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ABSTRACT 

In medical imaging, precise recognition of Breast Cancer (BC) is a challenge due to the complications of 

breast tissues. Histopathological detection is still considered the standard in BC detection. Still, the 

dramatic increase in workload and the complexity of histopathological image (HPI) make this task labor-

intensive and dependent on the pathologist, making the advance of automated and precise HPI analysis 

techniques needed. Due to the automated feature extraction capability, Deep Learning (DL) methods have 

been effectively used in different sectors, particularly in the medical imaging sector. This study develops 

the future search algorithm with a DL-based breast cancer detection and classification (FSADL-BCDC) 

method. The FSADL-BCDC technique examines HPIs to detect and classify BC. To achieve this, the 

FSADL-BCDC technique implements Wiener Filtering (WF)-based preprocessing to eliminate the noise in 

the images. Additionally, the FSADL-BCDC uses the ResNeXt method for feature extraction with a Future 

Search Algorithm (FSA)-based tuning procedure. For BCDC, the FSADL-BCDC technique employs a 

Hybrid Convolutional Neural Network along with the Long Short-Term Memory (HCNN-LSTM) 

approach. Finally, the Sunflower Optimization (SFO) approach adjusts the hyperparameter values of the 

HCNN-LSTM. The outcomes of the FSADL-BCDC are inspected on a standard medical image dataset. 

Extensive relational studies highlighted the improved performance of the FSADL-BCDC approach in 

comparison with known methods by exhibiting an output of 96.94% and 98.69% under diverse datasets. 

Keywords-deep learning; breast cancer; future search algorithm; histopathological images; computer-aided 

diagnosis 

I. INTRODUCTION  

Amongst the many kinds of cancer, Breast Cancer (BC) is 
ranked second among women. Moreover, the death rate of BC 
is comparatively higher than that of other cancer types [1]. The 
analysis of Histopathological Images (HPIs) is the most 
frequently employed technique for the diagnosis of BC in 
healthcare. In HPI analysis, the most significant task is 
classification [2]. The precise and automatic classification of 
high-resolution HPIs is the bottleneck and cornerstone of other 
in-depth studies like gland segmentation, nuclei localization, 
and mitosis detection [3]. Presently, histopathological imaging 
in medical practice mostly depends on manual analysis. But, at 
least three issues arise from this approach. At first, the possible 
lack of pathologists, especially in small hospitals and less 
developed areas [4]. This unbalanced distribution and resource 
shortage becomes a critical issue to be solved. Secondly, 
whether the histopathologic diagnosis is incorrect or correct 

relies on the long-term gathered diagnostic experience and 
professional knowledge of the given individual pathologist. 
This subjectivity has caused the growth of diagnostic 
inconsistencies [5]. Finally, the difficulty of the task makes 
pathologists liable to inattention and fatigue and so, keener to 
mistakes. Due to the similarity in features and irregular 
appearance between malignant and benign lesions, manual 
diagnosis is imprecise and difficult. To sort out such problems, 
it is vital to be precise and develop automatic HPI analytical 
approaches, namely classifier approaches. Computer-assisted 
diagnostic methods extract features from the nuclei to offer 
significant data to diagnose a lesion, either malignant or benign 
[6]. There are various clustering techniques and statistical 
approaches to extract features, classify, or segment nuclei [7]. 
In medical image diagnosis, there are several rapidly evolving 
techniques to classify HPIs, but there is still the need for more 
effective diagnosis. Complicated image-processing phases such 
as feature extraction, preprocessing, and segmentation are a 
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reason for low diagnostic accuracy. Hence, to sort out the 
Machine Learning (ML) problem, Deep Learning (DL) is 
presented to abstract the related attributes of the input raw 
images and utilize them for classification with more precision 
[8]. In DL, features are extracted through convolutional layers 
and assembly layers denoting more precision [9]. Currently, 
Convolutional Neural Networks (CNNs) are utilized to classify 
biomedical images. CNN works very well with huge datasets 
and is less precise on small datasets [10]. In small datasets, pre-
trained CNNs are usually utilized.  

This study introduces an innovative approach termed as 
Future Search Algorithm with DL-based Breast Cancer 
Detection and Classification (FSADL-BCDC). This technique 
incorporates several components to enhance its performance. 
At first, the FSADL-BCDC method employs Wiener Filtering 
(WF) as a pre-processing procedure for effective noise 
removal. Additionally, it leverages the ResNeXt model for 
feature extraction, optimizing hyperparameters using the FSA 
technique. For BCDC, the FSADL-BCDC method utilizes a 
Gybrid CNN with the Long Short-Term Memory (HCNN-
LSTM) approach. To further fine-tune the HCNN-LSTM 
approach, the Sunflower Optimization (SFO) technique is 
employed for adjusting the hyperparameter values. The 
efficiency of the FSADL-BCDC technique is validated through 
experiments conducted on a well-established benchmark 
medical image dataset. 

II. RELATED WORK 

This section presents a short overview of recently 
developed BC classification models on HPIs. Authors in [11] 
developed a new CNN structure for classifying malignant and 
benign BC HPIs. Authors in [12] developed the AOADL-
HBCC approach for making decisions. This approach uses 
noise removal depending on a contrast enhancement process 
and median filtering. Authors in [13] devised a BC-HPI 
classification that depends on deep FE-BkCapsNet to make full 
use of CapsNet and CNNs. Authors in [14] developed an 
automatic technique for diagnosing BC from HPIs. In this 
method, a residual learning-related 152-layered CNN termed 
ResHist was devised for classification. Authors in [15] applied 
ShuffleNet, Deep Neural Networks (DNNs), InceptionV3, and 
ResNet18 for the binary classification of BC in HPIs. They 
utilized pre-trained networks on the ImageNet dataset with 
layers given training on HPIs from BreakHis. In [16], a new 
technique depending on the Convolution-LSTM (CLSTM), 
with utilizing the Marker-controlled Watershed Segmentation 
Algorithm (MWSA) for preprocessing and SVM detection, was 
proposed. Authors in [17] focused on BC HPIs attained taking 
the assistance of the microscopic scan of breast tissues. The 
model joined two DCNNs to derive differentiated image 
aspects by employing TL. Authors in [18] introduced a 
frequency domain learning technique that relies on CNN and 
DWT for the classification task of BC HPIs. In [19], an 
enhanced model, IBESSDL-BCHI, was introduced for BC 
recognition by employing HPIs. The approach incorporates 
MF, Synergic DL (SDL), and LSTM techniques for 
preprocessing, tuning, and classification. Authors in [20] 
proposed the innovative HRLCE approach with two processing 
stages. Their method, the SAE-PSO-DNN model, combines 

Particle Swarm Optimization (PSO) and Stacked Autoencoders 
(SAE) within a DNN framework. 

III. THE PROPOSED MODEL 

This article focuses on the design and development of the 
FSADL-BCDC approach for detecting and classifying BC. The 
main intention of the FSADL-BCDC method is to investigate 
HPIs in order to detect and classify BC. In the FSADL-BCDC 
method, the majorly involved procedures are WF-based 
preprocessing, ResNeXt feature extractor, FSA-based tuning, 
HCNN-LSTM classification, and SFO-based optimization. 
Figure 1 depicts the complete procedure of the FSADL-BCDC 
method. 

 

 

Fig. 1.  The overall process of the FSADL-BCDC approach. 

A. Pre-processing  

To eliminate noise from the input image, the WF technique 
is employed, functioning in the frequency domain of the image. 
The WF computes the Fourier transform of the image and the 
power spectrum of the noise, using a filter to reduce noise 
across all frequency components while preserving essential 
image details. In image processing, the WF curtails the mean 
squared error amid the original and filtered images, with 
adjustable filter parameters influencing performance, 
contingent on the accuracy of the assessed power spectrum of 
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the noise. Its efficacy in signal processing lies in minimizing 
mean square error, offering optimal linear estimation amidst 
noise, and its adaptability to diverse signal and noise 
characteristics renders it advantageous in specific applications. 

B. Feature Extraction 

ResNeXt method, an enhanced version of ResNet, is used 
for the extracting process. The parallel stacking block with a 
similar topology was utilized instead of the 3‐layer convolution 
block [21]. The ResNeXt network consists of 4 ResNeXt block 
structures, namely 1 convolutional layer, 1 FC layer, 2 pooling 
layers, and 1 softmax classifier. Deep residual networking had 
cardinality and was composed of ResNeXt blocks. The leftover 
block can be changed by the split-transform-merge approach 
that results in branch routes within a cell. By the path of the 
skip connection, the output can be defined as: 

�� = � + ∑ ��
	

��� 
��    (1) 

where �� , �� , �� , and �  denote  the arbitrary conversion, 
cardinality, and the earlier layer’s output and input. 

Every ResNeXt block has 3 convolutional layers and a 
shortcut connection. The 3 dissimilar kinds of convolution 
layers are convolution, group convolution, and convolution in 
series. Except for the final convolution layer, ReLU function is 
used to improve the network’s non-linearity after the 
convolution layer. The ResNeXt block’s group convolution 
stride is 2. Maxpooling is used to achieve spatial invariance and 
accelerate training while maintaining accuracy. The essential 
idea behind  max -pooling was selecting the discriminatory 
features and representing a bunch of features. 

��,�
�,� = max�∈[�,����],!∈[�,!���]
" + #�, 
$ + %� 
& − 1�, ) (2) 

where, #�, %�  denote the size of kernels, and ) is the index of 
the mapping features at the 
&—l)

th
 convolutional layer. The 

softmax classifier is utilized to implement the last 
classification. The early layers of the ResNeXt models capture 
simple features like edges, corners, and color gradients. The 
intermediate layers learn more complex features like shapes, 
textures, and object parts. The deeper layers can represent high-
level semantic concepts and objects specific to the classes 
present in the ImageNet dataset. 

C. Hyperparameter Tuning 

In this work, the FSA optimizes the hyperparameter values 
in the ResNeXt approach by simulating optimal lifestyles for 
individuals, mapping this concept to the selection process of 
ResNeXt's hyperparameters. Employing a mathematical 
formula, the FSA enhances the initial random parameters 
through a global search among successful individuals and a 
local search within the population [22]. The FSA can be 
generated dependent upon mathematical formulas and begins 
phases depending on random solutions: 

*
&, : � = ), + 
-, − ),� × rand
1, 2�  (3) 

where *
&, : �  denotes the ith
 solution, ),  and -,  signify the 

lower and upper boundaries, and rand  implies the uniform 
distribution of a d-dimensional pseudorandom number. 

Every solution is realized as the local (LS) and global (GS), 
solutions. Afterwards, this technique begins its iterations for 
determining the optimum solution. Primary, the search 
procedure in FSA is dependent upon the LS to assist the 
characteristics of exploitation. 

*
&, : �� = 
)*
&, : � − *
&, : �� × rand     (4) 

The search procedure of FSA in the search scope is 
dependent upon GS assisting the exploitation feature: 

*
&, : �3 = 
4* − *
&, : �� × rand    (5) 

After estimating the local and global convergence, all the 
solutions are upgraded as: 

*
&, : � = *
&, : � + *
&, : �� + *
&, : �3  (6) 

This technique upgrades 4* and )*, and every solution is 
upgraded as: 

*
&, : � = 4* + 54* − *
&, : �6 × rand   (7) 

Lastly, the FSA will check the GS and LS and will update 
them if there are better solutions. The iterative procedure of 
FSA is projected as follows:  

 Step 1. Arbitrarily determine the primary size of population, 
the main function, and its searching space. Fix the maximal 
iteration count Max. Set 7 = 1. Define the upper and lower 
limitations. Compute the primary 4*  and the primary )*. 
Initialize by (3). 

 Step 2. The search process is dependent on LS in (4) and the 
global search is dependent on GS in (5). Calculate the local 
and global convergences. The outcome is determined in (6). 

 Step 3. Relate the Fitness Function (FF) values of every 
possible solution to determine the 4*  and )*  from the 
present generation. Compare the present 4*  and )*  with 
the preceding values and upgrade if necessary. Upgrade the 
arbitrary primary (7). 

 Step 4. Compute 7 = 7 + 1. See if 7 = Max. If no, then go 
to Step 2. Else, stop and provide the resulting outcome. 

D. Image Classification: The Optimal HCNN-LSTM Model 

Finally, BC classification takes place using the HCNN-
LSTM approach. The LSTM mostly overcomes the problems 
of gradient vanishing as a Recurrent Neural Network (RNN) 
variant, making the network more reliable and remembering 
the content for a long period. LSTM can be capable of 
removing or maximizing data [23]. LSTM consists of output, 
input, and forget gates, which are used for providing reset, 
read, and write functions. 29�� shows the prior output of the 
model, :9  indicates the existing input used for producing novel 
memory, ;9�� denotes the prior cell state from the model, and 
the output data encompass the cell state ;9  and the newest 
output 29 .  A large amount of data will be flooding the memory 
once the input gate is opened. So, a forget gate is added for 
removing these data. Given :9  (existing input) and 29�� (prior 
output), a number between 0 and 1 is acquired for all the digits 
at the cell state ;9�� (prior state), where 0 signifies completely 
discarded, and 1 indicates completely reserved: 



Engineering, Technology & Applied Science Research Vol. 14, No. 1, 2024, 12831-12836 12834  
 

www.etasr.com Gurumoorthy & Kamarasan: Breast Cancer Classification from Histopathological Images using Future … 

 

=9 = Sigmoid5BC[29��, "9] + ,C6  (8) 

In (8),  ,C  indicates the bias term, BC  shows the weight 

matrix, and the resultant value through this networking lies 
inside [0, 1], which shows that the prior cell state probability 
has been forgotten, 1 is "fully saved" and 0  is "completely 
deleted". 

After circulating NN’s forget part of the prior state, the 
LSTM’s input gate needs to add the new memory from the 
present input. This procedure should be satisfied by the input 
gate, which includes two segments, namely a sigmoid layer that 
defines which value must be renewed and a tanh layer that 

decides a new candidate vector ;9D  increased to this state: 

ℎ9 = F
B! ⋅ [29��, :9] + ,%�   (9) 

;H9 = tanh 
BK ⋅ [29��, :9] + ,#�  (10) 

;9 = =9 × ;9�� + ℎ9 × ;H9   (11) 

where B!, ,�, ℎ9, ;9 , and WM portray the weighted matrix, the 
bias item to update state, the input gate, the upgraded memory 
unit state, and the weighted matrix to upgrade the layer. Ct 
takes the dot product of the forget gate =9  with ;9��  for 

determining if it remembers its value, ℎ9  and ;9D  determine 
whether to upgrade ;9 , and ,! symbolizes the biased item. The 
output gate decides the present, the newest, and the final 
output. The LSTM’s resulting gate is the outcome of the 
present moment that should be produced after evaluating the 
newest state: 

2L = 09 ×  tanh 
;9�    (12) 

09 = F
BMN[29��, "9] + ,N�   (13) 

where 29 is correlated to ;9  and to the input "9 at the t time step 
and the hidden layer’s value of activation 29��  at the prior 
time-step. The sigmoid function is used to attain �9  within 
[0,1], and later multiplies ;9  with �9 and tanh. The CNN and 
LSTM, conventional in DL models, excel in spatial 
abstraction/local feature extraction and sequential/temporal 
processing, respectively. Recent studies manage enhanced 
stability by merging both methods, leading this study to adopt a 
parallel connection for a CNN–LSTM architecture, 
emphasizing the interconnected features of CNN and LSTM 
networks [23]. Leveraging the SFO method, adjustments to 
hyperparameter values in the HCNN-LSTM approach mimic 
the daily sunflower cycle, offering an effective strategy for 
hyperparameter tuning in the CNN-LSTM model [24]. The 
amount of heat O� obtained by all the plants can be defined as: 

O� = P
QRL�

S     (14) 

where �, T� denote the source of power and the distance among 
them. The sunflower faces the sun in the succeeding path: 

*⃗V = W∗�W�
||W∗�W�||Z  where & = 1,2,3, … , %           (15) 

The sunflower direction is evaluated as: 

2� = ` × �&
:& + :& − 1� × a|:& + :& − 1|a      (16) 

In (16), the possibility of pollination is �&
||:& + :& − 1| 
that implies the sunflower i will be pollinating its adjacent 
neighbor & − b and generate a new one in an arbitrary location, 
whereas ` denotes the inertial displacement. The maximal step 
can be formulated as: 

2cde = ||Wfgh �Wfij||
k×lmnm

    (17) 

In (17), :cde and :cVo denote the maximum and minimum 

values. pqrq  indicates the overall plant number in the 

population. The newest plantation can be defined by: 

:st�uuuuuuuu⃗ →= "⃗V + 2� ×→ wsuu⃗               (18) 

In the SFO approach, the selection of fitness relies on 
evaluating the candidate goodness using an encoder output, 
with accuracy being the pivotal criterion for defining the FF: 

=&7%xww =  max y zP
zPt{P|   (19) 

where }�  and =�  characterize the True and False Positive 
values. 

IV. RESULTS AND DISCUSSION 

In this section, the investigational output evaluation of the 
FSADL-BCDC approach is experimented on the BreakHis 
dataset [25]. The BreakHis dataset offers a distinctive 
advantage by providing a comprehensive collection of 
histopathological imaging. Its categorization into benign and 
malignant tumors across multiple magnifications enhances the 
dataset's suitability for diverse and specialized studies. It 
comprises the datasets 40X and 100X magnification, consisting 
of 1995 and 2081 samples, respectively. In Figure 2, the 
relational outputs of the FSADL-BCDC method with recent 
models [26] are portrayed on the 40X dataset. It can be seen 
that the FSADL-BCDC method portrayed increased ���~� , 

�Tx�!, �%2 Tx���  of 96.94%, 96.71%, and 96.94%. It can be 
seen that PFTAS-QDA, ResNet50, Xception, Inception-v3, and 

Inception-ResNetv2 approaches reached lesser ���~� , �Tx�! , 

and Tx��� values. 

 

 
Fig. 2.  Comparative analysis of the FSADL-BCDC approach on the 40X 

dataset. 
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Fig. 3.  Comparative analysis of the FSADL-BCDC approach on the 100X 

dataset. 

In Figure 3, the relative output of the FSADL-BCDC 
approach is given on the 100X dataset. It can be seen that the 
FSADL-BCDC approach offers increased ���~�, �Tx�!, Tx��� 
of 98.69%, 98.47%, and 98.69%, whereas the PFTAS-QDA, 
ResNet50, Xception, Inception-v3, and Inception-ResNetv2 
approaches attained lesser ���~� , �Tx�!, and Tx��� values. 

V. CONCLUSION 

In this article, focus is given on the design and development 
of the FSADL-BCDC methodology for detecting and 
classifying BC from HPIs. The main objective of the FSADL-
BCDC methodology is to investigate HPIs to detect and 
classify BC. In the FSADL-BCDC technique, the involved 
processes are WF-based preprocessing, ResNeXt feature 
extractor, FSA-based tuning, HCNN-LSTM classification, and 
SFO-based optimization. The utilization of the FSA and SFO 
techniques enhances the detection and classification 
performance of the FSADL-BCDC technique. The 
investigational outputs of the FSADL-BCDC method are 
examined on a standard medical image dataset. Extensive 
comparison studies highlighted the achievement of 96.94% and 
98.69% enhanced accuracy of the proposed method under 
diverse data, which surpasses the considered existing 
techniques. Thus, the FSADL-BCDC method can be utilized 
for the automated classification of BC. In the future, the 
performance of the FSADL-BCDC method can be enhanced by 
the design of ensemble classifier methods. The FSADL-BCDC 
method may encounter challenges in handling diverse 
histopathological images and could be sensitive to variations in 
image quality. Also, the reliance on sunflower optimization for 
tuning may pose computational complexities and scalability 
issues in large-scale datasets. 
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