
Engineering, Technology & Applied Science Research Vol. 14, No. 1, 2024, 12925-12930 12925

www.etasr.com Konnurmath & Chickerur: GPU Shader Analysis and Power Optimization Model

GPU Shader Analysis and Power Optimization
Model

Guruprasad Konnurmath

School of Computer Science and Engineering, KLE Technological University, India
guruprasad.konnurmath@kletech.ac.in (corresponding author)

Satyadhyan Chickerur

Centre for High Performance Computing, KLE Technological University, India
chickerursr@kletech.ac.in

Received: 2 December 2023 | Revised: 18 December 2023 | Accepted: 21 December 2023

Licensed under a CC-BY 4.0 license | Copyright (c) by the authors | DOI: https://doi.org/10.48084/etasr.6695

ABSTRACT

With the rapid advancements in 3D game technology, workload characterization has become crucial for

each new generation of games. The increased complexity of scenes in 3D games allows for stunning real-

time visual quality. However, handling such workloads results in significant power consumption over the

GPU rendering pipeline. The focus of the current paper is low power optimization, targeting texture

memory, geometry engine, pixel, and rasterization, as these components are significant contributors to the

power consumption of a typical GPU. The proposed methodology integrates the Dynamic Voltage

Frequency Scaling (DVFS) technique, adjusting voltage and frequency based on the workload analysis of

frame rates with respect to the scenes of 3D games. Frame rates of 60 fps and 30 fps are set up to

understand and manage the workload on frames. Furthermore, for comparative analysis, various frame-

level power analysis schemes such as No DVFS implemented, Frame History Method, Frame Signature

Method, and Tiled History-based are introduced. The proposed scheme consistently surpasses these frame-

level schemes, with fewer missed deadlines, while having the lowest energy consumption per frame rate.

The implementation resulted in a remarkable 65% improvement in quality, indicated by a reduction in

deadline misses, along with a substantial 60% energy saving.

Keywords-3D scene rendering pipeline; frames; GPU; DVFS; geometry; pixel; texture; workload

I. INTRODUCTION

In the current landscape of multimedia devices and
applications, 3D models have gained widespread usage,
particularly in high-definition video games, which constitute to
be a major part of computer graphics. In the latest Top 500
supercomputer rankings, 101 of these supercomputers are
powered by GPUs for acceleration [1]. There are many 3D
model applications that exhibit compelling variations in the
workload in the sequence of frames. Some high intensity
workloads of 3D models [2] do not suite graphics design to
achieve better performance and time. The goal is to identify
opportunities for optimizing power consumption without
compromising visual quality and user experience. An algorithm
based on Dynamic Voltage Frequency Scaling (DVFS) [3, 4],
is implemented to explore the characteristics confined to frame
controlled rendering GPUs and reach desirable power savings.
The workload of each frame is analyzed in the 3D scene by
considering factors such as geometry [5, 6], textures, pixels [7],
and rasterization. This analysis helps in understanding
computational intensity of each frame. Matrix computing
operations are commonly regarded as the cornerstone of
various computations in the field of scientific applications.

As the digital world continues to expand, its environmental
impact, sustainability, cost savings, scalability, battery life, and
heat dissipation are major power consumption issues that have
to be addressed. The experimental findings in similar works [8,
9] show decrease in energy consumed by GPUs up to 20%. The
trade-offs between performance and power consumption in
GPUs involve a delicate balance, and designers must make
strategic decisions to optimize both aspects. Higher clock
frequencies generally lead to better performance. But higher
clock frequencies often require higher voltage levels, resulting
in increased power consumption [3, 4, 10]. To enhance both
speed and the quality of rendering, while considering the
significance of textures and geometry, cutting-edge, high-
performance texture streaming systems have been developed
[11, 12]. The power consumption in shaders is influenced by a
combination of factors related to the complexity of the shader
code, the number of shader invocations, and memory access
patterns. Geometric complexity increases the number of
vertices and brings a series of operations in the vertex shader
with transformations and lighting calculations, leading to
higher power consumption. High-resolution textures or
frequent sampling can increase memory and bandwidth usage,
contributing to higher power consumption. Sophisticated visual
effects also contribute towards more power consumption.

Engineering, Technology & Applied Science Research Vol. 14, No. 1, 2024, 12925-12930 12926

www.etasr.com Konnurmath & Chickerur: GPU Shader Analysis and Power Optimization Model

These data are utilized for predicting the workload for the
frames [13]. At the onset of the decoding process, buffering is
applied to each frame comprising of GoP (Group of Pictures)
and the workload estimation is calculated for the buffered
frames. Minimal value relating frequency-voltage during the
decoded period for meeting the deadlines for GoPs is noted in
[14]. Figure 1 exhibits the varying processing time of
successive frames in the following games: Cyberpunk 2077,
Assassin's Creed Valhalla, Cow Boy Simulator, Tomb Raider,
Forsaken World. It is observed from the graph that the
workload on the frames 10-15 is much lower compared with
the workload of frames in the range of 1-7. Considering this
major gap with respect to workload variations, considerable
power savings can be achieved by adjusting the computational
capability of GPUs based on workload variation in frames.

Fig. 1. Workload variation observed in the games.

II. METHODOLOGY

The architectural design of the proposed methodology is
based on the input of the 3D scene specific to game
applications and is depicted in Figure 2. The implemented
architecture primarily comprises four key components:

 Video encoding and decoding for the frame rate analysis of
the scenes.

 Workload characterization on parameter geometry, pixel,
texture, and raster.

 Graphics Rendering Parameters Control (GRPC), which
serves as a functionality that changes the parameters to
influence the power consumed during runtime.

 The DVFS technique is responsible for managing the core
frequencies of GPU.

In the initial stage, GPU’s power consumption and
connected resources used under rendering of the 3D scene are
examined. To achieve continuous parallelism and placement on
the device, the libraries of TensorFlow are used. Power
consuming parameters include: geometric complexity, texture
memory, pixelization, and textures workload. The key
strategies include DVFS and frame rate analysis based on
workload. The computation of workload considers the
parameters for every frame rendered in a 3D game scene.
Utilizing these frame workloads as a basis, DVFS method is
implemented, involving adjustments to both GPU voltage and
frequency. The frequency threshold is established ranging from
a minimum of 30 to a maximum of 60 frames per second (fps).
If the current framerate is below the target framerate, the
frequency is augmented. Conversely, if the current framerate

surpasses the target, the frequency is diminished to attain
optimal power savings. Examining the present load status of
the GPU, which furnishes details regarding its idle intervals
and workload distribution, enables the reduction of power
consumption through the fine-tuning of frequency-voltage
variations on the dedicated GPUs.

Fig. 2. Architecture of the proposed methodology.

The workload of a scene from a 3D model refers to the
computational effort or processing requirements needed to
render and display that scene on a computer or GPU. Finally,
after careful analysis of the workloads observed on each frame,
four parameters, namely geometry workload, pixel workload,
texture workload, and rasterization workload contribute in
possessing the workload for each frame of the rendered scene
along with their major contribution in power consumption. The
geometry workload on scenes refers to the computational effort
and processing requirements related to the geometric aspects of
a 3D scene during rendering. The total count in vertex shader
instructions (��) under each frame can be calculated by:

�� � � � �� (1)

where �� is the total length of instructions for each vertex
shader program, and � represents the vertices total count for
each frame. The geometry stage workload is mainly determined
by the number of vertices processed by the shader program
multiplied by the instruction length. The equation for Geometry
workload ��	
 as a combination of workload on the vertex
shader (��) and the workload observed due to clipping and
binning, which is considered to be proportional to the count of
primitives (�) is defined as:

�	 � �� � � � � � �� � � (2)

Pixel shading is a fundamental aspect of determining the
final appearance of objects in the rendered image. The measure
of workload identified due to pixel shading �Wp
 is expressed
as:

�� � � � �� (3)

where �� depicts the pixel shader program length, indicating
the amount of computations required for each pixel. The
texture workload measure �� can be estimated by considering
the texels count that are read for every pixel under
examination. The workload on texture can be expressed by:

�� � � � � � � (4)

Engineering, Technology & Applied Science Research Vol. 14, No. 1, 2024, 12925-12930 12927

www.etasr.com Konnurmath & Chickerur: GPU Shader Analysis and Power Optimization Model

where � represents the texels count on each pixel, capturing the
workload due to basic texture access, M represents the number
of textures associated with each pixel, considering scenarios
where multiple textures are used for blending or multi-texturing
effects, and t represents the number of texel samples required
for filtering. Enabling early z-test in our experiments reveals
that around 50% of the pixels are ignored at this particular
stage, leading to a significant reduction in both pixel shading
and texturing workloads. Hence, with early z enabled:

Wp = 0.5 × A × Np and Wt = 0.5 × A ×M × t (5)

Operations on rasters, including depth-stencil testing and
color blending, primarily contribute to frame buffer memory’s
bandwidth. For R raster operations in each primitive, every
pixel for primitives require 2 × R rate of access towards buffers
of frame. The respective operations are included with the sum
of reading and writing from and to the memory of the frame
buffer, hence the factor of 2 is considered. Hence, raster
operations workload (Wr) is characterized by:

Wr = A × 2 × R (6)

During workload analysis for the parameter texturing,
rasterization and pixel shading operations are executed
parallelly, so the processing speed is determined through the
slowest parameter executed. Hence, correlative increment in
the workload is found from the increment in any one of these
parameters. From Figure 3, we see that the proposed
methodology has almost ignorable under prediction count
compared to the frame oriented signature-based scheme.
Function tf.debugging.set_log_device_placement checks out
the device placement. The tf.function and
input_pipeline_analyzer display descriptive GPU core analysis
results, including GPU’s step-time and duration of GPU time
spent. TensorFlow Stats exhibits the performance for each
TensorFlow op, executed on the device. Nvidia management
tool NVML is employed for monitoring the power
consumption in the graphics card.

Fig. 3. Accuracy of the proposed method predictions.

III. EXPERIMENTAL SETUP AND
IMPLEMENTATION

NVIDIA Nsight [15] is a powerful profiling tool providing
in-depth analysis of GPU performance and frame rates. The
frames of six 3D games are considered: Cyberpunk (CP)
provides an excellent benchmark for testing frame rates and
performance on high-end systems. Assassin's Creed Valhalla
(AC) depicts the workload characterized on each frame. Cow
Boy simulator (CB) possess intense action sequences, making

it ideal for frame analysis. Tomb Raider (TR) features complex
lighting, shadows, and detailed textures that stress the
rendering pipeline. Forsaken World (FW) and Mudness offroad
Car simulator (MC) are great for analyzing GPU performance
under heavy rendering loads. Deadline misses, achieved frame
rates, and normalized energy consumption at 30 and 60 fps are
analyzed for various frame level power analysis schemes. In
the suggested approach, we assess frame correlation by
comparing the geometric workload of the current frame to a
previous frame. If the workloads of the frames are similar, we
consider previous frame’s workload as a reliable estimate of
the existing current frame. In our experiments, we set
empirically the threshold for geometry workload to 10%. After
completing the geometry processing, we analyzed other three
frame components to determine the optimal processing
frequency. Based on the workload analysis, the frames are
divided into two categories:

 Light Frames: Frames with an estimated workload that is
equal to or less than previous frame’s workload.

W(fi) <= W(fi−1) (8)

Suppose the current frame rate surpasses 60 fps. Within this
range we systematically decrease the core frequency of the
GPU. This sequence ensures that the workload is effectively
managed with the minimal consumption of resources and
power. Consequently, if the frame rate drops below the lower
limit of 30 fps, the GPU core's frequency level is increased to
enhance the frame rate.

 Heavy Frames: Frames with an anticipated workload that
surpasses previous frame’s workload:

W(fi) > W(fi−1) (9)

In the second scenario, we focus on the workload of the
present frame. To handle this augmented workload, we operate
at the maximum available frequency.

The frame workload Algorithm using DVFS is presented
below.

Algorithm 1: Proposed frame workload-based DVFS
method

Step 1: Initialization: Set initial values for fps and
corresponding voltage and frequency levels

Min =30 fps, Max = 60 fps and standard voltage and
frequency levels

Step 2: Frame and workload analysis of the current frame.
Calculate geometry workload, pixel workload, raster operations
workload, and texture workload from (2), (3), (4), and (6).

Step 3: Frame workload classification: low ≤ 30 fps,
medium = 45 fps, high >= 60 fps.

Step 4: Voltage and Frequency Adjustment: If the current
frame workload <= previous frame workload decrease
frequency levels. Else increase frequency levels.

Step 5: Frame processing: Process current frame using
adjusted V and f levels to conserve power.

Engineering, Technology & Applied Science Research Vol. 14, No. 1, 2024, 12925-12930 12928

www.etasr.com Konnurmath & Chickerur: GPU Shader Analysis and Power Optimization Model

Step 6: Performance evaluation: Compare the achieved
performance with the desired target set. Assess whether the
performance is meeting the desired criteria or further
adjustments is needed.

Step 7: Repeat steps 1 to 6 for subsequent frames in the
sequence

Step 8: End the algorithm when all the frames have been
processed.

IV. RESULTS AND DISCUSSION

For experimentation, the results are generated for GPU
processors compatible with 3, 6, 9, and 12 levels of frequency
and voltage, providing options in adjustments over DVFS.
Results are produced for frame rates with thresholds of 30 fps
and 60 fps, enabling us to evaluate performance and efficiency
in two contexts: (i) slack utilization for lighter frame rates and
(ii) guaranteeing the capability to attain deadlines for higher
frame rates. In Figure 4, we can observe comparative
percentages of deadline misses for the No DVFS implemented
(WD) method, Frame History Method (FHM), Frame Signature
Method (FSM), Tiled History-based Method (THM), and our
Proposed Method (PM), for the CP game at a target frame rate
of 60 fps. Notably, the FHM DVFS scheme exhibits the highest
number of deadlines misses. The FSM performs better
compared to FHM but still results in notable deadline misses.
The PM excels due to its ability to implement early corrective
measures, leading to reduction in the number of under-
predictions. Comparing 3-level and 2-level DVFS schemes, it
is observed that the 3-level scheme results into deadline misses.
The 2-level scheme opts Fmax frequency to prevent deadline
misses, but this decision might lead to some slack under-
utilization. The proposed methodology in turn exhibits superior
efficiency in handling both scenarios effectively.

Figure 5 illustrates the impact of deadline misses. In the
proposed methodology we can reach a frame rate that closely
reflects the predictive frame rate, meanwhile the frame-based
DVFS technique undergoes notable decrease in the frame rate.
Referring towards Table I, history-based schemes lead to a
drop of up to 10 fps, but the PM experiences maximum drop
around 1 fps. Most often, required predictive frequency F
underlies among two levels, F1 and F2 (F1 < F < F2). As a
result, the frame is processed at F2 to meet the timing
constraints. Similarly, in the History and Signature Method
schemes, the frame with the average frequency nearer to F can
be reached alternating between frequencies F1 and F2 for time
durations t1 and t2 such that:

F1 × t1 + F2 × t2 = F × TD, t1 + t2 = TD

In our experiments, we found that using this approach
resulted in more than 40% of the frames missing their
deadlines.

However, in the proposed DVFS scheme, we can
effectively utilize the slack obtained from processing a frame at
F2 to slow down future frames, allowing us to process the
frame at an average frequency closer to the desired F. This is
observed through the results achieved with respect to frames at
60 fps, as in Figure 6. But, for the processed frames at 30 fps,

as in Figure 7, we conclude that the PM consumes a bit more
power compared to the legacy history-based schemes. To attain
proper understanding of the comparison with respect to power
efficiency introduced in each scheme, Normalized Energy per
Normalized Frame Rate is evaluated. From the results
examined in Figure 8, it is observed that the Energy per Frame
Rate is minimized under the implemented frame-based DVFS
scheme which outperforms frame history and signature DVFS
techniques in terms of energy efficiency. The results for the
remaining applications and various frame rate per second
requirements, at 60 fps, are provided in Figures 9-11.

Fig. 4. Deadline misses at the desired frame rate of 60 fps.

Fig. 5. Achieved frame rate at the desired target of 60 fps.

Fig. 6. Normalized energy consumption at a frame rate of 60 fps.

Fig. 7. Normalized energy consumption at a frame rate of 30 fps.

Engineering, Technology & Applied Science Research Vol. 14, No. 1, 2024, 12925-12930 12929

www.etasr.com Konnurmath & Chickerur: GPU Shader Analysis and Power Optimization Model

Fig. 8. Energy consumption per frame rate when operating at 30 fps.

Fig. 9. DVFS results at 60 fps, regarding deadline misses.

Fig. 10. DVFS results at 60 fps, regarding framerates.

V. CONCLUSION

Following a thorough examination, we identified the vertex
processing, texture operations, geometry engine, and
rasterization as significant factors influencing the power
consumption of a typical GPU. The comparative outcomes of
the proposed approach, in relation to both history-based and
signature-based methods, demonstrate notable power
conservation.

Fig. 11. DVFS results at 60 fps, focusing on normalized energy
consumption per frame rate.

By examining the available literature and contrasting with
older games, it becomes evident that contemporary games are
driven by the quest for enhanced realism, achieved by
incorporating more intricate geometry. This shift in paradigm
has resulted in a significant rise in the demand on vertex
processing. Hence, we introduced low-power optimizations
directed at these components. Our implementation
demonstrated a substantial 65% improvement in quality, as
indicated by a reduction in deadline misses compared to
alternative history-based DVFS schemes. Moreover, it resulted
in noteworthy energy conservation of 60%. In conclusion, it is
clearly understood that graphics applications display workload
variations and as a result, low-power optimization techniques
have been introduced specifically designed for shader
components. Future work includes the use of machine learning
algorithms for predicting power consumption in shaders. By
training models on historical data and runtime parameters, it
may be possible to create more accurate predictions and guide
dynamic optimizations.

REFERENCES

[1] "Home - | TOP500." https://top500.org/.

[2] R. Li, A. Arora, S. Li, Q. Wu, and L. K. John, "Hardware-aware 3D
Model Workload Selection and Characterization for Graphics and ML
Applications," in 2022 23rd International Symposium on Quality
Electronic Design (ISQED), Apr. 2022, https://doi.org/10.1109/
ISQED54688.2022.9806296.

[3] A. Mishra and N. Khare, "Analysis of DVFS Techniques for Improving
the GPU Energy Efficiency," Open Journal of Energy Efficiency, vol. 4,
no. 4, pp. 77–86, Nov. 2015, https://doi.org/10.4236/ojee.2015.44009.

[4] J. Guerreiro, A. Ilic, N. Roma, and P. Tomás, "DVFS-aware application
classification to improve GPGPUs energy efficiency," Parallel
Computing, vol. 83, pp. 93–117, Apr. 2019, https://doi.org/10.1016/
j.parco.2018.02.001.

[5] N. C. Kundur, B. C. Anil, P. M. Dhulavvagol, R. Ganiger, and B.
Ramadoss, "Pneumonia Detection in Chest X-Rays using Transfer
Learning and TPUs," Engineering, Technology & Applied Science
Research, vol. 13, no. 5, pp. 11878–11883, Oct. 2023, https://doi.org/
10.48084/etasr.6335.

[6] P. D. Chung, "Smoothing the Power Output of a Wind Turbine Group
with a Compensation Strategy of Power Variation," Engineering,

Engineering, Technology & Applied Science Research Vol. 14, No. 1, 2024, 12925-12930 12930

www.etasr.com Konnurmath & Chickerur: GPU Shader Analysis and Power Optimization Model

Technology & Applied Science Research, vol. 11, no. 4, pp. 7343–7348,
Aug. 2021, https://doi.org/10.48084/etasr.4234.

[7] J. R. Monfort and M. Grossman, "Scaling of 3D game engine workloads
on modern multi-GPU systems," in Proceedings of the Conference on
High Performance Graphics 2009, New York, NY, USA, May 2009, pp.
37–46, https://doi.org/10.1145/1572769.1572776.

[8] G. Konnurmath and S. Chickerur, "Power-Aware Characteristics of
Matrix Operations on Multicores," Applied Artificial Intelligence, vol.
35, no. 15, pp. 2102–2123, Dec. 2021, https://doi.org/10.1080/
08839514.2021.1999013.

[9] G. Konnurmath and S. Chickerur, "An Investigation into Power Aware
Aspects of Rendering 3D Models on Multi-Core Processors," Procedia
Computer Science, vol. 218, pp. 887–898, Jan. 2023, https://doi.org/
10.1016/j.procs.2023.01.069.

[10] T. P. Minh et al., "Finite Element Modeling of Shunt Reactors Used in
High Voltage Power Systems," Engineering, Technology & Applied
Science Research, vol. 11, no. 4, pp. 7411–7416, Aug. 2021,
https://doi.org/10.48084/etasr.4271.

[11] A. Zhang, K. Chen, H. Johan, and M. Erdt, "High-performance adaptive
texture streaming and rendering of large 3D cities," The Visual
Computer, vol. 38, no. 4, pp. 1245–1262, Apr. 2022, https://doi.org/
10.1007/s00371-021-02152-z.

[12] D. Geisler, I. Yoon, A. Kabra, H. He, Y. Sanders, and A. Sampson,
"Geometry types for graphics programming," Proceedings of the ACM
on Programming Languages, vol. 4, no. OOPSLA, Aug. 2020, Art. np./
173, https://doi.org/10.1145/3428241.

[13] A. Mackin, F. Zhang, and D. R. Bull, "A Study of High Frame Rate
Video Formats," IEEE Transactions on Multimedia, vol. 21, no. 6, pp.
1499–1512, Jun. 2019, https://doi.org/10.1109/TMM.2018.2880603.

[14] N. Karpinsky and S. Zhang, "Holovideo: Real-time 3D range video
encoding and decoding on GPU," Optics and Lasers in Engineering, vol.
50, no. 2, pp. 280–286, Feb. 2012, https://doi.org/10.1016/j.optlaseng.
2011.08.002.

[15] "NVIDIA Nsight Systems," NVIDIA Developer. https://developer.nvidia.
com/nsight-systems.

