset is free of any 
duplicate entries, preventing the learner model from showing a 
bias towards the most frequently occurring records [12]. 

III. CURRENT RESEARCH REVIEW 

In this survey, existing work is deeply investigated using 
the InSDN dataset as depicted in Table II. Authors in [25] 
conducted an analysis of the InSDN dataset, considering all 
attacks, and presented attack specific feature selection to 
identify the features that have the greatest impact on anomaly 
detection to reduce the execution time of the model while 
maintaining high performance. They argue that because of 
overfitting and redundant features, a large dataset with many 
features will take longer for the detection model to execute and 
might not improve accuracy. To lessen the unbalanced set, they 
divided the dataset into six new ones, each of which contains 
normal traffic with a single attack. They performed multiple 
experiments using the SelectKBest feature selection algorithm 
to rank the top 10 features for each attack. They found that for 
all attacks, there were three common features in sequence: 
duration, Fwd IAT Tot, and Bwd IAT Tot. According to the 
experiment conducted, duration has the highest impact on all 
attacks in the InSDN dataset except for the DDoS attack, where 
Fwd IAT Tot was the most effective. This effectiveness may be 
attributed to the fact that the victim device is flooded with a 
huge number of requests as a consequence of the DDoS attack. 
From the result, it has been observed that both DDoS and probe 
attacks exhibit the same behavior in that the flow byte feature 
was dropped suddenly during the attack. The reason behind this 
behavior is that probe attacks usually scan the target system to 
discover some information, which results in a very low flow 
size measured in bytes per second. The normal flow bytes 
decreased from 0.3332 to zero for DDOS and 0.0001 for 
probes. However, their methodology of splitting into six 
datasets means that each attack with a normal sample produces 
overfitting when detecting attacks, such as botnets and web 
attacks due to the imbalanced dataset, where the number of 
samples in a normal traffic sample is much greater than those 
attacks. Moreover, their work only considered selecting 
important features for each attack and did not perform any 
detection classification.  

In the same direction, to improve the performance of IDS to 
detect probe attacks more accurately, the Grey-Wolf Optimizer 
(GWO) algorithm for feature selection was implemented in 
[26]. The authors discussed the benefits of feature selection to 
the overall detection model. They highlighted that feature 
selection is essential in minimizing computation time, which 
will make the classifier have high accuracy with optimal 
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features selected and decrease the dataset size for testing and 
training. Moreover, for real-time detection, it is easier to extract 
fewer features, thus decreasing the detection time. They 
showed that by selecting a subset of 8 features using the 
LightGBM classifier, accuracy increased to 99.8%, while when 
using all features, it was 77.3%. Nevertheless, their topology 
was the same as that of the creator of the dataset [21]. Authors 
in [10] supported the fact that using many features could be 
useful in detection accuracy, but it could lead to issues, such as 
increased model complexity and training costs. Focus is given 
on various attacks and the Hierarchical Multi-Class (HMC) 
architecture is proposed to address the imbalance problem in 
the InSDN dataset and improve the performance of minority 
classes, like BFA, botnet, and web attacks. To boost the 
amount of minority class samples, they use SMOTE sampling. 
To detect abnormal traffic in SDN, they used many ML and 
DL models, namely K-Nearest Neighbors (KNN), Naïve Bayes 
(NB), Decision Tree (DT), Random Forest (RF), Adaboost, 
Bagging, Radial Basis Function Support Vector Machine 
(RBF-SVM), Linear Support Vector Machine (lin-SVM), 
Multilayer Perceptron (MLP), Convolutional Neural Networks 
(CNNs), Recurrent Neural Networks (RNNs), Long Short-
Term Memory (LSTM), and Gated Recurrent Unit (GRU). 
Through the conducted experiments, they showed that DDoS, 
DoS, and probes had good identification performance 
compared to other attacks because of their majority in the 
InSDN dataset. At each stage, they used binary classification 
between the top major class, for instance, the normal traffic 
class, and the remaining classes in the dataset. In the next stage, 
after excluding the previous top class, the new top class, such 
as DDoS, is compared to the rest, and so on. The process of 
class excluding continues until all classes are filtered by binary 
classification. Using this method, they improved the detection 
accuracy of minority classes, like BFA, web attacks, and 
botnets. However, their method of hierarchical multi-class 
detection using binary classification at each stage leads to an 
increase in detection time and computation. Moreover, they 
implemented and verified their framework for DDoS attacks 
only.   

Some works that have been published have used a hybrid 
method of ML with DL to improve performance. In [27], an 
attack detection and mitigation module was proposed that 
utilized a hybrid model of CNN and Extreme Learning 
Machine (CNN-ELM) to classify DDoS attacks in an SDN 
environment. Contrary to previous works, the authors 
developed a mitigation mechanism along with a detection 
module. Mitigation is done through IP traceback utilizing a 
blacklist, which records the abnormal traffic detected by the 
IDS. Their model detected DDoS attacks by using features 
extracted from the SDN environment, which were provided by 
packet-in messages toward the controller as well as the 
statistics messages provided by OpenFlow switches to the 
controller. A subset of 12 features from the InSDN dataset 
were mapped to the OpenFlow switch's extracted features. In 
addition, they considered four additional features, such as 
average speed flow, average duration, average packet size, and 
ratio asymmetric flow. Through the conducted experiments, 
they demonstrated that using a subset of 12 features not only 
increased accuracy, but also reduced test time. However, this 

methodology creates overhead in the controller since every 
packet-in message, which will not be effective during a DDoS 
attack, should be checked. Moreover, there was no clear 
description of how features extracted from packet-in messages. 
Also, their methodology and the manually created four features 
were not verified. Similarly, authors in [28], proposed the Deep 
Convolutional Neural Network (DCNNs) to detect DDoS in 
SDN. They suggest similar detection and mitigation 
mechanisms but they used only the features provided by the 
flow table through OpenFlow statistics messages, and those 
messages were periodically sent to the controller for anomaly 
detection. They mentioned that only 12 features of InSDN were 
mapped to the extracted information from the OpenFlow 
switch. They argue that the existing solutions engaging a large 
number of features for ML or DL require more functions to 
extract those features, which create network congestion and 
latency. On the other hand, utilizing a small and limited 
number of features does not provide reliable attack detection. 
However, in practical implementation, they employed 78 
features for training, not only 12, which makes it difficult to 
map the basic features provided by OpenFlow switches to this 
huge number. Furthermore, their methodology requires every 
packet-in message to be checked by the controller, as well as to 
periodically request statistics from the switch to create 
overhead in the controller. Similar to previous work, there was 
no clear description of how the features were extracted from 
packet-in, while, also, they were not verified.  

Authors in [29] examined many DL models, such as the 
GRU, LSTM, and RNNs, in order to develop an IDS capable of 
detecting DDoS attacks. They selected 48 features from the 
InSDN dataset using the framework method described in [30] 
to acquire the specific features related to SDN. LSTM provided 
the best accuracy, but in terms of training time, RNN was the 
most optimal. Nonetheless, they did not consider the 
imbalanced dataset caused by minority classes when deploying 
multi-class detection to prevent overfitting. Additionally, there 
was no real-time classification; in their work, they only 
considered analyzing DL models. In the same direction, authors 
in [18] compared several ML models that have high 
performance with less execution time, such as DT, RF, and 
Adaboost, to determine the best candidate for the development 
of ML-based IDS. They revealed that using the SelectKBest 
function from scikit-learn, which selects relevant features, 
reduced the number of features from 83 to 7 without 
significantly degrading performance, while the execution time 
was reduced rapidly from 10 to 0.5 s. However, as in [29], the 
authors did consider an imbalanced dataset when using multi-
class detection to prevent overfitting. 

Authors in [7] propose a hybrid DL approach that combines 
CNN with RF, KNN, and SVM to classify network traffic. 
While the aforementioned ML techniques handled the 
categorization problem, authors employed CNN to extract more 
complex representations of the data attributes. Most research 
fails to take into account the impact of overfitting when putting 
models into practice, which results in poor detection of zero-
day attacks. For this reason, a regularization method called SD-
Reg was implemented to deal with the overfitting issue. The 
authors claimed that the imbalance in the InSDN dataset was 
caused by the insufficient amount of samples for U2R, Web, 
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and botnet assault. Some attackers always focus on those 
attacks since the detection models have false predictions about 
them, or other researchers may ignore them. Thus, in the 
training multi-classification process, they employed a 
combination of the oversampling (SMOTE) and undersampling 
approaches to eliminate randomly selected samples from the 
majority class and duplicate samples from the minority class. 
After performing several experiments, they showed that, using 
softmax with the SD-Reg regularization technique combined 
with CNN performed better than regularizations L1 and L2. In 
the next experiment, they replaced softmax with ML 
techniques, such as SVM, KNN, and RF to work with SD-Reg 
regularization and for 48 features, compared to single CNN 
models, CNN-SVM, CNN-KNN, and CNN-RF produced better 
results for binary and multi-classification. For detecting 
unknown attacks, for 9 attacks in the dataset, they conducted 
several experiments with one attack removed from the training 
set each time and then used for testing, and so on, for all 
attacks. 

Authors in [20] presented a DL model based on LSTM and 
an autoencoder to detect DDoS attacks in SDN, with a limited 
number of features to create a lightweight approach to reduce 
the overhead of applying the detection model. They used 
Information Gain (IG) and RF algorithms for feature selection 
to analyze the most relevant feature to the DDoS attack. They 
utilizedd the same dataset, once with 48 features and once with 
only 10 features, and they showed that the accuracy does not 
decrease greately. Their mechanisms include the flow 
collection and extraction module, which uses OpenFlow 
statistics messages to get necessary information from switch to 
controller periodically following a fixed time interval. The 
authors utilized CICFLOWMETER, which is a tool used for 
datasets, such as InSDN, CICIDS 2017, and CICIDS 2018, 
which extract 83 features from traffic flows. They argue that 
not every CICFLOWMETER feature could be extracted for 
usage in an SDN setting. Only through OpenFlow calls can the 
SDN controller obtain statistical data from OpenFlow switches, 
including flow duration, packet count, and byte count. Thus, 
they employ the methodology of [30] to identify subfeatures 
that may be readily retrieved, either directly from the SDN 
controller, or by computing flow statistics, like the standard 
deviation, mean, minimum, and maximum of flow features. 
They conducted experiments and feature selection on three 
different flow based datasets. It was observed that the subset of 
selected features in the InSDN dataset is different from those in 
CICIDS 2017 and CICID 2018, while many common features 
were found between CICID 2017 and CICIDS 2018 because 
they are from conventional environment. Traditional networks 
and SDN platforms are not comparable due to their distinct 
features and functionalities. Furthermore, the identification of 
features varies as well as their prominence inside each network. 
For instance, in a traditional network, flow duration refers to 
the length of time for which the connection between a source 
host and a destination host is active. In SDN, flow duration 
refers to the amount of time that a flow entry remains in the 
flow table of a switch. Hence, the "duration" attribute in SDN 
is closely associated with DDoS attacks, as these attacks 
involve the malicious flow remaining in the switch flow table 
for a long time. They validated their claim and demonstrated 

how performance decreases significantly when training with 
one dataset and testing with another. This validation proves that 
other datasets that were collected in traditional networks need 
to be carefully deployed in the SDN network. 

Authors in [31] developed an IDS using a hybrid model 
utilizing an LSTM and CNN combination to extract temporal 
and spatial information from input data. The accuracy was 
96.32% for multi-classification in the InSDN dataset. To 
overcome the overfitting problem, they used two regularization 
methods: L2 Reg and dropout. They highlighted that to 
improve the performance of CNN and detect new intrusions, 
the overfitting must be reduced to increase accuracy. They used 
attack samples in testing that were different from those in 
training. Despite its high accuracy, the high false alarm 
percentage of the hybrid model could prevent its deployment in 
the production system. Moreover, the authors stated that their 
model failed to provide an acceptable result for detecting new 
attacks. Authors in [13] investigated a methodology to solve 
the problem of unlabeled and unbalanced dataset. For anomaly 
identification, they suggest a hybrid strategy based on an 
LSTM autoencoder and One-Class Support Vector Machine 
(OC-SVM). They used unsupervised training to solve the 
problem of an unbalanced dataset by training with a normal 
class. When there are anomalies, the model produces a 
significant error because it is unable to identify and rebuild 
anomaly instances. A threshold known as reconstruct error was 
employed to distinguish between normal and anomalous data. 
The shortcoming of OC-SVM, its low capability to work with 
high-dimension datasets, is solved by combining it with the 
LSTM autoencoder. The LSTM autoencoder model's data 
output is reduced to a smaller dimension and then trained using 
the OC-SVM algorithm to enhance the classification 
performance. The outcomes of the experiment show that the 
suggested model provides a higher detection rate. However, 
they used binary classification with approximately 57,000 
normal samples and randomly selected 46,000 samples from all 
attacks. Combining all attacks in one category with a small 
number of samples does not provide accurate attack detection, 
since all attacks have different effective attributes. Moreover, 
they removed socket features, such as source IP, destination IP, 
flow ID, etc., only from the dataset to avoid the overfitting 
problem. Using a large number of features does not solve the 
issue; in fact, it increases the training and execution time, 
making the real time implementation impossible.   

Authors in [11] introduced a lightweight supervised 
learning model to identify DDoS attacks targeting SDN 
controllers using only one feature of fluctuation of flow, which 
is the count of packet-in messages to the controller in a fixed 
time slice and for many consecutive times to avoid the behavior 
of a normal burst. They created their own dataset for the 
proposed system, but for testing and training their model, they 
used the InSDN dataset. The idea behind using only one feature 
is that it will be easier to obtain while it consumes less time and 
resources for training and real-time prediction. They 
implemented a multiple ML model with seven selected features 
of InSDN, which were flow-id, protocol, timestamp, flow-
pkt/s, bwd-pkt/s, pkt-len-mean, init-bwd, and win-byts. The 
conducted experiment shows BT and KNN were the best in 
terms of accuracy, while in terms of accuracy and training time, 
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CPU utilization, and decision time, KNN was the most optimal. 
They tested their work using their own dataset and obtained an 
accuracy of 99.4% with BT using one feature. It is argued that 
employing many features will lead to either higher performance 
or overfitting for some models. However, they did not mention 
the methodology of feature selection and some of the selected 
features, such as flow-id and timestamp, which can affect the 
learning process during model training, leading to overfitting 
were irrelevant. What is more, continuous checking of the 
count of packet-in creates a load to the controller, and the 
methodology of time slices causes a delay in decision time. 
Ultimately, the technique loses potential because it assesses just 
one feature to train the intrusion system. 

A deep evaluation and analysis was performed in [17], 
considering IDS implementation in the SDN network and 
relevant datasets. The author claims that there is a lack of 
research on IDS in SDN environments. Furthermore, most of 
the current publication views the IDS issue in SDN similar to 
that in conventional networks. Also, a significant number of 
them depend on datasets that were created for conventional 
networks. They presented novel evaluation work on the InSDN 
dataset, such as the classification of single/multiple attacks 
coming from different/same source of data, namely the OVS 
dataset and Metasploitable 2. Unlike other published research, 
this one considers training and testing using a single data 
source. In addition, the importance of the AUC metric for 
imbalanced dataset classification is highlighted. It was also 
highlighted that the InSDN dataset is a high quality dataset 
suitable for IDS in SDN and consists of identical attacks 
originating from several sources, distinguishing it from former 
datasets. Other researchers overlooked this particular point. The 
author conducted several experiments analyzing a new dataset; 
the same source of data was used for training and testing of 
single attack detection, and the results were quite satisfactory. 
However, when conducting the experiment again with different 
sources for testing and training for single attack detection, the 
results were good except for BFA and DoS, whose scores were 
lower in the case of metasploitable server 2 used for training 
and OVS for testing. It was mentioned that the reason is their 
limited number of metasploitable server, which affects training. 
The same problem arose for the probe when the training data 
source was OVS and testing was conducted on Metasploitable 
Server 2. Moreover, the experimental multi-classification 
detection results with the same source for testing and training 
were exceptional, but for different sources, there was 
degradation in the performance, due to the existence of heavily 
populated classes, such as DDoS. It is concluded that the 
existing technique must be shifted to address the issue of 
diverse data sources. U2R, botnet, and web attacks were 
excluded from the analysis due to the limited sample number. 

In another direction, some researchers developed ensemble 
mechanisms to improve performance. Voting algorithms are 
characterized by low errors and overfitting. When combining 
multiple classifiers, they provide higher accuracy than a single 
classifier. By combining NB, KNN, DT, and ET in the V-
NKDE ensemble classifier model, authors in [3] created a 
technique for DDoS detection and mitigation. The voting 
classifier's concept is to combine many ML algorithms and 
predict the class label using either an average prediction 

probability or a majority vote. Furthermore, their systems 
consist of a collaborative module that notifies other controllers 
about the attacks, a classifier module for detection, and a 
mitigation module for blocking attacker ports. The reason 
behind the collaborative module is that after blocking attacks, 
there is a vast number of malicious flows in flow tables. These 
flows are useless, but they waste the memory of the switch. 
Collaborative modules clear flow tables from such flows. They 
implement a data collector unit in the controller, which 
periodically receives OpenFlow statistics messages from 
OpenFlow switches to obtain details about flow in the flow 
table. For attack detection, five tuple features in SDN have 
been considered. To evaluate their model, they used 48 features 
of InSDN for multi-class detection, with 99.84% accuracy. The 
experiment showed that the real-time traffic classification 
accuracy was 99.1% with 0.002 False Positive Rate (FPR).  

IV. DISCUSSION 

In this survey, a deep analysis was conducted for research 
employing the InSDN dataset in the SDN environment. After 
the InSDN dataset was published in 2020, many researchers 
utilized this dataset during training and testing their models. 
Among those works, 16 papers were selected. Most of the 
existing works using InSDN reduced the number of features as 
follows: 7 of the 16 works used less than 20 features, 6 of them 
used 48 features [30], and two others used variations in the 
number of features. The motive behind employing less features 
was to eliminate overfitting and provide a lightweight intrusion 
detection system. IG and SelectKBest were the most used 
feature selection algorithms. Due to the importance of the SDN 
controller and the fact that it is an attractive target for DDoS 
attacks, as depicted in Digure 3, seven among the 16 existing 
solutions performed binary classification and four of them were 
specific for DDoS detection, one for probe attack detection, 
and the remaining for classification between normal and 
abnormal traffic. Various classifiers have been used in the 
literature and it has been shown that RF was the most optimal. 
Moreover, LSTM and CNN were often utilized in hybrid 
classifiers, in combination with CNN achieving good results in 
image processing due to its power of learning from spatial 
features, while the power of LSTM resides in its ability to learn 
from temporal correlations of network traffic that generate 
times series data [32]. Additionally, LSTM performs better 
with large datasets [33].   

It is clearly illustrated in Figure 4, that among 16 works, 
four only analyzed the dataset and did not perform any 
mechanism for attack detection. The remaining 12 works 
implemented IDS, 5 of them extracted features from OpenFlow 
statistics messages, only 3 of them used packet-in messages for 
feature extraction, whereas the remaining did not provide any 
details about the feature extraction methods used.  

Real-time detection is considered an important metric for 
evaluating the intrusion detection mechanism in the real world 
and online. However, among those works that deployed 
intrusion mechanisms, only three of them provided real-time 
detection. It is clear that real-time detection is not a 
straightforward process due to the difficulty of getting the 
required features in real-time and mapping them to dataset 
features for feeding the classifier model.  
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Fig. 3.  Binary and multiclass attack distribution in the literature. 

 

Fig. 4.  Feature extraction methods in SDN used in the literature. 

The existing models for intrusion detection have several 
drawbacks. One of them is overfitting, when the model's 
accuracy is very high during model training, but its 
performance decreases significantly when tested. This usually 
happens when we use high-dimensional features. Increasing the 
number of data samples is an optimal solution, but this method 
is expensive and constrained by the availability of network 
data, especially for network traffic. Among the reviewed 
works, 9 of 16 reduced the feature dimensions using a feature 
selection algorithm to reduce the effect of overfitting.  
Removing socket information features, such as timestamp, 
source IP, destination IP, flow ID, etc. to avoid the overfitting 
problem as in [12] is not enough. Some other works [4, 27, 30] 
apply regularization techniques to prevent overfitting. 
Moreover, some authors used a voting algorithm that was 
characterized by low error and low overfitting [3]. Another 
problem is that class imbalance occurs when datasets result 
from some minority attacks, such as U2R, botnet, and web 
attacks. Some works did not consider solving this issue because 
their models performed binary classification between normal 
and abnormal or normal and attack traffic, namely DDoS and 
probes [22-24]. Since these are considered majority classes, 
they did not affect the performance. The effect of class 

imbalance becomes unavoidable when performing multi-attack 
classification. Some studies simply neglect minority class 
attacks, while others use oversampling and undersampling 
techniques to resolve this issue [10]. Another solution is to use 
multi-class hierarchical binary classification [10, 15].  

Most researchers only focus on providing detection, 
neglecting mitigation. In the reviewed literature investigated, 
only four studies provide mitigation. It is difficult and costly to 
provide a successful protection mechanism, which is why a 
mitigation mechanism is a favorable option. However, the 
current work implementing mitigation uses a blocking port 
mechanism. 

V. OPEN ISSUES, CHALLENGES, AND FUTURE 

RESEARCH DIRECTIONS 

In the previous sections, existing solutions for deploying 
AI-based IDS in an SDN environment were reviewed using the 
recent novel SDN based dataset. However, in the literature, 
several issues and challenges were found. In this section, the 
constraints of the existing methods are identified and potential 
research concepts to address these limitations are proposed. 
Additionally, certain future research concerns and challenges 
are highlighted. 

A. Sampling Time Interval for IDS Traffic Monitoring 

The IDS must be active all the time to recognize malicious 
traffic; therefore, IDSs are required to continuously check the 
traffic and extract features to feed to the detection module. A 
widespread method for extracting features for AI-based 
intrusion detection in SDN involves periodically sending 
OpenFlow statistics messages from the data plane to the 
controller and extracting the necessary features from the 
response message. The definition of the time interval to collect 
flow entries is of great importance. Long time intervals create a 
delay in the detection of attacks and a reduction in the time 
available for possible mitigation, allowing an excellent 
opportunity for the attacker to damage the network. Moreover, 
it would impose an enormous load on the controller and switch 
due to the necessity of processing a large number of flows. 
Conversely, if it is extremely short, the controller will 
repeatedly engage the detection module, resulting in higher 
computational costs, increased resource usage by the controller, 
and increased communication between the controller and 
switch, leading to bandwidth consumption. The impact of this 
issue might be insignificant for a network of limited size. 
However, with larger networks, the problem becomes more 
severe. There is a need for a mechanism that selects an optimal 
time interval or a method of invoking the detection mechanism 
when needed. 

B. Accuracy in Real-Time Detection 

Previous studies on deploying intrusion IDS in SDN have 
primarily concentrated on attaining high accuracy through the 
utilization of novel ML and DL algorithms, or by employing 
feature selection methods during offline training. There was no 
clear implementation of real-time detection, and the accuracy 
of the literature did not reflect reality, as it did not run in real-
time. Therefore, detecting attacks in real-time needs to be 
considered by the research community. 
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TABLE II.  VARIOUS RESEARCH WORKS USED INSDN DATASET 

Reference [25] [26] [10] [27] [28] [29] [18] [11] 

Year 2021 2022 2022 2022 2023 2021 2023 2022 

Controller used N/A ONOS N/A Ryu Ryu N/A N/A N/A 

Simulation environment N/A Mininet Estinet Mininet Mininet N/A N/A N/A 

IDS x x x      

Dataset InSDN InSDN InSDN InSDN InSDN InSDN InSDN 
InSDNand self-

generated 

No. of features selected 10 8 20 12 78 48 7 7 

Binary / Muti-class --- Binary Both Binary Binary Multi-class Multi-class Binary 

Attack types --- Probe All DDOS DDOS All All DDOS 

Classifier used 

Only used 

feature 

selection 

algorithms 

LightGBM 
Multi-stage Binary 

Classification 
CNN-ELM DCNN 

LSTM, RNN, 

GRU 
DT, RF, Adaboost 

Many 

Classifier. The 

best were BT 

and KNN 

Feature selection method SelectKBest GWO IG 

Manually 

selected by 

author + 
packet-in 

Manually 

selected by 

author + 
packet-in 

Followed [30] SelectKBest N/A 

Feature extraction 

method 
Not required N/A N/A 

OFP_stats 

message +  

manually create 

new feature + 

packet-in 

OFP_stats 

message + 

packet-in 

N/A N/A 

Count packet-in 

for self-

generated 

Dataset. Not 

given for 

InSDN 

Topology X   X X X X  

Framework X X    X X  

Real-time detection 

(deployment) 
X X  X X X X  

Accuracy --- 99.80% 96%-99% 99.86% 99.90% 92% 99.80% 

Self-generated 

Dataset: 99.4%. 

InSDN: 97% - 

99% 

Evaluation 

metrics 
--- 

Accuracy, 

Recall, 

Precision, F1- 

score 

F1-score 

Accuracy, 

Recall, 

Precision, F1- 

score, Test 

time, Confusion 

matrix 

Accuracy, 

Recall, 

Precision, F1- 

score, Loss rate, 

Confusion 

matrix 

Accuracy, 

Recall, 

Precision, F1- 

score, Training 

time, AUC 

Accuracy, Recall, 

Precision, F1- 

score, Execution 

time 

Accuracy, 

Recall, 

Precision, F1- 

score, Training 

time, Decision 

time, CPU 

utilization 

Provide mitigation X X X   X X X 

Overfitting 

consideration 
Not needed since few features were selected. N/A N/A 

Not needed since few features were 

selected. 

Imbalance consideration N/A 

No need to 

consider 

because the 

binary 

classification 

between normal 

and probes 

Used Multi-Stage 

Binary and 

perform SMOTE 

for botnet and 

U2R 

No need to 

consider 

because the 

binary 

classification 

between normal 

and DDOS 

No need to 

consider 

because the 

binary 

classification 

between normal 

and DDOS 

N/A N/A 

No need to 

consider 

because the 

binary 

classification 

between normal 

and DDOS 

Remarks 

They only 

analyze the 

dataset to select 

relevant 

features. They 

did not consider 

the class 

imbalance 
between normal 

and other 

minority class 

attacks, such as 

botnets and web 

attacks. 

Topology of 

[21] was 

considered. 

Real-time 

implementation 

and verification 

are performed only 

for DDOS. Their 

method will lead 

to an increase in 
detection time and 

computation due 

to multi-class 

binary 

classification. 

Four manually 

created features 

were not 

verified. There 

was no clear 

methodology 
for detecting 

DDOS through 

packet-in 

messages. 

Overfitting due 

to the huge 

number of 

features. No 

clear 

methodology 

for detecting 
DDOS through 

packet-in 

messages. The 

mechanism was 

not verified. 

They did not 

consider 

imbalanced 

dataset and 

overfitting. No 

real-time 

classification. 

Only analyzed the 

dataset and did not 

provide details 

about IDS 

implementation. 
Did not consider 

an imbalanced 

dataset. 

Did not 

mention the 

feature 

selection 

methodology 

and some of the 

selected 

features were 

irrelevant. 

Continuous 

checking of the 

count of packet-

ins creates a 

load on the 

controller. 

Time-slice 

methodology 

delays 

decisions. 
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Reference [17] [3] [7] [20] [31] [34] [12] [35] 
Year 2021 2021 2021 2022 2021 2023 2020 2023 

Controller used N/A Ryu N/A Ryu N/A N/A N/A N/A 

Simulation 

environment 
N/A Mininet N/A N/A N/A N/A N/A N/A 

IDS x X X     

Dataset InSDN InSDN 
 

InSDN InSDN InSDN InSDN InSDN InSDN 

No. of features selected N/A 48 5 48 9 48 10 48 48 78 9 

Binary / Muti-class Both 
Multi-

class 
Binary Both Binary Multi-class 

Binary  then 

multi-class 
Binary Binary 

Attack types All All DDOS All DDOS All All All All 

Classifier used XGBoost V-NKDE 
CNN-RF, CNN-SVM, 

CNN-KNN 
LSTM CNN-LSTM LSTM 

LSTM-

autoencoder + 

OC-SVM 

RF, XGboost 

Feature selection 

method 
N/A 

Follows 

[30] 
Manually 

selected 
Follow [30] 

PCA for 9 

features 

selected 

Follows 

[30] 

IG and RF 

for 10 

features 

selected 

Follow [30] Not used Follows [7] 

Feature extraction 

method 
Not required N/A 

OFP_stats 

message 
Not required OFP_stats message N/A N/A N/A 

OFP_stats 

message 

topology X  X X X X X X 

Framework X  X  X X X X 

Real-time detection 

(deployment) 
X  X X X X X X 

accuracy N/A 99.84% 99.10% 97% - 99% 99.95% 96.32% 99.50% 90.50% 99.69% 

Evaluation 

metrics 

AUC, confusion 

matrix 

Accuracy, Recall, 

Precision, F1- score, 

TPR, FPR 

Accuracy, Recall, 

Precision, F1- score, AUC, 

Confusion matrix 

Accuracy, Recall, 

Precision, F1- score, 

Execution time, 

Throughput, Latency 

Accuracy, 

Recall, 

Precision, F1 

score, AUC, 

Confusion 

matrix 

Accuracy, 

Detection rate, 

Precision, F1- 

score, AUC 

Accuracy, 

Precision, 

Recall, F1-

measure 

Accuracy, 

Precision, 

Recall, F1- 

score, 

Confusion 

matrix 

Provide mitigation X  X  X X X X 

Overfitting 

consideration 
N/A 

Voting algorithms are 

characterized by low 

error and low 

overfitting. 

Not needed since few features were selected. 
Regularization techniques to 

solve the overfitting problem. 

Only removed 

socket 

information. 

Not needed 

since only a 

few features 

were selected. 

Imbalance 

consideration 
N/A N/A 

No need to consider due to 

the binary classification 

between normal and DDOS 

N/A N/A N/A N/A 

Remarks 

Only analyzed 

the dataset and 

did not perform 

any detection. 

Did not mention 

the number of 

features selected 

and using all 

features without 

removing 

features and 

socket 

information such 

as IP, port, and 

MAC, lead to 

overfitting. They 

did not consider 

an imbalanced 

dataset. 

They did not mention 

how they trained their 

model using five tuple 

features. 

Only analyzed the dataset. 

Requires periodically 

getting statistics from the 

switch to the controller, 

which creates a load on the 

controller. 

Using a huge 

number of 

features makes 

the feature 

extraction 

process very 

difficult and 

the detection 

time very long. 

Using a huge 

number of 

features makes 

the detection 

time very long, 

and feature 

extraction 

creates 

overhead in an 

IoT 

environment 

that is 

characterized 

by limited 

resource 

devices. No 

real-time 

implementation

. 

The number of 

randomly 

selected 

samples of all 

attacks in one 

category does 

not provide 

accurate 

detection since 

the attacks have 

different 

effective 

attributes. Used 

a huge number 

of features, 

which created 

overfitting. 

Using high-

dimensional 

features 

increases 

training and 

execution time, 

making real 

time 

implementation 

impossible. 

Did not 

consider an 

imbalanced 

class. 

Methodology 

of checking 

OpenFlow 

statistics 

message 

according to 

limited number 

of packets in 

flow instead of 

fix time 

window create 

overhead in the 

controller. 

 

C. Controller Resource Consumption by IDS 

The controller is considered an optimal location for IDS 
deployment to get the benefit of SDN features as well as 
exploit the power of the controller [36]. Almost all works 
implemented their IDS in SDN controllers, but less attention 
was given to controller resources consumed by IDS. There 
must be a deep investigation of the controller when network 
size increases. Integrating IDS as a separate platform and 
linking it to a controller helps alleviate the stress on the 

controller [37]. Another solution is to implement a distributed 
controller or dedicate a specific controller for implementing 
IDS to migrate excessive traffic for checking to other 
controllers for processing. However, those methods may 
increase the time delay for detecting attacks. 

D. Consideration of Other Attacks  

The nature of the centralized controller of SDN, which is 
considered the network brain, makes it an attractive target for 
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DDoS attacks. As a result, many studies of intrusion detection 
in SDN environments were concerned with DDoS only. The 
detection procedure needs to be flexible enough to 
accommodate the additional attack types that the literature has 
overlooked, such as probe attacks, which have a different 
methodology of work in SDN from traditional networks. 
Furthermore, there is a lack of studies considering DDoS 
attacks targeting OpenFlow switches. Due to the limited 
memory size of flow tables, attackers can send a burst of forged 
source packets. The switch will then forward those packets to 
the controller for decision. After the decision is made by the 
controller, the rules for those packets are specified and 
forwarded to the switch. The flow tables in the OpenFlow 
switch will be unable to store all the fake flow rules. 
Consequently, the flow table will soon fill up, and the 
transmission of legitimate traffic will stop. 

E. Attack Early Detection 

Many research works have developed different high 
accuracy models, including hybrid, ensemble, etc. These 
complex models require additional time to detect attacks [38]. 
Quick identification of an intrusion is crucial, as it enables the 
initiation of mitigation actions at an earlier stage.  

F. Other Methods for Attack Mitigation  

The existing solution for attack mitigation in the literature 
is blocking the attacker port, ignoring the impact the attack 
caused, and still exist in the network. Performance can be 
harmed by blocking assaults without taking into account the 
malicious flow entries that are stored in the switch flow table. 
When attacks start, there are some useless flow rules installed 
based on the attacker's behavior, which consume switch 
resources until they are removed. In addition to the blocking 
mechanism, there must be other methods used to store the 
attacker's behavior, which might be helpful in the future for 
analysis or reference. In this direction, instead of blocking the 
attacker port, redirecting the malicious traffic to honeypot or 
mirroring the flow to a deep packet inspector to further analyze 
the flow is a probable suitable action. 

G. Socket Information and Overfitting 

Using socket information, such as IP, port, MAC, etc. as 
direct features [10], leads to overfitting, which has an effect on 
model prediction. However, it is worth noting that it is a good 
future direction for researchers employing entropy to measure 
the distribution of those values for model training or creating 
other features, namely speed of source IP, standard deviation of 
flow packets, and standard deviation of flow bytes. 

VI. CONCLUSION 

SDN features, like flexibility, programmable networks, and 
dynamic management, successfully resolve the drawbacks of 
the former network. However, security issues arise because 
SDN lacks built-in security, and their architecture produces 
additional security concerns due to the decoupling of data and 
controller planes. Therefore, implementing intrusion detection 
in SDN has become a hot topic for the research community to 
consider in SDN security issues. In this survey, an emphasis 
was placed on the SDN architecture as a suitable platform for 
deploying AI-based IDSs to monitor networks and detect 

threats. Since the efficiency of AI-based intrusion detection 
depends on the quality of the dataset, a review of InSDN, a new 
SDN dataset that was collected in an SDN environment, was 
conducted. Moreover, various research works that used this 
dataset for intrusion detection development were outlined while 
their strengths and weaknesses were highlighted. Related 
research challenges and issues were briefly analyzed and 
examined. In addition, hypotheses for solving some of those 
open challenges are provided. There is a strong belief that this 
survey will help and guide the researchers who aim to develop 
AI-based IDS solutions in the SDN context. 
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