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ABSTRACT 

With the rapid advancements in 3D game technology, workload characterization has become crucial for 

each new generation of games. The increased complexity of scenes in 3D games allows for stunning real-

time visual quality. However, handling such workloads results in significant power consumption over the 

GPU rendering pipeline. The focus of the current paper is low power optimization, targeting texture 

memory, geometry engine, pixel, and rasterization, as these components are significant contributors to the 

power consumption of a typical GPU. The proposed methodology integrates the Dynamic Voltage 

Frequency Scaling (DVFS) technique, adjusting voltage and frequency based on the workload analysis of 

frame rates with respect to the scenes of 3D games. Frame rates of 60 fps and 30 fps are set up to 

understand and manage the workload on frames. Furthermore, for comparative analysis, various frame-

level power analysis schemes such as No DVFS implemented, Frame History Method, Frame Signature 

Method, and Tiled History-based are introduced. The proposed scheme consistently surpasses these frame-

level schemes, with fewer missed deadlines, while having the lowest energy consumption per frame rate. 

The implementation resulted in a remarkable 65% improvement in quality, indicated by a reduction in 

deadline misses, along with a substantial 60% energy saving. 

Keywords-3D scene rendering pipeline; frames; GPU; DVFS; geometry; pixel; texture; workload  

I. INTRODUCTION  

In the current landscape of multimedia devices and 
applications, 3D models have gained widespread usage, 
particularly in high-definition video games, which constitute to 
be a major part of computer graphics. In the latest Top 500 
supercomputer rankings, 101 of these supercomputers are 
powered by GPUs for acceleration [1]. There are many 3D 
model applications that exhibit compelling variations in the 
workload in the sequence of frames. Some high intensity 
workloads of 3D models [2] do not suite graphics design to 
achieve better performance and time. The goal is to identify 
opportunities for optimizing power consumption without 
compromising visual quality and user experience. An algorithm 
based on Dynamic Voltage Frequency Scaling (DVFS) [3, 4], 
is implemented to explore the characteristics confined to frame 
controlled rendering GPUs and reach desirable power savings. 
The workload of each frame is analyzed in the 3D scene by 
considering factors such as geometry [5, 6], textures, pixels [7], 
and rasterization. This analysis helps in understanding 
computational intensity of each frame. Matrix computing 
operations are commonly regarded as the cornerstone of 
various computations in the field of scientific applications. 

As the digital world continues to expand, its environmental 
impact, sustainability, cost savings, scalability, battery life, and 
heat dissipation are major power consumption issues that have 
to be addressed. The experimental findings in similar works [8, 
9] show decrease in energy consumed by GPUs up to 20%. The 
trade-offs between performance and power consumption in 
GPUs involve a delicate balance, and designers must make 
strategic decisions to optimize both aspects. Higher clock 
frequencies generally lead to better performance. But higher 
clock frequencies often require higher voltage levels, resulting 
in increased power consumption [3, 4, 10]. To enhance both 
speed and the quality of rendering, while considering the 
significance of textures and geometry, cutting-edge, high-
performance texture streaming systems have been developed 
[11, 12]. The power consumption in shaders is influenced by a 
combination of factors related to the complexity of the shader 
code, the number of shader invocations, and memory access 
patterns. Geometric complexity increases the number of 
vertices and brings a series of operations in the vertex shader 
with transformations and lighting calculations, leading to 
higher power consumption. High-resolution textures or 
frequent sampling can increase memory and bandwidth usage, 
contributing to higher power consumption. Sophisticated visual 
effects also contribute towards more power consumption. 
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These data are utilized for predicting the workload for the 
frames [13]. At the onset of the decoding process, buffering is 
applied to each frame comprising of GoP (Group of Pictures) 
and the workload estimation is calculated for the buffered 
frames. Minimal value relating frequency-voltage during the 
decoded period for meeting the deadlines for GoPs is noted in 
[14]. Figure 1 exhibits the varying processing time of 
successive frames in the following games: Cyberpunk 2077, 
Assassin's Creed Valhalla, Cow Boy Simulator, Tomb Raider, 
Forsaken World. It is observed from the graph that the 
workload on the frames 10-15 is much lower compared with 
the workload of frames in the range of 1-7. Considering this 
major gap with respect to workload variations, considerable 
power savings can be achieved by adjusting the computational 
capability of GPUs based on workload variation in frames.  

 

 
Fig. 1.  Workload variation observed in the games. 

II. METHODOLOGY 

The architectural design of the proposed methodology is 
based on the input of the 3D scene specific to game 
applications and is depicted in Figure 2. The implemented 
architecture primarily comprises four key components: 

 Video encoding and decoding for the frame rate analysis of 
the scenes. 

 Workload characterization on parameter geometry, pixel, 
texture, and raster. 

 Graphics Rendering Parameters Control (GRPC), which 
serves as a functionality that changes the parameters to 
influence the power consumed during runtime. 

 The DVFS technique is responsible for managing the core 
frequencies of GPU. 

In the initial stage, GPU’s power consumption and 
connected resources used under rendering of the 3D scene are 
examined. To achieve continuous parallelism and placement on 
the device, the libraries of TensorFlow are used. Power 
consuming parameters include: geometric complexity, texture 
memory, pixelization, and textures workload. The key 
strategies include DVFS and frame rate analysis based on 
workload. The computation of workload considers the 
parameters for every frame rendered in a 3D game scene. 
Utilizing these frame workloads as a basis, DVFS method is 
implemented, involving adjustments to both GPU voltage and 
frequency. The frequency threshold is established ranging from 
a minimum of 30 to a maximum of 60 frames per second (fps). 
If the current framerate is below the target framerate, the 
frequency is augmented. Conversely, if the current framerate 

surpasses the target, the frequency is diminished to attain 
optimal power savings. Examining the present load status of 
the GPU, which furnishes details regarding its idle intervals 
and workload distribution, enables the reduction of power 
consumption through the fine-tuning of frequency-voltage 
variations on the dedicated GPUs. 

 

 
Fig. 2.  Architecture of the proposed methodology. 

The workload of a scene from a 3D model refers to the 
computational effort or processing requirements needed to 
render and display that scene on a computer or GPU. Finally, 
after careful analysis of the workloads observed on each frame, 
four parameters, namely geometry workload, pixel workload, 
texture workload, and rasterization workload contribute in 
possessing the workload for each frame of the rendered scene 
along with their major contribution in power consumption. The 
geometry workload on scenes refers to the computational effort 
and processing requirements related to the geometric aspects of 
a 3D scene during rendering. The total count in vertex shader 
instructions (��) under each frame can be calculated by: 

�� � � � ��    (1) 

where ��  is the total length of instructions for each vertex 
shader program, and �  represents the vertices total count for 
each frame. The geometry stage workload is mainly determined 
by the number of vertices processed by the shader program 
multiplied by the instruction length. The equation for Geometry 
workload ��	
 as a combination of workload on the vertex 
shader (��) and the workload observed due to clipping and 
binning, which is considered to be proportional to the count of 
primitives (�) is defined as: 

�	 � �� � � � � � �� � �     (2) 

Pixel shading is a fundamental aspect of determining the 
final appearance of objects in the rendered image. The measure 
of workload identified due to pixel shading �Wp
 is expressed 
as: 

�� �  � �  ��    (3) 

where �� depicts the pixel shader program length, indicating 
the amount of computations required for each pixel. The 
texture workload measure �� can be estimated by considering 
the texels count that are read for every pixel under 
examination. The workload on texture can be expressed by: 

�� �  � �  � �  �    (4) 
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where � represents the texels count on each pixel, capturing the 
workload due to basic texture access, M represents the number 
of textures associated with each pixel, considering scenarios 
where multiple textures are used for blending or multi-texturing 
effects, and t represents the number of texel samples required 
for filtering. Enabling early z-test in our experiments reveals 
that around 50% of the pixels are ignored at this particular 
stage, leading to a significant reduction in both pixel shading 
and texturing workloads. Hence, with early z enabled: 

Wp = 0.5 × A × Np and Wt = 0.5 × A ×M × t  (5) 

Operations on rasters, including depth-stencil testing and 
color blending, primarily contribute to frame buffer memory’s 
bandwidth. For R raster operations in each primitive, every 
pixel for primitives require 2 × R rate of access towards buffers 
of frame. The respective operations are included with the sum 
of reading and writing from and to the memory of the frame 
buffer, hence the factor of 2 is considered. Hence, raster 
operations workload (Wr) is characterized by: 

Wr = A × 2 × R    (6) 

During workload analysis for the parameter texturing, 
rasterization and pixel shading operations are executed 
parallelly, so the processing speed is determined through the 
slowest parameter executed. Hence, correlative increment in 
the workload is found from the increment in any one of these 
parameters. From Figure 3, we see that the proposed 
methodology has almost ignorable under prediction count 
compared to the frame oriented signature-based scheme. 
Function tf.debugging.set_log_device_placement checks out 
the device placement. The tf.function and 
input_pipeline_analyzer display descriptive GPU core analysis 
results, including GPU’s step-time and duration of GPU time 
spent. TensorFlow Stats exhibits the performance for each 
TensorFlow op, executed on the device. Nvidia management 
tool NVML is employed for monitoring the power 
consumption in the graphics card. 

 

 
Fig. 3.  Accuracy of the proposed method predictions. 

III. EXPERIMENTAL SETUP AND 
IMPLEMENTATION 

NVIDIA Nsight [15] is a powerful profiling tool providing 
in-depth analysis of GPU performance and frame rates. The 
frames of six 3D games are considered: Cyberpunk (CP) 
provides an excellent benchmark for testing frame rates and 
performance on high-end systems. Assassin's Creed Valhalla 
(AC) depicts the workload characterized on each frame. Cow 
Boy simulator (CB) possess intense action sequences, making 

it ideal for frame analysis. Tomb Raider (TR) features complex 
lighting, shadows, and detailed textures that stress the 
rendering pipeline. Forsaken World (FW) and Mudness offroad 
Car simulator (MC) are great for analyzing GPU performance 
under heavy rendering loads. Deadline misses, achieved frame 
rates, and normalized energy consumption at 30 and 60 fps are 
analyzed for various frame level power analysis schemes. In 
the suggested approach, we assess frame correlation by 
comparing the geometric workload of the current frame to a 
previous frame. If the workloads of the frames are similar, we 
consider previous frame’s workload as a reliable estimate of 
the existing current frame. In our experiments, we set 
empirically the threshold for geometry workload to 10%. After 
completing the geometry processing, we analyzed other three 
frame components to determine the optimal processing 
frequency. Based on the workload analysis, the frames are 
divided into two categories: 

 Light Frames: Frames with an estimated workload that is 
equal to or less than previous frame’s workload.  

W(fi) <= W(fi−1)    (8) 

Suppose the current frame rate surpasses 60 fps. Within this 
range we systematically decrease the core frequency of the 
GPU. This sequence ensures that the workload is effectively 
managed with the minimal consumption of resources and 
power. Consequently, if the frame rate drops below the lower 
limit of 30 fps, the GPU core's frequency level is increased to 
enhance the frame rate. 

 Heavy Frames: Frames with an anticipated workload that 
surpasses previous frame’s workload: 

W(fi) > W(fi−1)    (9) 

In the second scenario, we focus on the workload of the 
present frame. To handle this augmented workload, we operate 
at the maximum available frequency. 

The frame workload Algorithm using DVFS is presented 
below. 

Algorithm 1: Proposed frame workload-based DVFS 
method 

Step 1: Initialization: Set initial values for fps and 
corresponding voltage and frequency levels  

Min =30 fps, Max = 60 fps and standard voltage and 
frequency levels 

Step 2: Frame and workload analysis of the current frame. 
Calculate geometry workload, pixel workload, raster operations 
workload, and texture workload from (2), (3), (4), and (6). 

Step 3: Frame workload classification: low ≤ 30 fps, 
medium = 45 fps, high >= 60 fps. 

Step 4: Voltage and Frequency Adjustment: If the current 
frame workload <= previous frame workload decrease 
frequency levels. Else increase frequency levels. 

Step 5: Frame processing: Process current frame using 
adjusted V and f levels to conserve power. 
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Step 6: Performance evaluation: Compare the achieved 
performance with the desired target set. Assess whether the 
performance is meeting the desired criteria or further 
adjustments is needed. 

Step 7: Repeat steps 1 to 6 for subsequent frames in the 
sequence 

Step 8: End the algorithm when all the frames have been 
processed. 

IV. RESULTS AND DISCUSSION 

For experimentation, the results are generated for GPU 
processors compatible with 3, 6, 9, and 12 levels of frequency 
and voltage, providing options in adjustments over DVFS. 
Results are produced for frame rates with thresholds of 30 fps 
and 60 fps, enabling us to evaluate performance and efficiency 
in two contexts: (i) slack utilization for lighter frame rates and 
(ii) guaranteeing the capability to attain deadlines for higher 
frame rates. In Figure 4, we can observe comparative 
percentages of deadline misses for the No DVFS implemented 
(WD) method, Frame History Method (FHM), Frame Signature 
Method (FSM), Tiled History-based Method (THM), and our 
Proposed Method (PM), for the CP game at a target frame rate 
of 60 fps. Notably, the FHM DVFS scheme exhibits the highest 
number of deadlines misses. The FSM performs better 
compared to FHM but still results in notable deadline misses. 
The PM excels due to its ability to implement early corrective 
measures, leading to reduction in the number of under-
predictions. Comparing 3-level and 2-level DVFS schemes, it 
is observed that the 3-level scheme results into deadline misses. 
The 2-level scheme opts Fmax frequency to prevent deadline 
misses, but this decision might lead to some slack under-
utilization. The proposed methodology in turn exhibits superior 
efficiency in handling both scenarios effectively. 

Figure 5 illustrates the impact of deadline misses. In the 
proposed methodology we can reach a frame rate that closely 
reflects the predictive frame rate, meanwhile the frame-based 
DVFS technique undergoes notable decrease in the frame rate. 
Referring towards Table I, history-based schemes lead to a 
drop of up to 10 fps, but the PM experiences maximum drop 
around 1 fps. Most often, required predictive frequency F 
underlies among two levels, F1 and F2 (F1 < F < F2). As a 
result, the frame is processed at F2 to meet the timing 
constraints. Similarly, in the History and Signature Method 
schemes, the frame with the average frequency nearer to F can 
be reached alternating between frequencies F1 and F2 for time 
durations t1 and t2 such that: 

F1 × t1 + F2 × t2 = F × TD, t1 + t2 = TD 

In our experiments, we found that using this approach 
resulted in more than 40% of the frames missing their 
deadlines.   

However, in the proposed DVFS scheme, we can 
effectively utilize the slack obtained from processing a frame at 
F2 to slow down future frames, allowing us to process the 
frame at an average frequency closer to the desired F. This is 
observed through the results achieved with respect to frames at 
60 fps, as in Figure 6. But, for the processed frames at 30 fps, 

as in Figure 7, we conclude that the PM consumes a bit more 
power compared to the legacy history-based schemes. To attain 
proper understanding of the comparison with respect to power 
efficiency introduced in each scheme, Normalized Energy per 
Normalized Frame Rate is evaluated. From the results 
examined in Figure 8, it is observed that the Energy per Frame 
Rate is minimized under the implemented frame-based DVFS 
scheme which outperforms frame history and signature DVFS 
techniques in terms of energy efficiency. The results for the 
remaining applications and various frame rate per second 
requirements, at 60 fps, are provided in Figures 9-11.  

 

 
Fig. 4.  Deadline misses at the desired frame rate of 60 fps. 

 
Fig. 5.  Achieved frame rate at the desired target of 60 fps. 

 
Fig. 6.  Normalized energy consumption at a frame rate of 60 fps. 

 
Fig. 7.  Normalized energy consumption at a frame rate of 30 fps. 
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Fig. 8.  Energy consumption per frame rate when operating at 30 fps. 

 
Fig. 9.  DVFS results at 60 fps, regarding deadline misses. 

 

Fig. 10.  DVFS results at 60 fps, regarding framerates. 

V. CONCLUSION 

Following a thorough examination, we identified the vertex 
processing, texture operations, geometry engine, and 
rasterization as significant factors influencing the power 
consumption of a typical GPU. The comparative outcomes of 
the proposed approach, in relation to both history-based and 
signature-based methods, demonstrate notable power 
conservation. 

 
Fig. 11.  DVFS results at 60 fps, focusing on normalized energy 
consumption per frame rate. 

By examining the available literature and contrasting with 
older games, it becomes evident that contemporary games are 
driven by the quest for enhanced realism, achieved by 
incorporating more intricate geometry. This shift in paradigm 
has resulted in a significant rise in the demand on vertex 
processing. Hence, we introduced low-power optimizations 
directed at these components. Our implementation 
demonstrated a substantial 65% improvement in quality, as 
indicated by a reduction in deadline misses compared to 
alternative history-based DVFS schemes. Moreover, it resulted 
in noteworthy energy conservation of 60%. In conclusion, it is 
clearly understood that graphics applications display workload 
variations and as a result, low-power optimization techniques 
have been introduced specifically designed for shader 
components. Future work includes the use of machine learning 
algorithms for predicting power consumption in shaders. By 
training models on historical data and runtime parameters, it 
may be possible to create more accurate predictions and guide 
dynamic optimizations. 
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