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ABSTRACT 

Reconfiguring distribution networks involves modifying their topological structure by managing switch 

states. This process is crucial in smart grids, as it can isolate faults, minimize power loss, and enhance 

system stability. However, in existing research, the reconfiguration task is often treated as a problem of 

either single- or multi-objective optimization and frequently overlooks the issue's multimodality. As a 

result, the solutions derived may be inadequate or unfeasible when facing environmental changes. In this 

study, the objective function of minimizing power loss considers the case of faults in the distribution grid. 

Coordinating the initial population division of the Genetic Algorithm (GA) with the Particle Swarm 

Optimization (PSO) and the Teaching and Learning-Based Optimization (TLBO) algorithms accelerates 

the process of finding the optimal solution, resulting in faster and more reliable results. The proposed 

method was tested on the IEEE-33 bus test system and was compared with other methods, demonstrating 

reliable results and superior efficiency. 

Keywords-genetic algorithm; particle swarm optimization; teaching-learning-based optimization; 

reconfiguration distribution network; power loss reduction  

I. INTRODUCTION  

With the advancement of industry and technology, 
distribution networks have become more complex due to the 
presence of dispersed energy sources and the diversity of load 
characteristics. An increase in the rate of incidents impacts 
electrical safety and customer satisfaction, as well as the 
economic benefits of electricity-selling enterprises. 
Reconfiguration of the distribution network in the event of an 
incident is an effective solution that involves adjusting the 
network configuration to ensure power supply and optimize 
economic operations [1-2]. Typically, the reconfiguration of 
distribution networks falls into two specific categories: (1) 
adjusting the distribution networks under standard conditions 
for better economic performance, and (2) reconfiguring 
distribution networks due to faults [3]. When faults occur, this 
reconfiguration involves altering the network's topological 
layout by modifying switch positions. In [4], the 
reconfiguration in response to faults in the distribution network 
was to boost its self-healing capacity. As such, this 
reconfiguration is vital for both elevating the system's 
reliability [5] and optimizing power flow distribution [6-7]. 
While it poses a complex optimization challenge, many 
research approaches address it as either a single-objective or 
multi-objective optimization task. In [8], a reconfiguration 

model was developed for distribution networks under fault 
conditions, aiming to reduce power losses in the grid. A 
Genetic Algorithm (GA) with an enhanced mutation process 
was employed to address the reconfiguration issue when faults 
occur, and its results were validated using the IEEE 33-node 
distribution system. In [9], a multi-objective reconfiguration 
challenge was put forth for the electrical distribution network. 
Following that, an improved multi-objective evolutionary 
algorithm, grounded in Bayesian probabilistic learning, was 
utilized to tackle the highlighted challenge. 

In [10], the Root Running Algorithm (RRA) was proposed 
to address the Distribution Network Reconfiguration (DNR) 
issue. This algorithm incorporates random jumping steps and 
reinitialization strategies to prevent falling into local minima, 
and simulation results highlighted its remarkable efficacy in 
tackling the DNR problem. Many studies leveraged GA to 
optimize network configurations to reduce losses and switching 
operations [11]. Alternative metaheuristic algorithms, such as 
Particle Swarm Optimization (PSO), have been introduced to 
address this and enhance solution quality, especially to evade 
local optima. PSO has shown notable success in optimization, 
directing a population of particles using historical performance 
data. Its applications in DNR are varied, from enhancing load 
balancing to quality-performance trade-offs. In [12-13], a 
discrete PSO algorithm was proposed for DNR, noting its 
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computational intensity due to nonradial solutions. In [14-16], 
GA was utilized to decrease power loss and enhance electrical 
system reliability. Despite GA's proficiency with discrete 
variables and nonlinear objectives, its time efficiency remains a 
concern, and not all problems are amenable to GA solutions. 
Enhanced PSO variants have been developed to accelerate the 
search by incorporating historical solutions [17]. In [18], the 
Niche-Binary PSO (NBPSO) aims to avoid the issue of 
premature convergence endemic to standard PSO [19]. In [20], 
binary PSO was explored. In [21-23], artificial neural networks 
were used to optimize power loss. In [24], the gravitational 
optimization algorithm was used for the reconfiguration 
problem with multi-objective goals, such as reducing losses 
and operational costs. The reconfiguration process impacts not 
only power losses but also several other aspects of the 
distribution network. In [25], an enhanced heuristic method 
based on the branch exchange technique was utilized to address 
the problem, aiming to reduce loss costs, switch operation 
costs, and improve node voltage levels. The branch exchange 
method was refined to consistently produce valid network 
configurations without the need to solve the closed-network 
power distribution problem. In [26], a multi-objective heuristic 
method, the Fuzzy Multiobjective Approach (FMA), was 
introduced to target loss reduction, voltage deviation, and load 
balance across branches and feeders. Furthermore, some 
studies successfully employed generic heuristic algorithms for 
multi-objective reconfiguration, such as GA, and simulations 
demonstrated its ability to efficiently converge with a reduced 
population. 

Unlike the previous studies, this one considers not only 
multi-objectives in the reconfiguration during distribution 
network incidents but also other objectives. As a result, 
solution outcomes might encompass multiple configurations to 
meet the problem's objectives, aiding operation engineers in 
selecting a distribution network structure to operate during 
malfunctions. However, local optimization and extended 
computation times pose challenges for numerous multi-
objective evolutionary algorithms proposed in previous studies. 
Therefore, this issue continues to attract researchers' attention. 
To solve this problem, this study proposes an optimization 
method that combines the advantages of GA, PSO, and the 
Teaching-Learning-Based Optimization (TLBO) algorithm. 
The proposed technique was tested on the IEEE 33-node 
sample grid and compared with several other methods, 
demonstrating reliable results and improved computation 
speed. 

II. MODEL AND CONSTRAINT CONDITIONS 

The problem of reconfiguring the distribution grid in the 
event of a fault is a complex nonlinear optimization issue on a 
large scale and is dynamic due to the unpredictability of the 
fault location. Additionally, the objective function aims to 
reduce energy losses and voltage deviation errors, ensuring 
constraints on online loading capacity, power balance, and the 
radial operation of the distribution network. 

A. The Objective Function 

Based on [4, 8, 11], energy losses and voltage deviation 
errors are commonly used as objective functions in the 

reconfiguration of distribution networks. These two objectives 
can help minimize system losses and maintain network 
stability. Therefore, energy losses and voltage deviation errors 
are the two objective functions. The objective function for 
power loss on the distribution network is given by: 
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where N is the number of branches on the distribution network, 
kij is the status of the branch (kij equals 0 if the branch is open 
and 1 if it is closed), Rij is the resistance of branch ij, Pij is the 
active power on branch ij, Qij is the reactive power on branch 
ij, and Uj is the voltage at node j. 

B. Constraint Conditions 

The technical assurance conditions for distribution 
networks include the following: 

Conditions to balance node active and reactive power: 

��� −  ��� − ��� = 0  ∀ 
 ∈  ��   (2) 

��� −  � � − ��� = 0  ∀ 
 ∈  ��  (3) 

Condition to ensure allowable voltage limits: 

�!�" ≤  �� ≤ �!$%  ∀ 
 ∈  ��   (4) 

Condition to ensure current flow on branch ij: 

&�' ≤ &�'!$%()     (5) 

Condition to a radial structure for the distribution network: 

ℎ+ ≤ ,+     (6) 

where PGi is the active power generated at node 
 (pu), QGi is 
the reactive power generated at node i (pu), PSi is the total 
active power demanded at substation i (pu), QSi is the total 
reactive power demanded at substation i (pu), Pdi is the total 
active power demanded at node i (pu), Qdi is the total reactive 
power demanded at node i (pu), QGi is the reactive power 
generated at node i (pu), hk is the restructured network 
structure, and Hk is the set of distribution grid structures that 
can be implemented according to the operating rules of the 
distribution network. 

III. METHODOLOGY 

A. Introduction to GA, PSO, and TLBO 

1) Genetic Algorithm's (GA) Overview 

GA was introduced as a stochastic search technique 
inspired by Darwin's theory of evolution [27]. GA is a 
probabilistic search method modeled on the principle of natural 
selection [13]. It initiates its search with a collection of 
population strings, each representing a potential solution within 
the predefined search domain. Mimicking biological evolution, 
GA generates new candidate solutions, termed offspring, from 
the preceding generation of parents. However, their exploratory 
capabilities can sometimes constrain GAs, resulting in slower 
convergence rates or suboptimal robustness [19]. This 
limitation makes them susceptible to premature convergence 
and entrapment in local optima, particularly in complex 
optimization scenarios. 



Engineering, Technology & Applied Science Research Vol. 14, No. 1, 2024, 12959-12965 12961  
 

www.etasr.com Linh: A Novel Combination of Genetic Algorithm, Particle Swarm Optimization, and Teaching-Learning… 

 

2) Particle Swarm Optimization (PSO) Overview 

PSO is a more recent addition to evolutionary 
computational techniques [28]. Drawing inspiration from the 
social behaviors of bird flocking or fish schooling, PSO 
features a group of particles, also known as potential solutions, 
that traverse the multi-dimensional solution space. The 
trajectory of each particle is influenced by its personal best 
position and the optimum found by its neighbors. Unlike GA, 
PSO employs the entire group of solutions from start to finish, 
adhering to the survival of the fittest doctrine. However, PSO 
shares similar drawbacks as GA, including issues with 
convergence speed and robustness. 

3) Teaching-Learning Based Optimization (TLBO) Overview 

TLBO is modeled after the interaction between a teacher 
and students in a classroom setting [29]. It encapsulates the 
concept of mutual learning, where individuals learn from a 
teacher and each other. TLBO is a population-based algorithm 
that views solution vectors as a class of students learning 
various subjects, analogous to manipulating different decision 
variables in an optimization problem. The algorithm employs 
two primary modes of learning: the teacher phase for global 
search, where the best solution acts as a teacher, and the learner 
phase for local search, where learners exchange knowledge 
among themselves. Through iterations, the population 
hypothesizes and converges toward the best global solution for 
the problem at hand. 

4) Combining Algorithms 

The flexibility of GA and PSO for nonlinear optimization 
problems has been analyzed and evaluated in many studies. 
Recent studies have indicated that a hybrid metaheuristic 
approach, integrating multiple strategies, is more effective than 
employing a single algorithm. This study introduces a GA-
PSO-TLBO hybrid method, leveraging GA's global search 
capabilities, PSO's local search efficiency, and TLBO's 
learning mechanism, and validates its efficacy against 
conventional single and hybrid methods. The proposed method 
was used to solve the problem of minimizing power loss while 
electrical distribution networks are rearranging during faults. 
This study makes important contributions by introducing a 
useful hybrid metaheuristic approach and showing that it is 
robust, especially when investigating changes in population 
size and offspring generation in the TLBO process. 

B. Combining GA-PSO-TLBO for the Reconfiguration 
Problem in Case of Fault 

Applying a single optimization method to a problem is not 
as effective as leveraging the combined strengths of various 
optimization techniques [30]. This study proposes the GA-
PSO-TLBO method to effectively address optimization 
problems with many discrete variables. The GA-PSO-TLBO 
method effectively combines the benefits of three different 
optimization techniques in its search process to enhance its 
problem-solving performance. 

The GA method initiates its search by generating a random 
population. This population is made up of individuals with 
various fitness values, granting it global search capability. This 
ensures that the GA has a higher likelihood of identifying the 

optimal solution compared to local search strategies such as SA 
and HC. However, since GA is rooted in a population-based 
search and utilizes operations (such as selection, crossover, and 
mutation) on the entire population, it may exhibit slower 
convergence tendencies [30]. To address this shortcoming of 
GA while still embracing a population-based search, an 
effective strategy could be to operate it on just a selected 
number of individuals rather than the whole group. This study 
used the top 50% of the initial population based on higher 
fitness values for the GA cycle. The rationale behind this is that 
leveraging the top 50% with higher fitness scores increases the 
probability of pinpointing the optimal solution compared to 
relying on those with lower fitness scores. The GA's search 
mechanism can counteract the potential issue of early 
convergence caused by significant similarities in the top-
performing subset. The global search capability of GA serves 
to diversify the individuals in the group. On the contrary, using 
the subset with lower fitness values could reduce the 
probability of discovering the optimal solution [20]. This 
implies that if GA initiates its search with a population subset 
of lesser fitness values, it has a reduced chance of identifying 
the optimal solution. GA's approach of exploring a vast 
spectrum of values to boost individual diversity contributes to 
this. As a result, there is a pressing need to minimize the 
diversity within the subset that has lower fitness values to 
expedite the path to the optimal solution. 

Implementing PSO in this lesser-performing group can be 
an effective strategy, given its ability to rapidly enhance the 
fitness values of current members based on their velocities and 
positions [20, 23]. This study uses the bottom 50% of the initial 
population based on lower fitness values for the PSO cycle. 
The reason behind this decision is that the PSO's search 
mechanism can enhance the fitness values of individuals in this 
subset, making the PSO a suitable method for swiftly 
pinpointing the optimal solution. Furthermore, it has been 
indicated [20, 23] that applying the TLBO search process to 
elite members following the GA search can lead to further 
enhancements. Given that GA does not provide substantial 
learning capabilities for its elite members during its search, 
introducing the TLBO search process to a select group with 
higher fitness scores can increase the probability of identifying 
the optimal solution. In this context, the top 50% of offspring, 
derived post-GA and PSO cycles, are used for the TLBO 
search phase. Figure 1 shows the flow chart of the proposed 
method. An initial population is randomly generated and 
divided into two subpopulations: 50% with higher fitness 
values and 50% with lower ones. These subpopulations are 
then fed into the GA and PSO loops, respectively. GA aims to 
diversify the population, while PSO aims to accelerate the 
search for the best solution. Integrating both GA and PSO 
boosts exploration and exploitation simultaneously. From the 
combined offspring of GA and PSO, 50% with higher fitness 
values are used in the TLBO loop, which aims to enhance the 
likelihood of pinpointing the optimal solution. 

IV. RESULTS AND DISCUSSION 

The proposed algorithm was implemented in MATLAB 
2019a, running on a PC with an i7 processor at 6 GHz, and 
applied to a 33-node distribution system. Comparative analysis 
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was performed based on distribution losses, node voltage 
values, fitness values, convergence iteration counts, and the 
time taken to execute the optimization process. 

 

 

Fig. 1.  Flowchart of the proposed GA- PSO-TLBO algorithm. 

A. System Main Process 

The main steps of the simulation process are executed as 
shown in Figure 3. 

 Step 1: Update the operational parameters of the 
distribution network. 

 Step 2: Simulate a fault at a location on the distribution 
network. 

 Step 3: Identify the fault location and the nodes that are 
isolated (de-energized). 

 Step 4: Update the distribution network parameters in the 
event of a fault. 

 Step 5: Find the optimal configuration using the proposed 
GA-PSO-TLBO algorithm. 

 Step 6: Calculate the established mode for the new 
configuration and check the constraint conditions. 

 

Initialize the vector xk as the state of the 

switches, where xi has a value of 0 (switch open) or 

1 (switch closed), following the formula: 

-+ = -., -/,…., -!2334335
67% 9:; �<

-!=., -!=/,…., -"23333433335
67% 9:; >�?

  

Input: problem data(f(x),n), 

parameters:maxGen,k:popSz, rand:random number); 

output: the best solution GBest; 

begin: 

t ← 0; 

randomly generate parent population P(t)=[xk(t)]; 

evaluate P(t) and keep the best solution Ibest in 

P(t); 

while(not terminating condition)do 

 create P1(t)using superior solutions(50%)from P(t); 

//P1(t)=[xk/2(t)] 

 create P2(t) using inferior solutions (50%) from 

 P(t); //P2(t) =[xk/2(t)] 

 create G(t+1)from P1(t) by crossover routine; 

//G(t+1)=[xk/2(t)], GA population // GA loop 

 create G(t+1) from P1(t) by mutation routine; 

 evaluate G(t+1) and keep the best solution GAbest in  

 G(t+1); 

 PSObest ← big M; //PSO loop 

 for each particle xk(t) in swarm of P2(t) do 

  update velocity vk(t) by vk(t+1) = w.vk + 

    c1d1(lbestk - xk) + c2d2(xBest(t) - xk); 

  update position xk(t+1) by xk(t+1) = xk(t) + 

vk(t+1); 

  S(t+1)← xk(t+1); //S(t+1)=[xk/2(t)] //PSO 

population 

  if PSObest>f(xk(t+1))then 

   PSObest = xk(t+1); 

  end 

 end 

 create offspring using G(t+1) and S(t+1); //TLBO  

 create L(t+1) using 50% superior solutions from  

  offspring; //L(t+1)=[xk(t)], TLBO population 

 select teacher value Xbest and calculate the mean of  

 the class Xmean in L(t+1); 

  for k=1 to popSz/2 

   Tf =round(1 + rand(0,1)) //Teacher phase 

   xk(t+1)
new= xk(t+1) + rand(Xbest - Tf.Xmean) 

   if f(xk(t+1)) > f(xk(t+1)
new) then 

    xk(t+1) = xk(t+1)
new 

   end 

   randomly select a learners xp from {1,2,…,popSz}; 

   //Learner phase 

   if(xk(t+1) > f(xp)) then 

    xk(t+1)
new
 = xk(t+1)+rand(xk(t+1)-xp) 

   else 

    xk(t+1)
new = xk(t+1)-rand(xk(t+1)-xp) 

   end 

   if f(xk(t+1))> f(xk(t+1)
new
) then 

    xk(t+1) = xk(t+1)
new 

   end 

   select Xbest and calculate Xmean in L(t+1); 

 end 

 TLBObest = Xbest 

 Gbest=argmin{Ibest, GAbest, PSObest,TLBObest} 

 reproduce P(t+1) from G(t+1), S(t+1), and L(t+1) by  

 elitist selection routine; 

 t ← t+1; 

end 

output: the best solution GBest 

end; 

Fig. 2.  The pseudocode of the proposed algorithm. 

B. Parameter Setting of the IEEE-33 Bus 

Figure 4 shows the IEEE-33 bus distribution system that 
was used to validate the performance of the GA-PSO-TLBO 
algorithm. The system consists of 33 nodes, 32 section 
switches, and 5 interconnection switches [11]. This system 
operates at a base voltage of 12.66 kV. In the initial state of the 
distribution network before any fault onset, switches 33-37 are 
open, while the rest remain closed. The initial power loss is 191 
kW, with a voltage deviation of 0 pu [11]. The parameters of 
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the GA and PSO search align with those mentioned in [8]. For 
all algorithms, the maximum function evaluations and 
population size were set at 500 and 200, respectively. 

 

 

Fig. 3.  Steps to perform the simulation process. 

 

Fig. 4.  IEEE 33-bus distribution system and initial state. 

C. Simulation Results 

Identifying equivalent schemes is essential in the process of 
resolving fault reconfiguration issues within distribution 
networks. In this simulation, the efficacy of the GA-PSO-
TLBO algorithm was demonstrated using the IEEE 33-bus 
distribution system framework. Table I proposes test scenarios 
during the occurrence of a fault in branch 9. Due to the fault at 
branch 9, nodes 9 to 17 are de-energized, resulting in their 
voltage values being zero before reconfiguration. After 
reconfiguration with the objective function aimed at reducing 
losses, Figure 5 shows that all previously de-energized nodes 

were re-energized, the minimum node voltage increased, and 
the voltage quality of the power supply improved across all 
three considered schemes while maintaining voltage values 
within acceptable limits (0.9-1.1 pu). The losses associated 
with the proposed schemes were approximately equal. Based 
on the above analysis, the proposed method exhibits 
adaptability to dynamic or uncertain environments, and the 
equivalent solutions it provides can assist decision-makers in 
effectively managing unexpected faults, ensuring the 
completion of the distribution network's fault reconfiguration 
process without the need to adjust the initial objectives. This 
also improves the safety and reliability of the electrical supply 
in the distribution network. Furthermore, the proposed 
algorithm avoids local optima and offers three schemes that 
guarantee the satisfaction of the necessary constraints for the 
objective function and power supply capabilities. 

TABLE I.  RECONFIGURATION OF THE PROPOSED GA-
PSO-TLBO 

Case 
Fault in 

branch 

Solutions 

(switch open) 
Power loss/100 kW Vmin/Vmax 

1 9 6;32;34;37 1.356 0.938/1.00 

2 9 7;14;25;32 1.362 0.925/1.00 

3 9 7;8;32;37 1.379 0.927/1.00 
 

D. Comparison 

Computational efficiency and algorithmic efficacy are 
important measures to solve real-world engineering challenges. 
Table II shows a comparison of the time the algorithms take to 
execute and the quality of the solutions they produce.  

TABLE II.  TIME AND NUMBER OF ITERATIONS 
COMPARISON 

Case 
GA-PSO- TLO 

(proposed) 

SPEA 

[31] 

MOPSO

[32] 

NSGA-II 

[33] 

Time (s) 48.62 63.91 64.47 35.31 

Number of 

iterations 
42 40 39 36 

Result 3 1 1 1 
 

Table II consolidates the mean computational duration and 
the spectrum of solutions discerned by each algorithm. The 
proposed algorithm was faster than the Multi-Objective Particle 
Swarm Optimization (MOPSO) and the Strength Pareto 
Evolutionary Algorithm 2 (SPEA2). The proposed GA-PSO-
TLBO method was also better than MOPSO and SPEA2 in 
finding a wider range of solutions. Although the Non-
dominated Sorting Genetic Algorithm II (NSGA-II) had less 
runtime than the proposed one, it fell short in achieving its 
breadth in solution discovery. Table II shows that the proposed 
method is effective, accurate, and reliable. After careful 
consideration, it can be said that the GA-PSO-TLBO algorithm 
has a fast calculation speed, proposes optimal operating 
structures for the operator to choose from, and is therefore 
suitable for the problem of reconfiguring the distribution 
network in case of failure. 

V. CONCLUSION AND RECOMMENDATIONS 

The optimization of fault reconfiguration processes is 
critical to improving the operational efficiency and 
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dependability of smart grid systems. This study presented the 
GA-PSO-TLBO algorithm, which combines discrete 
multimodal multi-objective PSO, GA, and TLBO. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Fig. 5.  Reconfiguration schemes of equivalent solution: (a) initial state 

topology in branch 9, (b) reconfiguration case 1 for the equivalent solution,  

(c) reconfiguration case 2 for the equivalent solution, and (d) reconfiguration 

case 3 for the equivalent solution. 

 

 

Fig. 6.  Voltage values of each node equivalent solution. 

This algorithm is specifically designed to address the 
complexities of fault reconfiguration in electrical distribution 
networks. This algorithm introduces a novel selection method 
to optimize the search for robust solutions within the GA-PSO-
TLBO framework. The results, simulated in several fault cases, 
demonstrated that the precision of the proposed method is 
comparable to that of previous methods, but the convergence 
speed was enhanced, resulting in accelerated calculation times. 
The proposed algorithm generates more optimal configurations, 
which significantly aid decision-making in the operation of 
distribution networks during electrical faults. A comparative 
analysis was performed on an IEEE 33-bus against established 
methods, such as MOPSO, NSGA-II, and SPEA, to 
substantiate the algorithm's performance. The results showed 
that the proposed GA-PSO-TLBO algorithm was better suited 
to help with fault reconfiguration problems in distribution 
networks. In particular, the GA-PSO-TLBO algorithm excelled 
in generating a diverse array of feasible solutions in less time, 
providing decision-makers with a versatile toolkit to navigate 
emergencies and adapt to dynamic grid conditions. 
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