
Engineering, Technology & Applied Science Research Vol. 14, No. 2, 2024, 13190-13200 13190

www.etasr.com Khalid & Aldabagh: A Survey on the Latest Intrusion Detection Datasets for Software Defined …

A Survey on the Latest Intrusion Detection

Datasets for Software Defined Networking

Environments

Harman Yousif Ibrahim Khalid

College of Science, University of Duhok, Kurdistan Region, Iraq

harman.khalid@uod.ac (corresponding author)

Najla Badie Ibrahim Aldabagh

College of Computer Science and Mathematics, University of Mosul, Iraq

najlabadie@uomosul.edu.iq

Received: 16 December 2023 | Revised: 2 January 2024 | Accepted: 10 January 2024

Licensed under a CC-BY 4.0 license | Copyright (c) by the authors | DOI: https://doi.org/10.48084/etasr.6756

ABSTRACT

Software Defined Networking (SDN) threats make network components vulnerable to cyber-attacks,

creating obstacles for new model development that necessitate innovative security countermeasures, like

Intrusion Detection Systems (IDSs). The centralized SDN controller, which has global view and control

over the whole network and the availability of processing and storing capabilities, makes the deployment of

artificial intelligence-based IDS in controllers a hot topic in the research community to resolve security

issues. In order to develop effective AI-based IDSs in an SDN environment, there must be a high-quality

dataset for training the model to offer effective and accurate attack prediction. There are some intrusion

detection datasets used by researchers, but those datasets are either outdated or incompatible with the

SDN environment. In this survey, an overview of the published work was conducted using the InSDN

dataset from 2020 to 2023. Also, research challenges and future work for further research on IDS issues

when deployed in an SDN environment are discussed, particularly when employing machine learning and

deep learning models. Moreover, possible solutions for each issue are provided to help the researchers

carry out and develop new methods of secure SDN.

Keywords-software defined networking; intrusion detection systems; network security; InSDN; datasets

I. INTRODUCTION

SDN brings significant advantages to network security and
has solved many security issues in conventional networks due
to its promising features, such as centralized management, bird
view, and statistics from forwarding devices to controller.
These characteristics improve network security and make it
easier to deploy threat detection systems via software
applications that make use of open APIs. Despite the benefits
offered by the SDN architecture compared to traditional
networks, it is vulnerable to cyberattacks and faces new
possible threats that do not occur in the traditional networks of
today. SDN itself does not have security built-in [1, 2], and one
major issue that may hinder the widespread use of SDN is the
possibility of new assaults [3]. SDN characteristics, such as
network programmability and centralization control introduce
new fault and vulnerability, which open the doors for new
threats that did not exist before [4, 5]. In [6], seven potential
attack vectors against SDNs are listed. Three of these attacks
are specific to SDN networks [4, 7–9]. Authors in [10] argue
that SDN networks may be more susceptible to malicious
traffic than traditional environments due to the decoupling of

the control plane and data plane. A security breach in
conventional networks causes only minor damage to a small
portion of the network, whereas an attack on the SDN
controller might have catastrophic consequences for the entire
network [7-11]. The attacks target different parts of SDN, as
depicted in Figure 1. A countermeasure step to secure SDN is
using Intrusion Detection Systems (IDSs) due to their ability to
locate and identify malicious activity in the network by
examining network traffic in real time [12]. IDS is a tool,
which can be either in the form of software or hardware,
employed in a network system to observe and assess the
behavior of an individual computer or oversee and evaluate the
entire network traffic with the aim of distinguishing between
legitimate and malicious data flows. As shown in Figure 2,
there are two types of IDSs, signature-based and anomaly-
based. Signature-based systems are widely used commercially,
and malicious traffic can be detected based on the predefined
rule. The drawback of this type is that any change performed in
the attack signature, even if it is very small, the system will not
detect the attack making this type of system unable to detect
zero-day attacks [13].

Engineering, Technology & Applied Science Research Vol. 14, No. 2, 2024, 13190-13200 13191

www.etasr.com Khalid & Aldabagh: A Survey on the Latest Intrusion Detection Datasets for Software Defined …

Fig. 1. A taxonomy of SDN security.

Anomaly-based IDSs have attracted significant interest
from the academic community due to their capacity to detect
new and previously unknown attacks by pinpointing any
deviation from the typical traffic pattern. The source of data
that is inspected by the IDSs can be the whole data packet,
including packet headers and packet payload in packet-based
IDS in contrast to the flow-based IDS, which only analyzes the
basic information of the communication found in the packet
header. Authors in [14] argued that packet content features are
not directly accessible in OpenFlow protocol. The amount of
data analyzed by flow-based IDSs is less. Therefore, such
systems are faster and more computationally efficient than
packet-based systems [15]. It is important to note that a flow-
based approach is unable to detect attacks embedded in packet
payloads. Therefore, to provide a high level of security, both
approaches can be implemented together, forming a hybrid
method [15]. Deploying IDS in an SDN controller, contrary to
the distributed methodology used in traditional networks, not
only reduces the expense of purchasing more detection
equipment, but also improves detection efficiency due to the
centralized view of the controller and the easily obtained
statistical details for the IDS application [16]. Fortunately, the
centralization of the SDN makes the training of a machine and
Deep Learning (DL) based IDSs easier [17] and has become an
active area of research [18]. With the use of training data, IDSs
possess the ability to automatically learn and recognize patterns

from data [20] and the controller's visibility make the
deployment and training of AI-based IDSs easier [17]. These
IDSs have the ability to modify their behavior based on the
changing traffic patterns in the network, making them better
equipped to handle emerging security risks [18].

The quality of the detection mechanism depends on the
quality of the dataset used for training [20]. One major issue,
though, is the lack of high-quality datasets for network traffic
and intrusion detection. In various fields, like language
translation and computer vision, there are numerous high-
publicly accessible quality datasets. The main cause of the
intrusion detection domain's lack of publicly available datasets
is related to privacy and legal concerns [12]. It is important to
note that network data may include sensitive private customer
information, and sharing such data with the public would be
both unlawful and a breach of privacy. However, anomaly
detection in SDN is predicted using public IDS datasets, which
are gathered from conventional networks. It is argued [20], that
dataset incompatibility with the SDN environment creates false
predictions since the framework of SDN is different from the
traditional network.

In this survey, an overview of the current approaches that
apply DL and Machine Learning (ML) based IDSs in SDN
environment is provided. Recent works that used InSDN [21]
and the novel SDN-related dataset that was designed to capture
unique character attacks in SDN were reviewed.

Fig. 2. Taxonomy of IDSs.

II. DATASETS

Using a high-quality dataset for training AI-based IDSs has
a great impact on the accuracy of predictions. Only a few
datasets related to intrusion detection are publicly available.
The primary cause for the lack of publicly available datasets is
related to privacy and legal concerns since network data can
contain sensitive customer information [22]. However, some
available datasets were used for intrusion detection in
traditional networks, such as KDDcup99, NSL_KDD,
ISCX2012, CICIDS 2017, and CICIDS. KDDcup99 and its
revised version, NSL-KDD, are the most popular intrusion
detection datasets and are considered benchmarking datasets.
However, these datasets are unreliable and outdated, since they
were released more than two decades ago [4, 9]. Authors in
[16, 17] analyzed both datasets in the SDN context and found
that only six (6) features are needed over the 41 available in the
SDN environment. Some authors still use those datasets in their

Engineering, Technology & Applied Science Research Vol. 14, No. 2, 2024, 13190-13200 13192

www.etasr.com Khalid & Aldabagh: A Survey on the Latest Intrusion Detection Datasets for Software Defined …

work to predict the performance of new models or to compare
them to other datasets, but it is not recommended to use them
for real-time detection systems [16]. The ISCX2012 dataset
contains only two types of attack: DoS and brute force and
HTTP traffic is included as normal traffic, which is not the
current standard on the Internet today. Therefore, the dataset is
not suitable for modern evaluation. CICIDS 2017 is the
updated version of ISCX 2012. It involves a total of 2,830,743
instances, with 19.7% of the total data representing attacks
[20]. Those datasets are outdated, have a smaller number of
attacks, or are incompatible with the SDN environment [17].

In 2020, a new open-source dataset known as InSDN was
made publicly available to be used for the training and
evaluation of IDSs within the SDN context [23]. The
distribution of the 361,317 total samples in seven attack
categories x in the InSDN dataset are shown in Table I. The
normal class has 68,424 samples, while the attack class has
292,893 examples [20]. The dataset is split into three groups,
including attacks traffic targeting the Metasploitable Server 2
virtual machine as well as the OpenvSwitch (OVS) VM [17].
The normal traffic encompassed many application services,
entailing HTTPS, DNS, SSH, FTP, email, etc.

Authors in [7, 15] argue that most of the existing literature
views the intrusion detection challenge of SDN as similar to
that of a conventional network. Using outdated datasets to train
SDN-based IDSs can lead to severe problems, as they are only
capable of detecting attacks that exhibit identical behavior in
both SDN and traditional networks. The IP-traditional network
and SDN are significantly different in their operation.
Additionally, the protocols utilized in SDN are not the same as
those employed in conventional networks, like OpenFlow [7].
Similarly, new threats have surfaced as a result of the division
between the data plane and the control plane. The SDN
controller itself or the data communications may be the targets
of these assaults.

TABLE I. INSDN DATASET ATTACK CATEGORIES AND
DISTRIBUTION

Dataset
Normal traffic/

Attack traffic

Sample

number
Total %

Normal
FTP, DNS,

HTTPS
68424 68424 (19.9%)

 Attack Category

Metasploitable
2

DDoS 73529

136743 (39.76%)

Probe 61757

DoS 1145

Brute force attack 295

R2L 17

OVS

DoS 52471

138772 (40.34%)

DDoS 48413

Probe 36372

Brute force attack 1110

Web attack 192

Botnet 164

One example of a novel assault in a SDN environment is a
Distributed Denial of Service (DDoS) attack that specifically
aims at the SDN controller [24]. The OpenFlow switch will
forward the unmatched flow packets it receives to the SDN
controller as a packet-in message for additional analysis and

handling [20]. An attacker can send various packets with a
randomly spoofed destination address even if they do not have
to spoof the source address, which is done in traditional
networks. All traffic will be forwarded to the controller. The
latter will overwhelm it and lead to controller failure, which
eventually stops the entire network. Utilizing the InSDN
dataset for assessing the effectiveness of anomaly detection
models offers more precise outcomes, considering the types of
assaults in SDN differ from those often observed in traditional
networks. Thus, adopting such a dataset for model evaluation
in SDN can serve as a reliable indicator of actual world
circumstances. Furthermore, the InSDN dataset is free of any
duplicate entries, preventing the learner model from showing a
bias towards the most frequently occurring records [12].

III. CURRENT RESEARCH REVIEW

In this survey, existing work is deeply investigated using
the InSDN dataset as depicted in Table II. Authors in [25]
conducted an analysis of the InSDN dataset, considering all
attacks, and presented attack specific feature selection to
identify the features that have the greatest impact on anomaly
detection to reduce the execution time of the model while
maintaining high performance. They argue that because of
overfitting and redundant features, a large dataset with many
features will take longer for the detection model to execute and
might not improve accuracy. To lessen the unbalanced set, they
divided the dataset into six new ones, each of which contains
normal traffic with a single attack. They performed multiple
experiments using the SelectKBest feature selection algorithm
to rank the top 10 features for each attack. They found that for
all attacks, there were three common features in sequence:
duration, Fwd IAT Tot, and Bwd IAT Tot. According to the
experiment conducted, duration has the highest impact on all
attacks in the InSDN dataset except for the DDoS attack, where
Fwd IAT Tot was the most effective. This effectiveness may be
attributed to the fact that the victim device is flooded with a
huge number of requests as a consequence of the DDoS attack.
From the result, it has been observed that both DDoS and probe
attacks exhibit the same behavior in that the flow byte feature
was dropped suddenly during the attack. The reason behind this
behavior is that probe attacks usually scan the target system to
discover some information, which results in a very low flow
size measured in bytes per second. The normal flow bytes
decreased from 0.3332 to zero for DDOS and 0.0001 for
probes. However, their methodology of splitting into six
datasets means that each attack with a normal sample produces
overfitting when detecting attacks, such as botnets and web
attacks due to the imbalanced dataset, where the number of
samples in a normal traffic sample is much greater than those
attacks. Moreover, their work only considered selecting
important features for each attack and did not perform any
detection classification.

In the same direction, to improve the performance of IDS to
detect probe attacks more accurately, the Grey-Wolf Optimizer
(GWO) algorithm for feature selection was implemented in
[26]. The authors discussed the benefits of feature selection to
the overall detection model. They highlighted that feature
selection is essential in minimizing computation time, which
will make the classifier have high accuracy with optimal

Engineering, Technology & Applied Science Research Vol. 14, No. 2, 2024, 13190-13200 13193

www.etasr.com Khalid & Aldabagh: A Survey on the Latest Intrusion Detection Datasets for Software Defined …

features selected and decrease the dataset size for testing and
training. Moreover, for real-time detection, it is easier to extract
fewer features, thus decreasing the detection time. They
showed that by selecting a subset of 8 features using the
LightGBM classifier, accuracy increased to 99.8%, while when
using all features, it was 77.3%. Nevertheless, their topology
was the same as that of the creator of the dataset [21]. Authors
in [10] supported the fact that using many features could be
useful in detection accuracy, but it could lead to issues, such as
increased model complexity and training costs. Focus is given
on various attacks and the Hierarchical Multi-Class (HMC)
architecture is proposed to address the imbalance problem in
the InSDN dataset and improve the performance of minority
classes, like BFA, botnet, and web attacks. To boost the
amount of minority class samples, they use SMOTE sampling.
To detect abnormal traffic in SDN, they used many ML and
DL models, namely K-Nearest Neighbors (KNN), Naïve Bayes
(NB), Decision Tree (DT), Random Forest (RF), Adaboost,
Bagging, Radial Basis Function Support Vector Machine
(RBF-SVM), Linear Support Vector Machine (lin-SVM),
Multilayer Perceptron (MLP), Convolutional Neural Networks
(CNNs), Recurrent Neural Networks (RNNs), Long Short-
Term Memory (LSTM), and Gated Recurrent Unit (GRU).
Through the conducted experiments, they showed that DDoS,
DoS, and probes had good identification performance
compared to other attacks because of their majority in the
InSDN dataset. At each stage, they used binary classification
between the top major class, for instance, the normal traffic
class, and the remaining classes in the dataset. In the next stage,
after excluding the previous top class, the new top class, such
as DDoS, is compared to the rest, and so on. The process of
class excluding continues until all classes are filtered by binary
classification. Using this method, they improved the detection
accuracy of minority classes, like BFA, web attacks, and
botnets. However, their method of hierarchical multi-class
detection using binary classification at each stage leads to an
increase in detection time and computation. Moreover, they
implemented and verified their framework for DDoS attacks
only.

Some works that have been published have used a hybrid
method of ML with DL to improve performance. In [27], an
attack detection and mitigation module was proposed that
utilized a hybrid model of CNN and Extreme Learning
Machine (CNN-ELM) to classify DDoS attacks in an SDN
environment. Contrary to previous works, the authors
developed a mitigation mechanism along with a detection
module. Mitigation is done through IP traceback utilizing a
blacklist, which records the abnormal traffic detected by the
IDS. Their model detected DDoS attacks by using features
extracted from the SDN environment, which were provided by
packet-in messages toward the controller as well as the
statistics messages provided by OpenFlow switches to the
controller. A subset of 12 features from the InSDN dataset
were mapped to the OpenFlow switch's extracted features. In
addition, they considered four additional features, such as
average speed flow, average duration, average packet size, and
ratio asymmetric flow. Through the conducted experiments,
they demonstrated that using a subset of 12 features not only
increased accuracy, but also reduced test time. However, this

methodology creates overhead in the controller since every
packet-in message, which will not be effective during a DDoS
attack, should be checked. Moreover, there was no clear
description of how features extracted from packet-in messages.
Also, their methodology and the manually created four features
were not verified. Similarly, authors in [28], proposed the Deep
Convolutional Neural Network (DCNNs) to detect DDoS in
SDN. They suggest similar detection and mitigation
mechanisms but they used only the features provided by the
flow table through OpenFlow statistics messages, and those
messages were periodically sent to the controller for anomaly
detection. They mentioned that only 12 features of InSDN were
mapped to the extracted information from the OpenFlow
switch. They argue that the existing solutions engaging a large
number of features for ML or DL require more functions to
extract those features, which create network congestion and
latency. On the other hand, utilizing a small and limited
number of features does not provide reliable attack detection.
However, in practical implementation, they employed 78
features for training, not only 12, which makes it difficult to
map the basic features provided by OpenFlow switches to this
huge number. Furthermore, their methodology requires every
packet-in message to be checked by the controller, as well as to
periodically request statistics from the switch to create
overhead in the controller. Similar to previous work, there was
no clear description of how the features were extracted from
packet-in, while, also, they were not verified.

Authors in [29] examined many DL models, such as the
GRU, LSTM, and RNNs, in order to develop an IDS capable of
detecting DDoS attacks. They selected 48 features from the
InSDN dataset using the framework method described in [30]
to acquire the specific features related to SDN. LSTM provided
the best accuracy, but in terms of training time, RNN was the
most optimal. Nonetheless, they did not consider the
imbalanced dataset caused by minority classes when deploying
multi-class detection to prevent overfitting. Additionally, there
was no real-time classification; in their work, they only
considered analyzing DL models. In the same direction, authors
in [18] compared several ML models that have high
performance with less execution time, such as DT, RF, and
Adaboost, to determine the best candidate for the development
of ML-based IDS. They revealed that using the SelectKBest
function from scikit-learn, which selects relevant features,
reduced the number of features from 83 to 7 without
significantly degrading performance, while the execution time
was reduced rapidly from 10 to 0.5 s. However, as in [29], the
authors did consider an imbalanced dataset when using multi-
class detection to prevent overfitting.

Authors in [7] propose a hybrid DL approach that combines
CNN with RF, KNN, and SVM to classify network traffic.
While the aforementioned ML techniques handled the
categorization problem, authors employed CNN to extract more
complex representations of the data attributes. Most research
fails to take into account the impact of overfitting when putting
models into practice, which results in poor detection of zero-
day attacks. For this reason, a regularization method called SD-
Reg was implemented to deal with the overfitting issue. The
authors claimed that the imbalance in the InSDN dataset was
caused by the insufficient amount of samples for U2R, Web,

Engineering, Technology & Applied Science Research Vol. 14, No. 2, 2024, 13190-13200 13194

www.etasr.com Khalid & Aldabagh: A Survey on the Latest Intrusion Detection Datasets for Software Defined …

and botnet assault. Some attackers always focus on those
attacks since the detection models have false predictions about
them, or other researchers may ignore them. Thus, in the
training multi-classification process, they employed a
combination of the oversampling (SMOTE) and undersampling
approaches to eliminate randomly selected samples from the
majority class and duplicate samples from the minority class.
After performing several experiments, they showed that, using
softmax with the SD-Reg regularization technique combined
with CNN performed better than regularizations L1 and L2. In
the next experiment, they replaced softmax with ML
techniques, such as SVM, KNN, and RF to work with SD-Reg
regularization and for 48 features, compared to single CNN
models, CNN-SVM, CNN-KNN, and CNN-RF produced better
results for binary and multi-classification. For detecting
unknown attacks, for 9 attacks in the dataset, they conducted
several experiments with one attack removed from the training
set each time and then used for testing, and so on, for all
attacks.

Authors in [20] presented a DL model based on LSTM and
an autoencoder to detect DDoS attacks in SDN, with a limited
number of features to create a lightweight approach to reduce
the overhead of applying the detection model. They used
Information Gain (IG) and RF algorithms for feature selection
to analyze the most relevant feature to the DDoS attack. They
utilizedd the same dataset, once with 48 features and once with
only 10 features, and they showed that the accuracy does not
decrease greately. Their mechanisms include the flow
collection and extraction module, which uses OpenFlow
statistics messages to get necessary information from switch to
controller periodically following a fixed time interval. The
authors utilized CICFLOWMETER, which is a tool used for
datasets, such as InSDN, CICIDS 2017, and CICIDS 2018,
which extract 83 features from traffic flows. They argue that
not every CICFLOWMETER feature could be extracted for
usage in an SDN setting. Only through OpenFlow calls can the
SDN controller obtain statistical data from OpenFlow switches,
including flow duration, packet count, and byte count. Thus,
they employ the methodology of [30] to identify subfeatures
that may be readily retrieved, either directly from the SDN
controller, or by computing flow statistics, like the standard
deviation, mean, minimum, and maximum of flow features.
They conducted experiments and feature selection on three
different flow based datasets. It was observed that the subset of
selected features in the InSDN dataset is different from those in
CICIDS 2017 and CICID 2018, while many common features
were found between CICID 2017 and CICIDS 2018 because
they are from conventional environment. Traditional networks
and SDN platforms are not comparable due to their distinct
features and functionalities. Furthermore, the identification of
features varies as well as their prominence inside each network.
For instance, in a traditional network, flow duration refers to
the length of time for which the connection between a source
host and a destination host is active. In SDN, flow duration
refers to the amount of time that a flow entry remains in the
flow table of a switch. Hence, the "duration" attribute in SDN
is closely associated with DDoS attacks, as these attacks
involve the malicious flow remaining in the switch flow table
for a long time. They validated their claim and demonstrated

how performance decreases significantly when training with
one dataset and testing with another. This validation proves that
other datasets that were collected in traditional networks need
to be carefully deployed in the SDN network.

Authors in [31] developed an IDS using a hybrid model
utilizing an LSTM and CNN combination to extract temporal
and spatial information from input data. The accuracy was
96.32% for multi-classification in the InSDN dataset. To
overcome the overfitting problem, they used two regularization
methods: L2 Reg and dropout. They highlighted that to
improve the performance of CNN and detect new intrusions,
the overfitting must be reduced to increase accuracy. They used
attack samples in testing that were different from those in
training. Despite its high accuracy, the high false alarm
percentage of the hybrid model could prevent its deployment in
the production system. Moreover, the authors stated that their
model failed to provide an acceptable result for detecting new
attacks. Authors in [13] investigated a methodology to solve
the problem of unlabeled and unbalanced dataset. For anomaly
identification, they suggest a hybrid strategy based on an
LSTM autoencoder and One-Class Support Vector Machine
(OC-SVM). They used unsupervised training to solve the
problem of an unbalanced dataset by training with a normal
class. When there are anomalies, the model produces a
significant error because it is unable to identify and rebuild
anomaly instances. A threshold known as reconstruct error was
employed to distinguish between normal and anomalous data.
The shortcoming of OC-SVM, its low capability to work with
high-dimension datasets, is solved by combining it with the
LSTM autoencoder. The LSTM autoencoder model's data
output is reduced to a smaller dimension and then trained using
the OC-SVM algorithm to enhance the classification
performance. The outcomes of the experiment show that the
suggested model provides a higher detection rate. However,
they used binary classification with approximately 57,000
normal samples and randomly selected 46,000 samples from all
attacks. Combining all attacks in one category with a small
number of samples does not provide accurate attack detection,
since all attacks have different effective attributes. Moreover,
they removed socket features, such as source IP, destination IP,
flow ID, etc., only from the dataset to avoid the overfitting
problem. Using a large number of features does not solve the
issue; in fact, it increases the training and execution time,
making the real time implementation impossible.

Authors in [11] introduced a lightweight supervised
learning model to identify DDoS attacks targeting SDN
controllers using only one feature of fluctuation of flow, which
is the count of packet-in messages to the controller in a fixed
time slice and for many consecutive times to avoid the behavior
of a normal burst. They created their own dataset for the
proposed system, but for testing and training their model, they
used the InSDN dataset. The idea behind using only one feature
is that it will be easier to obtain while it consumes less time and
resources for training and real-time prediction. They
implemented a multiple ML model with seven selected features
of InSDN, which were flow-id, protocol, timestamp, flow-
pkt/s, bwd-pkt/s, pkt-len-mean, init-bwd, and win-byts. The
conducted experiment shows BT and KNN were the best in
terms of accuracy, while in terms of accuracy and training time,

Engineering, Technology & Applied Science Research Vol. 14, No. 2, 2024, 13190-13200 13195

www.etasr.com Khalid & Aldabagh: A Survey on the Latest Intrusion Detection Datasets for Software Defined …

CPU utilization, and decision time, KNN was the most optimal.
They tested their work using their own dataset and obtained an
accuracy of 99.4% with BT using one feature. It is argued that
employing many features will lead to either higher performance
or overfitting for some models. However, they did not mention
the methodology of feature selection and some of the selected
features, such as flow-id and timestamp, which can affect the
learning process during model training, leading to overfitting
were irrelevant. What is more, continuous checking of the
count of packet-in creates a load to the controller, and the
methodology of time slices causes a delay in decision time.
Ultimately, the technique loses potential because it assesses just
one feature to train the intrusion system.

A deep evaluation and analysis was performed in [17],
considering IDS implementation in the SDN network and
relevant datasets. The author claims that there is a lack of
research on IDS in SDN environments. Furthermore, most of
the current publication views the IDS issue in SDN similar to
that in conventional networks. Also, a significant number of
them depend on datasets that were created for conventional
networks. They presented novel evaluation work on the InSDN
dataset, such as the classification of single/multiple attacks
coming from different/same source of data, namely the OVS
dataset and Metasploitable 2. Unlike other published research,
this one considers training and testing using a single data
source. In addition, the importance of the AUC metric for
imbalanced dataset classification is highlighted. It was also
highlighted that the InSDN dataset is a high quality dataset
suitable for IDS in SDN and consists of identical attacks
originating from several sources, distinguishing it from former
datasets. Other researchers overlooked this particular point. The
author conducted several experiments analyzing a new dataset;
the same source of data was used for training and testing of
single attack detection, and the results were quite satisfactory.
However, when conducting the experiment again with different
sources for testing and training for single attack detection, the
results were good except for BFA and DoS, whose scores were
lower in the case of metasploitable server 2 used for training
and OVS for testing. It was mentioned that the reason is their
limited number of metasploitable server, which affects training.
The same problem arose for the probe when the training data
source was OVS and testing was conducted on Metasploitable
Server 2. Moreover, the experimental multi-classification
detection results with the same source for testing and training
were exceptional, but for different sources, there was
degradation in the performance, due to the existence of heavily
populated classes, such as DDoS. It is concluded that the
existing technique must be shifted to address the issue of
diverse data sources. U2R, botnet, and web attacks were
excluded from the analysis due to the limited sample number.

In another direction, some researchers developed ensemble
mechanisms to improve performance. Voting algorithms are
characterized by low errors and overfitting. When combining
multiple classifiers, they provide higher accuracy than a single
classifier. By combining NB, KNN, DT, and ET in the V-
NKDE ensemble classifier model, authors in [3] created a
technique for DDoS detection and mitigation. The voting
classifier's concept is to combine many ML algorithms and
predict the class label using either an average prediction

probability or a majority vote. Furthermore, their systems
consist of a collaborative module that notifies other controllers
about the attacks, a classifier module for detection, and a
mitigation module for blocking attacker ports. The reason
behind the collaborative module is that after blocking attacks,
there is a vast number of malicious flows in flow tables. These
flows are useless, but they waste the memory of the switch.
Collaborative modules clear flow tables from such flows. They
implement a data collector unit in the controller, which
periodically receives OpenFlow statistics messages from
OpenFlow switches to obtain details about flow in the flow
table. For attack detection, five tuple features in SDN have
been considered. To evaluate their model, they used 48 features
of InSDN for multi-class detection, with 99.84% accuracy. The
experiment showed that the real-time traffic classification
accuracy was 99.1% with 0.002 False Positive Rate (FPR).

IV. DISCUSSION

In this survey, a deep analysis was conducted for research
employing the InSDN dataset in the SDN environment. After
the InSDN dataset was published in 2020, many researchers
utilized this dataset during training and testing their models.
Among those works, 16 papers were selected. Most of the
existing works using InSDN reduced the number of features as
follows: 7 of the 16 works used less than 20 features, 6 of them
used 48 features [30], and two others used variations in the
number of features. The motive behind employing less features
was to eliminate overfitting and provide a lightweight intrusion
detection system. IG and SelectKBest were the most used
feature selection algorithms. Due to the importance of the SDN
controller and the fact that it is an attractive target for DDoS
attacks, as depicted in Digure 3, seven among the 16 existing
solutions performed binary classification and four of them were
specific for DDoS detection, one for probe attack detection,
and the remaining for classification between normal and
abnormal traffic. Various classifiers have been used in the
literature and it has been shown that RF was the most optimal.
Moreover, LSTM and CNN were often utilized in hybrid
classifiers, in combination with CNN achieving good results in
image processing due to its power of learning from spatial
features, while the power of LSTM resides in its ability to learn
from temporal correlations of network traffic that generate
times series data [32]. Additionally, LSTM performs better
with large datasets [33].

It is clearly illustrated in Figure 4, that among 16 works,
four only analyzed the dataset and did not perform any
mechanism for attack detection. The remaining 12 works
implemented IDS, 5 of them extracted features from OpenFlow
statistics messages, only 3 of them used packet-in messages for
feature extraction, whereas the remaining did not provide any
details about the feature extraction methods used.

Real-time detection is considered an important metric for
evaluating the intrusion detection mechanism in the real world
and online. However, among those works that deployed
intrusion mechanisms, only three of them provided real-time
detection. It is clear that real-time detection is not a
straightforward process due to the difficulty of getting the
required features in real-time and mapping them to dataset
features for feeding the classifier model.

Engineering, Technology & Applied Science Research Vol. 14, No. 2, 2024, 13190-13200 13196

www.etasr.com Khalid & Aldabagh: A Survey on the Latest Intrusion Detection Datasets for Software Defined …

Fig. 3. Binary and multiclass attack distribution in the literature.

Fig. 4. Feature extraction methods in SDN used in the literature.

The existing models for intrusion detection have several
drawbacks. One of them is overfitting, when the model's
accuracy is very high during model training, but its
performance decreases significantly when tested. This usually
happens when we use high-dimensional features. Increasing the
number of data samples is an optimal solution, but this method
is expensive and constrained by the availability of network
data, especially for network traffic. Among the reviewed
works, 9 of 16 reduced the feature dimensions using a feature
selection algorithm to reduce the effect of overfitting.
Removing socket information features, such as timestamp,
source IP, destination IP, flow ID, etc. to avoid the overfitting
problem as in [12] is not enough. Some other works [4, 27, 30]
apply regularization techniques to prevent overfitting.
Moreover, some authors used a voting algorithm that was
characterized by low error and low overfitting [3]. Another
problem is that class imbalance occurs when datasets result
from some minority attacks, such as U2R, botnet, and web
attacks. Some works did not consider solving this issue because
their models performed binary classification between normal
and abnormal or normal and attack traffic, namely DDoS and
probes [22-24]. Since these are considered majority classes,
they did not affect the performance. The effect of class

imbalance becomes unavoidable when performing multi-attack
classification. Some studies simply neglect minority class
attacks, while others use oversampling and undersampling
techniques to resolve this issue [10]. Another solution is to use
multi-class hierarchical binary classification [10, 15].

Most researchers only focus on providing detection,
neglecting mitigation. In the reviewed literature investigated,
only four studies provide mitigation. It is difficult and costly to
provide a successful protection mechanism, which is why a
mitigation mechanism is a favorable option. However, the
current work implementing mitigation uses a blocking port
mechanism.

V. OPEN ISSUES, CHALLENGES, AND FUTURE

RESEARCH DIRECTIONS

In the previous sections, existing solutions for deploying
AI-based IDS in an SDN environment were reviewed using the
recent novel SDN based dataset. However, in the literature,
several issues and challenges were found. In this section, the
constraints of the existing methods are identified and potential
research concepts to address these limitations are proposed.
Additionally, certain future research concerns and challenges
are highlighted.

A. Sampling Time Interval for IDS Traffic Monitoring

The IDS must be active all the time to recognize malicious
traffic; therefore, IDSs are required to continuously check the
traffic and extract features to feed to the detection module. A
widespread method for extracting features for AI-based
intrusion detection in SDN involves periodically sending
OpenFlow statistics messages from the data plane to the
controller and extracting the necessary features from the
response message. The definition of the time interval to collect
flow entries is of great importance. Long time intervals create a
delay in the detection of attacks and a reduction in the time
available for possible mitigation, allowing an excellent
opportunity for the attacker to damage the network. Moreover,
it would impose an enormous load on the controller and switch
due to the necessity of processing a large number of flows.
Conversely, if it is extremely short, the controller will
repeatedly engage the detection module, resulting in higher
computational costs, increased resource usage by the controller,
and increased communication between the controller and
switch, leading to bandwidth consumption. The impact of this
issue might be insignificant for a network of limited size.
However, with larger networks, the problem becomes more
severe. There is a need for a mechanism that selects an optimal
time interval or a method of invoking the detection mechanism
when needed.

B. Accuracy in Real-Time Detection

Previous studies on deploying intrusion IDS in SDN have
primarily concentrated on attaining high accuracy through the
utilization of novel ML and DL algorithms, or by employing
feature selection methods during offline training. There was no
clear implementation of real-time detection, and the accuracy
of the literature did not reflect reality, as it did not run in real-
time. Therefore, detecting attacks in real-time needs to be
considered by the research community.

Engineering, Technology & Applied Science Research Vol. 14, No. 2, 2024, 13190-13200 13197

www.etasr.com Khalid & Aldabagh: A Survey on the Latest Intrusion Detection Datasets for Software Defined …

TABLE II. VARIOUS RESEARCH WORKS USED INSDN DATASET

Reference [25] [26] [10] [27] [28] [29] [18] [11]

Year 2021 2022 2022 2022 2023 2021 2023 2022

Controller used N/A ONOS N/A Ryu Ryu N/A N/A N/A

Simulation environment N/A Mininet Estinet Mininet Mininet N/A N/A N/A

IDS x x x     

Dataset InSDN InSDN InSDN InSDN InSDN InSDN InSDN
InSDNand self-

generated

No. of features selected 10 8 20 12 78 48 7 7

Binary / Muti-class --- Binary Both Binary Binary Multi-class Multi-class Binary

Attack types --- Probe All DDOS DDOS All All DDOS

Classifier used

Only used

feature

selection

algorithms

LightGBM
Multi-stage Binary

Classification
CNN-ELM DCNN

LSTM, RNN,

GRU
DT, RF, Adaboost

Many

Classifier. The

best were BT

and KNN

Feature selection method SelectKBest GWO IG

Manually

selected by

author +
packet-in

Manually

selected by

author +
packet-in

Followed [30] SelectKBest N/A

Feature extraction

method
Not required N/A N/A

OFP_stats

message +

manually create

new feature +

packet-in

OFP_stats

message +

packet-in

N/A N/A

Count packet-in

for self-

generated

Dataset. Not

given for

InSDN

Topology X   X X X X 

Framework X X    X X 

Real-time detection

(deployment)
X X  X X X X 

Accuracy --- 99.80% 96%-99% 99.86% 99.90% 92% 99.80%

Self-generated

Dataset: 99.4%.

InSDN: 97% -

99%

Evaluation

metrics

Accuracy,

Recall,

Precision, F1-

score

F1-score

Accuracy,

Recall,

Precision, F1-

score, Test

time, Confusion

matrix

Accuracy,

Recall,

Precision, F1-

score, Loss rate,

Confusion

matrix

Accuracy,

Recall,

Precision, F1-

score, Training

time, AUC

Accuracy, Recall,

Precision, F1-

score, Execution

time

Accuracy,

Recall,

Precision, F1-

score, Training

time, Decision

time, CPU

utilization

Provide mitigation X X X   X X X

Overfitting

consideration
Not needed since few features were selected. N/A N/A

Not needed since few features were

selected.

Imbalance consideration N/A

No need to

consider

because the

binary

classification

between normal

and probes

Used Multi-Stage

Binary and

perform SMOTE

for botnet and

U2R

No need to

consider

because the

binary

classification

between normal

and DDOS

No need to

consider

because the

binary

classification

between normal

and DDOS

N/A N/A

No need to

consider

because the

binary

classification

between normal

and DDOS

Remarks

They only

analyze the

dataset to select

relevant

features. They

did not consider

the class

imbalance
between normal

and other

minority class

attacks, such as

botnets and web

attacks.

Topology of

[21] was

considered.

Real-time

implementation

and verification

are performed only

for DDOS. Their

method will lead

to an increase in
detection time and

computation due

to multi-class

binary

classification.

Four manually

created features

were not

verified. There

was no clear

methodology
for detecting

DDOS through

packet-in

messages.

Overfitting due

to the huge

number of

features. No

clear

methodology

for detecting
DDOS through

packet-in

messages. The

mechanism was

not verified.

They did not

consider

imbalanced

dataset and

overfitting. No

real-time

classification.

Only analyzed the

dataset and did not

provide details

about IDS

implementation.
Did not consider

an imbalanced

dataset.

Did not

mention the

feature

selection

methodology

and some of the

selected

features were

irrelevant.

Continuous

checking of the

count of packet-

ins creates a

load on the

controller.

Time-slice

methodology

delays

decisions.

Engineering, Technology & Applied Science Research Vol. 14, No. 2, 2024, 13190-13200 13198

www.etasr.com Khalid & Aldabagh: A Survey on the Latest Intrusion Detection Datasets for Software Defined …

Reference [17] [3] [7] [20] [31] [34] [12] [35]
Year 2021 2021 2021 2022 2021 2023 2020 2023

Controller used N/A Ryu N/A Ryu N/A N/A N/A N/A

Simulation

environment
N/A Mininet N/A N/A N/A N/A N/A N/A

IDS x X X     

Dataset InSDN InSDN

InSDN InSDN InSDN InSDN InSDN InSDN

No. of features selected N/A 48 5 48 9 48 10 48 48 78 9

Binary / Muti-class Both
Multi-

class
Binary Both Binary Multi-class

Binary then

multi-class
Binary Binary

Attack types All All DDOS All DDOS All All All All

Classifier used XGBoost V-NKDE
CNN-RF, CNN-SVM,

CNN-KNN
LSTM CNN-LSTM LSTM

LSTM-

autoencoder +

OC-SVM

RF, XGboost

Feature selection

method
N/A

Follows

[30]
Manually

selected
Follow [30]

PCA for 9

features

selected

Follows

[30]

IG and RF

for 10

features

selected

Follow [30] Not used Follows [7]

Feature extraction

method
Not required N/A

OFP_stats

message
Not required OFP_stats message N/A N/A N/A

OFP_stats

message

topology X  X X X X X X

Framework X  X  X X X X

Real-time detection

(deployment)
X  X X X X X X

accuracy N/A 99.84% 99.10% 97% - 99% 99.95% 96.32% 99.50% 90.50% 99.69%

Evaluation

metrics

AUC, confusion

matrix

Accuracy, Recall,

Precision, F1- score,

TPR, FPR

Accuracy, Recall,

Precision, F1- score, AUC,

Confusion matrix

Accuracy, Recall,

Precision, F1- score,

Execution time,

Throughput, Latency

Accuracy,

Recall,

Precision, F1

score, AUC,

Confusion

matrix

Accuracy,

Detection rate,

Precision, F1-

score, AUC

Accuracy,

Precision,

Recall, F1-

measure

Accuracy,

Precision,

Recall, F1-

score,

Confusion

matrix

Provide mitigation X  X  X X X X

Overfitting

consideration
N/A

Voting algorithms are

characterized by low

error and low

overfitting.

Not needed since few features were selected.
Regularization techniques to

solve the overfitting problem.

Only removed

socket

information.

Not needed

since only a

few features

were selected.

Imbalance

consideration
N/A N/A 

No need to consider due to

the binary classification

between normal and DDOS

N/A N/A N/A N/A

Remarks

Only analyzed

the dataset and

did not perform

any detection.

Did not mention

the number of

features selected

and using all

features without

removing

features and

socket

information such

as IP, port, and

MAC, lead to

overfitting. They

did not consider

an imbalanced

dataset.

They did not mention

how they trained their

model using five tuple

features.

Only analyzed the dataset.

Requires periodically

getting statistics from the

switch to the controller,

which creates a load on the

controller.

Using a huge

number of

features makes

the feature

extraction

process very

difficult and

the detection

time very long.

Using a huge

number of

features makes

the detection

time very long,

and feature

extraction

creates

overhead in an

IoT

environment

that is

characterized

by limited

resource

devices. No

real-time

implementation

.

The number of

randomly

selected

samples of all

attacks in one

category does

not provide

accurate

detection since

the attacks have

different

effective

attributes. Used

a huge number

of features,

which created

overfitting.

Using high-

dimensional

features

increases

training and

execution time,

making real

time

implementation

impossible.

Did not

consider an

imbalanced

class.

Methodology

of checking

OpenFlow

statistics

message

according to

limited number

of packets in

flow instead of

fix time

window create

overhead in the

controller.

C. Controller Resource Consumption by IDS

The controller is considered an optimal location for IDS
deployment to get the benefit of SDN features as well as
exploit the power of the controller [36]. Almost all works
implemented their IDS in SDN controllers, but less attention
was given to controller resources consumed by IDS. There
must be a deep investigation of the controller when network
size increases. Integrating IDS as a separate platform and
linking it to a controller helps alleviate the stress on the

controller [37]. Another solution is to implement a distributed
controller or dedicate a specific controller for implementing
IDS to migrate excessive traffic for checking to other
controllers for processing. However, those methods may
increase the time delay for detecting attacks.

D. Consideration of Other Attacks

The nature of the centralized controller of SDN, which is
considered the network brain, makes it an attractive target for

Engineering, Technology & Applied Science Research Vol. 14, No. 2, 2024, 13190-13200 13199

www.etasr.com Khalid & Aldabagh: A Survey on the Latest Intrusion Detection Datasets for Software Defined …

DDoS attacks. As a result, many studies of intrusion detection
in SDN environments were concerned with DDoS only. The
detection procedure needs to be flexible enough to
accommodate the additional attack types that the literature has
overlooked, such as probe attacks, which have a different
methodology of work in SDN from traditional networks.
Furthermore, there is a lack of studies considering DDoS
attacks targeting OpenFlow switches. Due to the limited
memory size of flow tables, attackers can send a burst of forged
source packets. The switch will then forward those packets to
the controller for decision. After the decision is made by the
controller, the rules for those packets are specified and
forwarded to the switch. The flow tables in the OpenFlow
switch will be unable to store all the fake flow rules.
Consequently, the flow table will soon fill up, and the
transmission of legitimate traffic will stop.

E. Attack Early Detection

Many research works have developed different high
accuracy models, including hybrid, ensemble, etc. These
complex models require additional time to detect attacks [38].
Quick identification of an intrusion is crucial, as it enables the
initiation of mitigation actions at an earlier stage.

F. Other Methods for Attack Mitigation

The existing solution for attack mitigation in the literature
is blocking the attacker port, ignoring the impact the attack
caused, and still exist in the network. Performance can be
harmed by blocking assaults without taking into account the
malicious flow entries that are stored in the switch flow table.
When attacks start, there are some useless flow rules installed
based on the attacker's behavior, which consume switch
resources until they are removed. In addition to the blocking
mechanism, there must be other methods used to store the
attacker's behavior, which might be helpful in the future for
analysis or reference. In this direction, instead of blocking the
attacker port, redirecting the malicious traffic to honeypot or
mirroring the flow to a deep packet inspector to further analyze
the flow is a probable suitable action.

G. Socket Information and Overfitting

Using socket information, such as IP, port, MAC, etc. as
direct features [10], leads to overfitting, which has an effect on
model prediction. However, it is worth noting that it is a good
future direction for researchers employing entropy to measure
the distribution of those values for model training or creating
other features, namely speed of source IP, standard deviation of
flow packets, and standard deviation of flow bytes.

VI. CONCLUSION

SDN features, like flexibility, programmable networks, and
dynamic management, successfully resolve the drawbacks of
the former network. However, security issues arise because
SDN lacks built-in security, and their architecture produces
additional security concerns due to the decoupling of data and
controller planes. Therefore, implementing intrusion detection
in SDN has become a hot topic for the research community to
consider in SDN security issues. In this survey, an emphasis
was placed on the SDN architecture as a suitable platform for
deploying AI-based IDSs to monitor networks and detect

threats. Since the efficiency of AI-based intrusion detection
depends on the quality of the dataset, a review of InSDN, a new
SDN dataset that was collected in an SDN environment, was
conducted. Moreover, various research works that used this
dataset for intrusion detection development were outlined while
their strengths and weaknesses were highlighted. Related
research challenges and issues were briefly analyzed and
examined. In addition, hypotheses for solving some of those
open challenges are provided. There is a strong belief that this
survey will help and guide the researchers who aim to develop
AI-based IDS solutions in the SDN context.

REFERENCES

[1] L. Kou, S. Ding, T. Wu, W. Dong, and Y. Yin, "An Intrusion Detection
Model for Drone Communication Network in SDN Environment,"
Drones, vol. 6, no. 11, Nov. 2022, Art. no. 342, https://doi.org/
10.3390/drones6110342.

[2] H. Y. I. Khalid, P. M. Ismael, and A. B. Al-Khalil, "Efficient
Mechanism for Securing Software Defined Network against Arp
Spoofing Attack," The Journal of Duhok University, vol. 22, no. 1, pp.
124–131, Nov. 2019, https://doi.org/10.26682/sjuod.2019.22.1.14.

[3] O. E. Tayfour and M. N. Marsono, "Collaborative detection and
mitigation of DDoS in software-defined networks," The Journal of
Supercomputing, vol. 77, no. 11, pp. 13166–13190, Nov. 2021,
https://doi.org/10.1007/s11227-021-03782-9.

[4] T. A. Tang, D. McLernon, L. Mhamdi, S. A. R. Zaidi, and M. Ghogho,
"Intrusion Detection in SDN-Based Networks: Deep Recurrent Neural
Network Approach," in Deep Learning Applications for Cyber Security,
M. Alazab and M. Tang, Eds. New York, NY, USA: Springer, 2019, pp.
175–195.

[5] H. Y. Ibrahim, P. M. Ismael, A. A. Albabawat, and A. B. Al-Khalil, "A
Secure Mechanism to Prevent ARP Spoofing and ARP Broadcasting in
SDN," in International Conference on Computer Science and Software
Engineering, Duhok, Iraq, Apr. 2020, pp. 13–19,
https://doi.org/10.1109/CSASE48920.2020.9142092.

[6] D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, C. E. Rothenberg, S.
Azodolmolky, and S. Uhlig, "Software-Defined Networking: A
Comprehensive Survey," Proceedings of the IEEE, vol. 103, no. 1, pp.
14–76, Jan. 2015, https://doi.org/10.1109/JPROC.2014.2371999.

[7] M. S. ElSayed, N.-A. Le-Khac, M. A. Albahar, and A. Jurcut, "A novel
hybrid model for intrusion detection systems in SDNs based on CNN
and a new regularization technique," Journal of Network and Computer
Applications, vol. 191, Oct. 2021, Art. no. 103160, https://doi.org/
10.1016/j.jnca.2021.103160.

[8] G. Logeswari, S. Bose, and T. Anitha, "An Intrusion Detection System
for SDN Using Machine Learning," Intelligent Automation & Soft
Computing, vol. 35, no. 1, pp. 867–880, 2023, https://doi.org/10.32604/
iasc.2023.026769.

[9] T. A. Tang, L. Mhamdi, D. McLernon, S. A. R. Zaidi, and M. Ghogho,
"Deep learning approach for Network Intrusion Detection in Software
Defined Networking," in International Conference on Wireless Networks
and Mobile Communications, Fez, Morocco, Oct. 2016, pp. 258–263,
https://doi.org/10.1109/WINCOM.2016.7777224.

[10] H.-M. Chuang, F. Liu, and C.-H. Tsai, "Early Detection of Abnormal
Attacks in Software-Defined Networking Using Machine Learning
Approaches," Symmetry, vol. 14, no. 6, Jun. 2022, Art. no. 1178,
https://doi.org/10.3390/sym14061178.

[11] S. Wang et al., "Detecting flooding DDoS attacks in software defined
networks using supervised learning techniques," Engineering Science
and Technology, an International Journal, vol. 35, Nov. 2022, Art. no.
101176, https://doi.org/10.1016/j.jestch.2022.101176.

[12] M. Said Elsayed, N.-A. Le-Khac, S. Dev, and A. D. Jurcut, "Network
Anomaly Detection Using LSTM Based Autoencoder," in 16th ACM
Symposium on QoS and Security for Wireless and Mobile Networks,
Alicante, Spain, Nov. 2020, pp. 37–45, https://doi.org/10.1145/
3416013.3426457.

Engineering, Technology & Applied Science Research Vol. 14, No. 2, 2024, 13190-13200 13200

www.etasr.com Khalid & Aldabagh: A Survey on the Latest Intrusion Detection Datasets for Software Defined …

[13] N. A. Alsharif, S. Mishra, and M. Alshehri, "IDS in IoT using
Machine Learning and Blockchain," Engineering, Technology & Applied
Science Research, vol. 13, no. 4, pp. 11197–11203, Aug. 2023,
https://doi.org/10.48084/etasr.5992.

[14] A. D. Althobiti, R. M. Almohayawi, and O. O. Bamsag, "Machine
Learning approach to Secure Software Defined Network: Machine
Learning and Artificial Intelligence," in 4th International Conference on
Future Networks and Distributed Systems, Saint Petersburg, Russian,
Nov. 2020, pp. 1–8, https://doi.org/10.1145/3440749.3442597.

[15] M. Latah and L. Toker, "An efficient flow-based multi-level hybrid
intrusion detection system for software-defined networks," CCF
Transactions on Networking, vol. 3, no. 3, pp. 261–271, Dec. 2020,
https://doi.org/10.1007/s42045-020-00040-z.

[16] E. M. Zeleke, H. M. Melaku, and F. G. Mengistu, "Efficient Intrusion
Detection System for SDN Orchestrated Internet of Things," Journal of
Computer Networks and Communications, vol. 2021, Nov. 2021, Art.
no. e5593214, https://doi.org/10.1155/2021/5593214.

[17] Q.-V. Dang, "Intrusion Detection in Software-Defined Networks," in
Future Data and Security Engineering, Nov. 2021, pp. 356–371,
https://doi.org/10.1007/978-3-030-91387-8_23.

[18] A. Mzibri, R. Benaini, and M. B. Mamoun, "Case Study
on the Performance of ML-Based Network Intrusion Detection Systems
in SDN," in International Conference on Networked Systems, Benguerir,
Morocco, Dec. 2023, pp. 90–95, https://doi.org/10.1007/978-3-031-
37765-5_7.

[19] S. Singh and S. Banerjee, "Machine Learning Mechanisms for Network
Anomaly Detection System: A Review," in International Conference on
Communication and Signal Processing, Chennai, India, Jul. 2020, pp.
976–980, https://doi.org/10.1109/ICCSP48568.2020.9182197.

[20] M. S. E. Sayed, N.-A. Le-Khac, M. A. Azer, and A. D. Jurcut, "A Flow-
Based Anomaly Detection Approach With Feature Selection Method
Against DDoS Attacks in SDNs," IEEE Transactions on Cognitive
Communications and Networking, vol. 8, no. 4, pp. 1862–1880, Sep.
2022, https://doi.org/10.1109/TCCN.2022.3186331.

[21] M. S. Elsayed, N.-A. Le-Khac, and A. D. Jurcut, "InSDN: A Novel SDN
Intrusion Dataset," IEEE Access, vol. 8, pp. 165263–165284, 2020,
https://doi.org/10.1109/ACCESS.2020.3022633.

[22] M. Ring, S. Wunderlich, D. Scheuring, D. Landes, and A. Hotho, "A
survey of network-based intrusion detection data sets," Computers &
Security, vol. 86, pp. 147–167, Sep. 2019, https://doi.org/10.1016/j.cose.
2019.06.005.

[23] "Index of /datasets/SDN." https://aseados.ucd.ie/datasets/SDN/.

[24] M. H. H. Khairi, S. H. S. Ariffin, N. M. A. Latiff, A. S. Abdullah, and
M. K. Hassan, "A Review of Anomaly Detection Techniques and
Distributed Denial of Service (DDoS) on Software Defined Network
(SDN)," Engineering, Technology & Applied Science Research, vol. 8,
no. 2, pp. 2724–2730, Apr. 2018, https://doi.org/10.48084/etasr.1840.

[25] N. Abbas, Y. Nasser, M. Shehab, and S. Sharafeddine, "Attack-Specific
Feature Selection for Anomaly Detection in Software-Defined
Networks," in 3rd IEEE Middle East and North Africa COMMunications
Conference, Agadir, Morocco, Dec. 2021, pp. 142–146,
https://doi.org/10.1109/MENACOMM50742.2021.9678279.

[26] A. Almazyad, L. Halman, and A. Alsaeed, "Probe Attack Detection
Using an Improved Intrusion Detection System," Computers, Materials
& Continua, vol. 74, no. 3, pp. 4769–4784, 2023, https://doi.org/
10.32604/cmc.2023.033382.

[27] J. Wang and L. Wang, "SDN-Defend: A Lightweight Online Attack
Detection and Mitigation System for DDoS Attacks in SDN," Sensors,
vol. 22, no. 21, Jan. 2022, Art. no. 8287, https://doi.org/10.3390/
s22218287.

[28] V. Hnamte and J. Hussain, "An efficient DDoS attack detection
mechanism in SDN environment," International Journal of Information
Technology, vol. 15, no. 5, pp. 2623–2636, Jun. 2023, https://doi.org/
10.1007/s41870-023-01332-5.

[29] A. S. Alshra’a, A. Farhat, and J. Seitz, "Deep Learning Algorithms for
Detecting Denial of Service Attacks in Software-Defined Networks,"
Procedia Computer Science, vol. 191, pp. 254–263, Jan. 2021,
https://doi.org/10.1016/j.procs.2021.07.032.

[30] P. Krishnan, S. Duttagupta, and K. Achuthan, "VARMAN: Multi-plane
security framework for software defined networks," Computer
Communications, vol. 148, pp. 215–239, Dec. 2019, https://doi.org/10.
1016/j.comcom.2019.09.014.

[31] M. Abdallah, N. An Le Khac, H. Jahromi, and A. Delia Jurcut, "A
Hybrid CNN-LSTM Based Approach for Anomaly Detection Systems in
SDNs," in 16th International Conference on Availability, Reliability and
Security, Vienna, Austria, Aug. 2021, pp. 1–7, https://doi.org/10.1145/
3465481.3469190.

[32] O. M. Ahmed, L. M. Haji, A. M. Ahmed, and N. M. Salih, "Bitcoin
Price Prediction using the Hybrid Convolutional Recurrent Model
Architecture," Engineering, Technology & Applied Science Research,
vol. 13, no. 5, pp. 11735–11738, Oct. 2023, https://doi.org/10.48084/
etasr.6223.

[33] R. Alsulami, B. Alqarni, R. Alshomrani, F. Mashat, and T. Gazdar, "IoT
Protocol-Enabled IDS based on Machine Learning," Engineering,
Technology & Applied Science Research, vol. 13, no. 6, pp. 12373–
12380, Dec. 2023, https://doi.org/10.48084/etasr.6421.

[34] R. A. Elsayed, R. A. Hamada, M. I. Abdalla, and S. A. Elsaid, "Securing
IoT and SDN systems using deep-learning based automatic intrusion
detection," Ain Shams Engineering Journal, vol. 14, no. 10, Oct. 2023,
Art. no. 102211, https://doi.org/10.1016/j.asej.2023.102211.

[35] M. S. Towhid and N. Shahriar, "Early Detection of Intrusion in SDN," in
IEEE/IFIP Network Operations and Management Symposium, Miami,
FL, USA, Dec. 2023, pp. 1–6, https://doi.org/10.1109/NOMS56928.
2023.10154272.

[36] A. Abubakar and B. Pranggono, "Machine learning based intrusion
detection system for software defined networks," in Seventh
International Conference on Emerging Security Technologies,
Canterbury, UK, Sep. 2017, pp. 138–143, https://doi.org/10.1109/
EST.2017.8090413.

[37] S. Kumar et al., "DDoS Detection in SDN using Machine Learning
Techniques," Computers, Materials & Continua, vol. 71, no. 1, pp. 771–
789, 2022, https://doi.org/10.32604/cmc.2022.021669.

[38] A. O. Alzahrani and M. J. F. Alenazi, "Designing a Network Intrusion
Detection System Based on Machine Learning for Software Defined
Networks," Future Internet, vol. 13, no. 5, May 2021, Art. no. 111,
https://doi.org/10.3390/fi13050111.

