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ABSTRACT 

This paper introduces a new application of the Electrical Resistivity Imaging (ERI) method within the 

realm of structural assessment, deviating from its conventional use in geology. The study presents an 

innovative inversion model that incorporates the Levenberg-Marquardt algorithm, representing a notable 

leap in seamlessly integrating ERI into structural analysis. Rigorous validation of the inversion 

methodology is conducted through extensive benchmarking against simulated reference data, focusing on 

1D and 2D resistivity distributions within timber specimens. By utilizing known resistivity fields, the paper 

quantitatively validates the accuracy of reconstructed models obtained through numerical simulations. 

Notably, both longitudinal and transverse surveys exhibit exceptional outcomes, showcasing a high 

correlation with the actual resistivity profiles, achieved within a concise 10-13 iterations. This meticulous 

validation process conclusively underscores the effectiveness and precision of the proposed inversion 

approach. Beyond its scientific contribution, this research expands the conventional boundaries of ERI 

application and establishes it as an invaluable tool for structural monitoring. 
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I. INTRODUCTION  

Electrical Resistivity Imaging (ERI) is a highly effective 
geophysical technique employed for mapping subsurface 
variations in both lateral and vertical electrical resistivity [1-3]. 
This method involves deploying arrays of electrodes on the 
ground surface to inject current and measure potential 
differences within the subsurface. The systematic arrangement 
of electrodes in the ground is crucial for the subsurface 
resistivity assessment. The measurement process involves 
applying a precisely measured direct current or low-frequency 
alternating current (denoted as IAB) between electrodes A and B. 
Subsequently, the voltage of the alternating current (denoted as 
ΔVMN) is measured between the remaining electrodes M and N, 
which serve as potential electrodes. Apparent resistivity data 
collected along survey lines are processed and inverted to 
produce 2D and 3D models of true resistivity distribution. ERI 
has wide applicability for near surface investigations related to 
civil infrastructure, hydrogeology, environmental assessment, 
and archeology due to its ability to differentiate materials based 
on electrical properties. Factors such as mineral composition, 
porosity, water content, and salt concentration influence field 
measurements [4, 5]. By detecting electrical property contrasts, 
ERI can delineate subsurface lithological contacts, solution 
cavities, contaminant plumes, and structural features without 
cumbersome drilling [2, 6]. ERI is also employed for structural 
health monitoring of concrete and timber elements. Variations 
in moisture content, cracks, and defects create contrasts in 

electrical conductivity that are mapped through inversion of the 
resistivity data. This allows accurate identification of internal 
damage in concrete caused by corrosion, leakage, or erosion [7, 
8]. For timber, ERI enables differentiation of moisture 
gradients and decay pockets based on resistivity contrasts 
without extensive drilling [9]. The sensitivity of ERI to subtle 
changes in electrical properties allows early detection of latent 
defects and deterioration prior to visual manifestations on the 
structural. 

In geophysics, the Res2Dinv software facilitates the 
computation of the projected resistivity field onto the study 
area using apparent resistivity values measured in the field [6, 
10]. This calculation relies on an inverse method that 
minimizes the difference between experimental measurements 
and apparent resistivities derived from numerical computations. 
The underlying principle, termed inversion, assumes point 
injection into a semi-infinite medium, which is notably 
unrealistic in this context due to the limited and confined 
structural dimensions in space. This paper develops an 
inversion model that allows for considering the actual geometry 
of the studied volumes.  

II. THE LEVENBERG-MARQUARDT ALGORITHM 

AND ITS APPLICATION TO THE ELECTRICAL 

RESISTIVITY OPTIMIZATION PROBLEM 

Levenberg-Marquardt is an effective algorithm for 
nonlinear regression models [11-13]. It strategically combines 
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Gradient Descent [14, 15] and Gauss-Newton approaches [16, 
17]. When parameters are distant from the optimal values, the 
algorithm leverages a Gradient Descent-like search to approach 
global optimum territory while avoiding entrapment in 
suboptimal local extrema. As the solution trajectory nears 
putative optima, the technique transitions to exploit Gauss-
Newton’s rapid fine-scale convergence properties. This 
blended approach confers multiple advantages over pure 
Gradient Descent. By prioritizing global exploration initially, 
Levenberg-Marquardt avoids stagnation in local minima. The 
subsequent activation of Gauss-Newton’s efficient local search 
allows precision-tuning of parameters to expedite convergence 
at optimized coordinates. However, disadvantages include 
substantially greater computational overhead versus basic 
Gradient Descent, as well as more intricate algorithmic 

implementation.  1 2, ,..., Nd d d d represents the measured 

data (with N being the number of measurements), and 

 1 2, ,..., Mm m m m represents the model parameters (with 

M  being the number of parameters). So, the model function 

is: ( )f f m . 

According to the least squares method, the expression of 
the difference between measured and calculated data, or also 
referred to as the objective function F is then expressed in the 
following matrix form: 

   .
T

F d J m d J m          (1) 

In this context, d  denotes the variance between the 

measured and computed data. The inversion outcomes 

converge towards adjusting the initial model 0m through a 

correction .m  

 0d d f m       (2) 

0m m m        (3) 

The Jacobian matrix encodes localized gradient information 
to guide optimization algorithms towards minimizing model-
data misfit. Its size matches observations by parameters, with 
elements quantifying parameter influence on each data point. 
For nonlinear inverse problems, iterative methods successively 
update parameters along the Jacobian-indicated descent 
direction. 

( )i
i j

j

f m
J

m


      (4) 

The correction vector is thus defined by: 

  1
T T

mm J J W J d


       (5) 

The damping parameter  enables regularization of the 

approximation to the Hessian matrix TJ J  utilized during 

inversion, mitigating ill-conditioning via addition of a scalar 

value to the eigenvalues. Conceptually,   mediates the 

tradeoff between resolution and accuracy in the inverse 
problem solution. Excessive damping magnitudes prolong 

inversion execution. However, the resultant models can 

demonstrate improved fidelity. Conversely, reduced   values 

prioritize efficient convergence over precision. Accordingly, 
common Levenberg-Marquardt implementations allow 

dynamic tuning of : decreasing the damping factor when the 

objective function shows decreasing misfit to accelerate 

mapping, while increasing   to restore stabilization upon 

divergence. The modulated attenuation introduced by the 
damping parameter therefore facilitates adaptive control over 
convergence and precision. Further analysis of automated, 

data-driven   selection is warranted to optimize the balance 

between model accuracy and computational efficiency. 

In the electrical inversion problem, the vector m is defined 
as the conductivity, and the resistivity is determined as the 
reciprocal of m.  

1 2

1 1 1
, ,...,resistivity

M

m
m m m

 
  
 

   (6) 

The key to the inverse problem lies in the selection of .M  

A larger value of M  leads to a more accurate electrical 
resistivity field, however, an increase in M  may render the 
inverse problem resource-intensive and potentially unsolvable. 
Therefore, this paper proposes dividing the sample into M  
elements with constant electrical resistivity within each 
element. The vector m comprises components that represent the 

conductivity values of the M  elements. The measured MN

AB

V

I


 

can be represented in the form of a vector d which is called the 
measured data vector. N represents the number of 
measurements dictated by the multiplexing. The direct problem 
is then defined as a function f(m) whose result is expressed in 

the form of a vector composed of the MN

AB

V

I


values computed 

by the direct model. 

III. NUMERIC VALIDATION OF THE INVERSION 

MODEL 

A. Details of the Numerical Inversion Validation Process 

1) Initial Resistivity Model 

An initial homogeneous resistivity model 0m is defined, 

with a value reasonably approximating known subsurface 
conditions. 

2) Parameterization 

The model domain is discretized into M  elements of 
homogeneous resistivity values to be estimated through 
inversion.  

3) Forward Modeling 

For a given ,m the numerical direct model predicts the 

array voltage response MN

AB

V

I


. An accurate simulation of the 

true subsurface electric field is required. 
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4) Inversion 

An iterative optimization algorithm adjusts the resistivity 
model to minimize the misfit between measured and modeled 

MN

AB

V

I


, generating a correction vector d  at each iteration 

based on the Levenberg-Marquardt method. 

5) Convergence 

Inversion terminates once predefined stopping criteria are 
met relating model parameters, misfit error, and number of 
iterations. If convergence fails, regularization parameters and 
discretization can be adjusted. Final modeled resistivities 
comprise the inverted section. The validation process for the 
inversion model involves utilizing data resolved by the direct 
model, which are subsequently introduced into the inverse 
model as "measured data". Knowledge of the true resistivity 
field permits the validation of the inversion model. This article 
builds upon the direct finite element model developed in [9] 
which enables simulating the multiplexed measurement 
algorithm coupling the resolution of Ohm’s law (current 
injection and electric potential calculation) with a multiplexing 
procedure concordant with the measurement configuration. For 
any given resistivity field, the model can determine the 

numerical values of MN

AB

V

I


when measured with different 

multiplexers. The validation of the inversion model is carried 
out in two cases: (1) Longitudinal resistivity profile and (2) 
traverse resistivity profile. 

B. Case 1: Longitudinal Resistivity Profile 

This problem is based on the assumption of a homogeneous 
resistivity distribution on the traverse section. Consider a 
timber specimen with dimensions of 320 × 95 × 95 mm

3
 and 21 

inline electrodes spaced by 15 mm in an array along the length 
of the specimen as shown in Figure 1. Cylindrical metal 
electrodes with a diameter of 2 mm are inserted into the sample 
to a depth of 10 mm.  

 

 
Fig. 1.  Dimensions of the specimen and electrode arrangement for the 

case 1 model. 

This study uses a dipole-dipole quadrupole configuration, 

which allows obtaining a very low electromagnetic coupling 

between the current and potential lines while giving a high 

density of measurement points (Figure 2). Consider a 

resistivity field with a gradient shape varying from 10
4 

to 10
6
 

Ωm as shown in Figure 3. 

 

Fig. 2.  Dipole - dipole configuration. 

 
Fig. 3.  The electrical resistivity field of case 1 into the direct model. 

The current injection in forward modeling is simulated 
using three types of dipole-dipole quadrupole arrays by varying 
the n values successively to n = 1 (type 1), n = 2 (type 2), and  
n = 3 (type 3), allowing for the determination of a total of 51 

numeric values of MN

AB

V

I


. These 51 values are used as the 

"measured data" fed into the inverse model to determine the 
resistivity field of the specimen. In this case, the known 
resistivity field beforehand allows validating the accuracy of 
the inversion model. 

C. Case 2: Traverse Resistivity Profile  

The specimen is a cubic prism with dimensions of  
95 × 95 × 95 mm

3
. In this case, the approach is generalized to 

an electrode arrangement in the form of a belt. Five electrodes 
per face are spaced 15 mm apart, in a two-dimensional 
configuration (Figure 4). In contrast to the previous one-
dimensional case, all quadrupole configurations are exploited. 
This makes it possible to investigate the entire cross-section 
and achieve a high density of measurement points, not only on 
the surface but also inside the core. Two multiplexing 
processes are implemented per measurement: Multiplexing 1 
sweeps electrodes 1 through 20, multiplexing 2 sweeps 
electrodes 10 to 11 (Figure 5). 

 
Fig. 4.  Dimensions of the specimen and electrode arrangement for the 

case 2 model. 
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Fig. 5.  Two electrical measurement directions of case 2 specimen. 

The goal is to determine the resistivity distribution in a 
cross-section of the sample. The hypothesis of constant 
resistivity, along the longitudinal direction, is then proposed. 
Similar to the longitudinal case, we consider an example of an 
exponentially varying resistivity profile from 10

4
 to 10

6
 Ωm as 

shown in Figure 6. 

 

 

Fig. 6.  The electrical resistivity field of case 2 into the direct model. 

Multiplexing (Figure 5) produces 319 values of MN

AB

V

I


. 

These values are used as the "measured data" fed into the 
inverse model to determine the resistivity field of the specimen. 

D. The Inverse Problem-solving Process 

In Case 1, the sample is segmented into 10 equal-length 
segments, while in Case 2, it is discretized into a grid of 5×5 
elements. Each segment in Case 1 and each element in Case 2 
is characterized by a homogeneous resistivity value (Figure 7). 

 

  
Case 1 Case 2 

Fig. 7.  Coarse meshing for the implementation of the inversion model. 

Let us choose the initial condition 0m  as a homogeneous 

electrical resistivity of 10
7
 Ωm. Since the function mf  is 

essentially the direct model, the values of the Jacobian matrix 
cannot be directly computed through differentiation. Therefore, 
an approximate calculation method is proposed: 

( ) ( )i j j i j
i j

i

f m m f m
J

m

  



   (7) 

The regularization parameter  is dynamically selected 

during the inversion process. The first iteration starts with a 

sufficiently high 0  value relative to the Jacobian matrix 

terms, to ensure stability. For subsequent iterations,   is 

updated based on the change in objective function: it is reduced 
by a factor α if the objective function decreases (indicating 
convergence) or increased by a factor β otherwise. Direct 
matrix inversion utilizes partial pivoting Gaussian 
factorization. The stopping criterion is based on the parameter 
variation between two successive iteration i+1 and i falls below 

a threshold mf , as defined in (8):  

1i i
m

i

m m
f

m
 

     (8) 

In this case, we choose 
16

0   10  , α = 0.1, and β = 10, 

with the stopping criterion set to 
3  10 .mf
  

For Case 1, the time required for each iteration is less than 
15 min. The inversion procedure stops after 12 iterations. The 
mean absolute discrepancy between measured and inverted 

MN

AB

V

I


 values is 6.8%. By comparing the differences between 

measured and inverted MN

AB

V

I


, in the bulk region, the 

inversion yields promising results, however, near the sample 
edges, where the current lines are constrained, the algorithm 
lacks efficiency (Figure 8). Ultimately, the mesh density has to 
be compatible with the richness of information - sparser 
towards the edges compared to the central region. 

The thickness of the two segments at the edges is selected 
as 4 cm, while the bulk region is discretized into 8 segments 
with equal thickness values of 3cm (Figure 9). 

 

 

Fig. 8.  Relative error between measured and estimated MN

AB

V

I


 resulting 

from the Case 1 discretization into 10 qual-thickness segments. 
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Fig. 9.  Coarse meshing of the Case 1 specimen with unequal-thickness 

segments. 

The inversion procedure terminates after 10 iterations. The 
inverted resistivity model exhibits a commendable correlation 
with the true resistivity distribution, as confirmed by a small 

deviation (0.05%) between the measured and predicted MN

AB

V

I



responses (Figure 10). Thus, it can be observed that employing 
a grid division aligned with the measured density region 
enables the determination of the corresponding appropriate 
electrical resistivity field. 

 

 

Fig. 10.  Relative error between measured and estimated MN

AB

V

I


 resulting 

from the Case 1 discretization into 10 inequal-thickness segments. 

For Case 2, each iteration takes 55 min with the inversion 
stopping at the 12

th
 iteration. The difference between the 

measured and estimated MN

AB

V

I


is less than 0.5% on average. 

Figure 11 indicates that the errors of the 3 types of dipole-
dipole and quadrupole configurations are smaller than those of 
the remaining quadrupoles. 

Through the two considered examples, it can be concluded 
that the inverse model constructed using the Levenberg-
Marquardt algorithm was able provide reliable results. 

 

 

Fig. 11.  Relative error between measured and estimated MN

AB

V

I


 resulting 

from the Case 2 resolution. 

IV. CONCLUSION 

In conclusion, this paper presented a method of employing 
the Levenberg-Marquardt algorithm for electricity resistivity 
inversion. The article proposed a strategy for selecting the 
lambda coefficient based on the magnitude of the Jacobian 
matrix, with the additional adjustment of increasing or 
decreasing coefficients by a factor of 10 to ensure algorithm 
convergence and efficient problem-solving. The paper also 
outlined an approximate method for calculating the Jacobian 
matrix since computing derivatives becomes impractical when 
utilizing the direct model as the model function. 

Furthermore, the development of the inverse model and its 
validation were elucidated, utilizing numerical data from the 
direct model as simulated measurement values. This validation 
approach involves comparing the obtained results with pre-
known resistivity field values, affirming the accuracy of the 
inverse model. Applying the inversion algorithm to map 
resistivity distributions in timber specimens, specifically 
addressing 1D and 2D resistivity profiles (longitudinal and 
traverse), has showcased the accuracy of the inverse model. 
After 10-13 iterations, the inverse model yielded results with an 
error below 1% for both cases, thus confirming the 
effectiveness of the inversion approach. 

While these 1D and 2D examples show promising 
outcomes for the inversion algorithm, integrating real-world 
experimental data into the validation phase is crucial for 
reinforcing the robustness and reliability of the proposed 
method. Further experimentation and verification in actual field 
conditions are essential steps to validate the practical 
applicability of the presented approach. 
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